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ABSTRACT

This paper addresses the problem of locating an acoustic

source using a sensor network in a distributed manner, i.e.,

without transmitting the full data set to a central point for

processing. This problem has been traditionally addressed

through the maximum likelihood framework or nonlinear

least squares. These methods, even though asymptotically

optimal under certain conditions, pose a difficult global op-

timization problem. It is shown that the associated objective

function may have multiple local optima and hence local

search methods might stagnate at a sub-optimal solution. In

this paper, we treat the problem in its convex feasibility for-

mulation. We propose the aggregated projection onto con-

vex sets (APOCS) method, which, in contrast to the orig-

inal POCS method, converges to a meaningful limit even

when the problem is infeasible without requiring a dimin-

ishing step size. Simulation results show convergence to the

global optimum with significantly faster convergence rates

compared to the previous methods.

1. INTRODUCTION

The problem of locating a source that emits acoustic waves

using a wireless network of acoustic sensors has been ad-

dressed by several authors (see [1] and references therein).

This problem has been traditionally solved by non-linear

least squares via maximum likelihood, which is asymptoti-

cally optimal and offers a natural generalization to the case

of multiple sources [1]. However, there are two major draw-

backs to the method of [1]: (a) it requires the transmission

of a certain statistic from each node in the network to a cen-

tral point for processing, and (b) the solution of a global

optimization problem is required for the derivation of the

estimator.

Rabbat and Nowak [2, 3] proposed a distributed imple-

mentation of the incremental gradient algorithm to solve the
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nonlinear least squares problem in a distributed manner, i.e.,

without the need to transmit the data to a central point for

processing. The advantage of in-network computation rel-

ative to the fusion center approach in terms of communica-

tion bandwidth and energy consumption is well documented

in the literature (see e.g. [4] and references therein). The

premise is that as the network becomes denser, it is cheaper

to perform several communication cycles across the net-

work than to transmit the data from each sensor to a central

point.

A drawback of the method in [2, 3], or any other lo-

cal search method, is that it is sensitive to local optima and

saddle points. It is shown that the objective function as-

sociated with this problem is indeed multi-modal and may

have a number of local optima and saddle points. There-

fore, while a single communication cycle requires less en-

ergy and bandwidth than transmitting the data to a central

point, solving a global optimization problem may require a

large number of cycles, rendering the distributed implemen-

tation impractical.

More recently, a kernel averaging method was proposed

in [5], which avoids the global optimization problem associ-

ated with the nonlinear least squares problem. In this paper

the problem is formulated as a convex feasibility problem

instead of nonlinear least squares. Necessary and sufficient

conditions are given under which, when the number of sam-

ples increases to infinity or in the absence of measurement

noise, the convex feasibility problem has a unique solution

at the true source location (see [6] as well).

To solve the convex feasibility problem, the projection

onto convex sets (POCS) method [7] (see also [8] Ch. 5)

is applied. A closed form expression is given for the usu-

ally computationally demanding projection phase of POCS,

which leads to a computationally efficient implementation.

A drawback of the standard form of POCS [7] is that

for a finite number of samples the convex feasibility prob-

lem may become inconsistent, i.e., the intersection of the

sets is empty, and the iterates reach a limit cycle instead of

converging to a limit point. To overcome this weakness, the

steered sequential projection method, which uses a decreas-
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ing sequence of relaxation parameters and converges to a

meaningful limit, was proposed in [9]. A byproduct of the

decreasing step size is a slowdown of convergence.

In this paper a variation of POCS, which does not re-

quire a diminishing step size for convergence, is proposed.

The method is based on an aggregated projection phase, in

which progress is made based on an average of the direc-

tions to the individual sets. It is shown that our method can

be implemented in a distributed manner, i.e., each sensor

performs the bulk of its computations based on its own data

and it is not required that the full data set be sent to a central

point for processing. As in Nowak’s distributed EM algo-

rithm [10], a number of communication cycles across the

network is sufficient for the implementation of the estima-

tor.

Simulation results show global convergence of POCS in

contrast to a local search method, with extremely fast con-

vergence rates. For the inconsistent convex feasibility prob-

lem, a comparison between the steered sequential projection

method [9] and our aggregated POCS (APOCS) is given.

2. PROBLEM FORMULATION

The energy attenuation model of [1] is adopted. Consider a

sensor network composed of L sensors distributed at known

spatial locations, denoted rl, l = 1, . . . , L, where rl ∈ R
2.

Generalization to R
3 is straightforward but is not explored

here. A stationary acoustic source is located at an unknown

location θ∗ ∈ R
2. Each sensor collects n noisy measure-

ments of the acoustic signal transmitted by the source and

computes an estimate of the source’s energy. The energy

estimates are modeled by

yl =
A

||rl − θ∗||2
+ vl, l = 1, . . . , L (1)

where yl is the energy estimate at the l’th sensor, A is the

source’s energy, and vl is a zero-mean white Gaussian noise

with known variance. This model has been validated through

experiment for acoustic localization in [11].

We first assume that A is known. This assumption is

valid when an additional sensor is added to an already de-

ployed network and the new sensor transmits an acoustic

signal with known power to enable the network to estimate

its location. The case of unknown sensor strength is treated

in section 4.

The maximum likelihood estimator (MLE) [1] is found

by solving the nonlinear least squares problem

̂θML = arg min
θ∈R2

L
∑

l=1

[

yl −
A

||rl − θ||2

]2

. (2)

The fact that the objective function is a sum of L compo-

nents was exploited in the implementation of the distributed
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Fig. 1. The negative log of the nonlinear least squares ob-

jective function.

incremental gradient method in [2] and [3]. However, since

the objective function has multiple local optima and saddle

points, the incremental gradient method may stagnate at one

of these sub-optimal solutions instead of converging to the

optimal one. A realization of the negative log of the ob-

jective function in (2) is presented in Fig. 1. The details of

the simulation that generated this figure are given in Sec. 5.

It can be seen that the objective function has many local

optima and saddle points and that the global optimum is

peaked.

An alternative formulation of the problem of estimating

the source’s location is the following. Consider the l sum-

mands in the objective function (2). It is easily seen that the

function

fl(θ) =

[

yl −
A

||rl − θ||2

]2

(3)

obtains its minimum on the circle

Cl =
{

θ ∈ R
2 : ||θ − rl|| =

√

A/yl

}

. (4)

Let Dl be the disk defined by

Dl =
{

θ ∈ R
2 : ||θ − rl|| ≤

√

A/yl

}

. (5)

Then our estimation problem is solved by finding a point in

the intersection of the sets Dl, l = 1, . . . , L. That is,

̂θ ∈ D =

L
⋂

l=1

Dl ⊂ R
2. (6)
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Note that due to observation noise the intersection D might

be empty. In this case, our estimator is any point that mini-

mizes the sum of distances to the sets Dl, l = 1, . . . , L,

θ̂ = arg min
θ∈R2

L∑

l=1

||θ − PDl
(θ)||2 (7)

where for a set S ⊆ R
2 and a point x ∈ R

2, PS(x) is the

orthogonal projection of x onto S, that is,

PS(x) = arg min
y∈S

||x − y|| (8)

where || · || is the Euclidean norm. Observe that (7) in-

cludes (6) as a special case when a minimum value of zero

is attainable.

Denote by H the convex hull of the sensors’ spatial lo-

cations, i.e.,

H =

{
x ∈ R

2 : x =
L∑

l=1

αlrl, αl ≥ 0,

L∑

l=1

αl = 1

}
.

It can be shown geometrically (see [6]) that when the num-

ber of samples n increases to infinity, or in the absence of

measurement noise, the convex feasibility problem (7) has a

unique solution at the true source’s location, denoted by θ∗,

if and only if θ∗ lies in H.

In the general case of finite number of samples and fi-

nite signal to noise ratio, one of two cases can occur: (a)

D 6= ∅, and (b) D = ∅. In the former, the POCS method

is guaranteed to converge to a point in D. In the latter, the

POCS method converges to a limit cycle in the vicinity of

the point that minimizes the sum of distances to the sets

Dl (5), or, when a decreasing sequence of relaxation pa-

rameters are used [9], the method converges to the optimal

solution. As an alternative to the diminishing step size ap-

proach of [9], the APOCS method is proposed in the next

section.

3. AGGREGATED POCS AND ITS DISTRIBUTED

IMPLEMENTATION

Before describing APOCS, the POCS method [7, 8] is re-

viewed.

POCS:

1. Initialization: θ0 is arbitrary.

2. Iterative step: For all k ≥ 0,

θk+1 = θk + λk
[
PDκ(k)

(θk) − θk
]

(9)

where {λk
}k≥1 is a sequence of relaxation parame-

ters satisfying for all k, ǫ1 ≤ λk
≤ 2 − ǫ2 for some

ǫ1, ǫ2 > 0, κ(k) = k mod L, and PS(x) is defined

in (8).

An important property of POCS when applied to the source

localization problem is that the projection operator has a

closed form expression. Clearly, if ||θ − rl|| ≤

√
A/yl

then θ ∈ Dl and PDl
(θ) = θ, otherwise,

PDl
(θk) = rl + [α cos(φ), α sin(φ)]

T
(10)

where α =
√

A/yl, and φ = atan(θk(2) − rl(2), θk(1) −
rl(1)), where atan(·, ·) is the four quadrant inverse tangent

function, and for a vector x ∈ R
2, x(1) and x(2) denote its

first and second coordinates, respectively.

As mentioned earlier, when the convex feasibility prob-

lem is inconsistent, POCS converges to a limit cycle, un-

less λk is decreased to zero [9]. The byproduct of this

variation, which is called the steered sequential projection

method in [9], is slowdown of convergence. As an alterna-

tive we propose the APOCS method.

APOCS:

1. Initialization: θ0 is arbitrary, d0 = [0, 0]T .

2. Phase one: For 1 ≤ k ≤ L,

dk = dk−1 +
[
PDk

(θk−1) − θk−1
]

θk = PDk
(θk−1) (11)

where PDk
(θk−1) is defined in (8).

3. Phase two: For k > L,

dk = dk−1 +
[
PDκ(k)

(θk−1) − θk−1
]

−

[
PDκ(k)

(θk−1−L) − θk−1−L
]

θk = θk−1 +
µ

L
dk (12)

where κ(k) = k mod L, and µ is a constant step size

chosen small enough to ensure convergence.

The APOCS iteration can also be write explicitly as

θk = θk−1 +
µ

L

L∑

j=1

[
PDκ(k−j+1)

(θk−j) − θk−j
]
. (13)

Hence, at each iteration, progress is made in a direction

which is the average of the L previous projections. When

a new projection direction to a set is computed, it replaces

the old projection direction to that set, which was computed

L iterations before. When far from the eventual limit the

averaged projection directions is an approximation to the

direction towards to intersection of the sets. As the method

approaches the eventual limit it converges to a fixed point

of the algorithm at the point in which the average projection

directions vanishes. This point is precisely the minimizer

of (7). This is analogous to the behavior of the aggregated

incremental gradient method for minimizing the sum of dif-

ferentiable functions [12].

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 5, 2009 at 16:20 from IEEE Xplore.  Restrictions apply.



1217

Note that all the information required for the computa-

tion of (11) and (13) is available at sensor κ(k) and hence a

distributed implementation is possible. Following [10], as-

sume without loss of generality that the indices l = 1, . . . , L

correspond to a cycle through the network. Phase 1 is per-

formed as follows. Let sensor 1 be initiated with a pre-

specified initial value θ0. Sensor 1 generates d1 and θ1

through (11) and transmits them to sensor 2. Upon receiv-

ing dk−1 and θk−1 from sensor k − 1, sensor k calculates

dk and θk according to (11) and transmits them to sensor

k + 1. Phase two is curried out in a similar manner. Upon

receiving dk−1 and θk−1 from sensor κ(k− 1), sensor κ(k)
calculates dk and θk according to (13) and transmits them

to sensor κ(k +1). Note that
[

PDκ(k)
(θk−1−L) − θk−1−L

]

was obtained at sensor κ(k) after the previous cycle.

4. THE CASE OF UNKNOWN SOURCE POWER

When the source is not collaborating with the network, the

signal power A is unknown. To eliminate the dependency

of the optimization problem on A, an energy ratios based

source localization method was proposed in [11] (see [1]

as well). In this section it is shown that it is also possible

to represent the estimation of the source location based on

the energy ratios as a convex feasibility problem and hence

solve it in a distributed manner as described in Sec. 3.

Li and Hu [11] showed that for the noise free problem,

the ratio between the energy readings at two sensors, yl and

yk, defines a circle or a hyperplane on which the source may

lie:

ϕlk =
√

yl/yk =
||θ − rl||

||θ − rk||
. (14)

When ϕlk 6= 1, the resulting circle is given by

{θ : ||θ − clk||
2 = ζ2

lk}

where clk = (rl − ϕ2

lkrk)/(1 − ϕ2

lk), and ζlk = ϕlk||rl −

rk||
2/(1−ϕ2

lk). When ϕlk = 1, (14) defines the hyperplane

{θ : θT vlk = τlk}

where vlk = rl − rk, and τlk = (||rl||
2
− ||rk||

2)/2. In

the presence of observation noise, given a set of L1 + L2

ratios, the location of the source is estimated by minimizing

the cost function

J(θ) =

L1
∑

l1=1

(||θ − cl1 || − ζl1)
2 +

L2
∑

l2=1

(θT vl2 − τl2)
2 (15)

where L1 and L2 are the number of circles and hyperplanes,

respectively. In [1], this estimator is called the energy-ratio

nonlinear least squares.

To formulate the problem of estimating the source lo-

cation from the energy ratios (14) as a convex feasibility

problem, assume without loss of generality that ϕlk ≤ 1
(otherwise replace it with ϕkl). Define the discs

˜Dl1 = {θ : ||θ − cl1 ||
2
≤ ζ2

l1
}

and the hyperplanes

˜hl2 = {θ : θT vl2 = τl2}.

Hence, the APOCS method can be implemented in a dis-

tributed manner to estimate the source location by finding a

point in the intersection of the convex sets

(

L1
⋂

l1=1

˜Dl1

)

⋂

(

L2
⋂

l2=1

˜hl2

)

.

Note that the projection onto a hyperplane has a closed form

expression as well. To optimize the energy consumption,

the energy ratios should be selected based on geographical

vicinity.

Li and Hu also proposed to replace every two circles

in (15) with a single hyperplane and then solve the result-

ing linear least squares problem. This approach can also be

converted to a convex feasibility problem.

5. SIMULATION RESULTS

This section presents a simulation of a sensor network of

L = 5000 nodes, distributed randomly in a 100m × 100m
field. At each sensor a measurement of the acoustic source

energy was generated according to (1). The source is lo-

cated at θ∗ = [50, 50]T and emits a signal with energy A

set to 100. Following the approach of [13, 3], in our simu-

lation not all sensors participate in the estimation task. At

an acquisition phase, each sensor decides whether or not a

source is present using a simple threshold test. Only those

sensors whose energy estimates yl (1) are above 5 partici-

pate. For example, in the realization presented in Figs. 1-4,

L = 31 sensors detected the source and entered the estima-

tion phase.

In Fig. 2, the paths taken by the steepest descent (SD)

method initiated from multiple points on a grid are pre-

sented on top of the contour plot of the nonlinear objec-

tive function (2). The initial points are depicted by crosses,

followed by a line which follows the path taken by the algo-

rithm, and ends at the convergence points depicted by cir-

cles. It is seen that only when the method is initiated close

to the global optimum at the center of the plot, does con-

vergence to the global optimum occur. The method mostly

stagnates at local optima or saddle points.

In contrast to this shortcoming of the SD local search

method, the standard POCS method [7] converges to the

vicinity of the global optimum regardless of the initial point.

In Fig. 3 the paths taken by the POCS method are presented.
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Fig. 3. Paths taken by the POCS method.

It is seen that the convergence is extremely fast; after as few

as three sub iterations (11), the sequence reaches the vicin-

ity of the global optimum.

A comparison between the steered sequential projec-

tion method [9] and our APOCS method is presented in

Fig. 4. To make the comparison fair, both methods per-

formed phase 1 of APOCS. Otherwise, the steered sequen-

tial projection method may slow down too early and not
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Fig. 4. Steered sequential projection method vs. APOCS.

reach the limit point in reasonable time. The APOCS method

is less sensitive to the initial point as it uses a constant step

size µ. It can be seen that APOCS outperforms the steered

sequential projection method in terms of the convergence

rate.

The performance of POCS in terms of mean squared

estimation error was also evaluated. As a benchmark, the

performance of POCS was compared to the performance of

the global MLE [1] and an estimator which is obtained by

performing a local search on the ML objective function (2)

initiated at the POCS estimator. The performance of the

three estimators, as the number of sensors was increased

from 100 to 2100 in 200 increments, was evaluated through

20000 Monte Carlo iterations. In Fig. 5 the square root of

the mean squared error and the median squared error of the

three methods are presented with ±σ confidence intervals

as a function of the average number of sensors that entered

the estimation phase. The standard deviations of the mean

and median estimators were estimated from 1000 bootstrap

data samples, so as to avoid the more ambitious task of gen-

erating the data multiple times.

6. CONCLUSIONS

The problem of distributed acoustic source localization us-

ing a wireless sensor network was formulated as a convex

feasibility problem and solved via the APOCS method, a

convergent variation of POCS. The solution has global con-

vergence properties with fast convergence rates.
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Fig. 5. Local performance: POCS vs. MLE, mean (left) and

median (right).
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