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Abstract—This paper presents a novel approach to detect mul-
tiple signals embedded in noisy observations from a sensor array.
We formulate the detection problem as a multiple hypothesis
test. To control the global level of the multiple test, we apply the
false discovery rate (FDR) criterion proposed by Benjamini and
Hochberg. Compared to the classical familywise error rate (FWE)
criterion, the FDR-controling procedure leads to a significant
gain in power for large size problems. In addition, we apply the
bootstrap technique to estimate the observed significance level
required by the FDR-controling procedure. Simulations show that
the FDR-controling procedure always provides higher probability
of correct detection than the FWE-controling procedure. Further-
more, the reliability of the proposed test procedure is not affected
by the gain in power of the test.

Index Terms—Array processing, bootstrap, detection, false dis-
covery rate, likelihood ratio, multiple test, number of signals.

I. INTRODUCTION

DETERMINATION of the number of signals embedded in
noisy sensor outputs is a key issue in array processing and

related applications [3]. Many high resolution methods, such
as maximum likelihood (ML) approach or MUSIC, assume a
known number of signals. Performance of these estimators de-
pend strongly on this knowledge [11]. For example, when the
number of signals is incorrectly specified, favorite properties
such as consistency and efficiency of the ML estimator may be
no longer valid. In radar or geophysics, deciding how many in-
coming waves is as important as estimating the associated prop-
agation parameters.

Traditional methods based on information theoretic criteria
such as Akaike’s information criterion (AIC) or Rissanen’s min-
imum description length (MDL) [14], [25], [26], [28] view this
problem as model order selection. Another class of methods [5],
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[27] uses hypothesis tests to decide how many eigenvalues of the
sample covariance matrix are equal. The eigenstructure of the
spatial correlation matrix is fundamental to all these methods.
Consequently, they are often sensitive to signal coherence and
low signal-to-noise ratio (SNR) with the danger of a subspace
swap.

For broadband signals, one may extend such narrowband
methods by using the focusing technique [19] to transform
the sample covariance matrix of array outputs at various fre-
quencies to a common subspace. The aforementioned methods
developed for narrowband signals can be applied directly after
focusing. An alternative approach in [23] applies an interpola-
tion model suitable for Markov Chain Monte Carlo (MCMC)
procedures.

In this paper, we consider a detection procedure based on
multiple testing with test statistics derived from the general-
ized likelihood ratio (LR) principle [4], [21]. The proposed ap-
proach is suitable for both narrowband and broadband models.
When broadband signals are of interest, the combination of in-
formation from different frequency bins follows naturally from
the asymptotic normality and independence of Fourier trans-
formed data [6]. At each test step, we compute the ML estimate
under the assumed number of signals and the corresponding
test statistic. In other words, our procedure jointly estimates
the number of signals and the parameters of interest. Because
the proposed test utilizes the same parameterization as the ML
method, it enjoys similar favorite features. The experimental re-
sults from seismic measurements reported in [7], [8] demon-
strate superior performance of the generalized LR test based
approach in scenarios involving small numbers of samples, low
SNRs and coherent signals.

In the narrowband model, the ML estimation in the proposed
procedure is computationally more costly than the required
eigen-decomposition in most MDL type methods [14], [25],
[28]. However, in the broadband model, the focusing technique
[19] or the MCMC approach [23] requires considerable amount
of computation. The computational complexity of our method
is moderate compared to [19], [23].

A major concern in multiple testing problems is the control
of type one errors. The detection procedure suggested in [4],
[7], [21] applied the Bonferroni-Holm procedure [17] to con-
trol the classical familywise error-rate (FWE), the probability
of erroneously rejecting any of the true hypotheses. As the con-
trol of FWE requires each test to be conducted at a signifi-
cantly lower level, the Bonferroni-Holm procedure often leads
to conservative results. For the proposed procedure, this im-
plies that the ability to discover signals is reduced with growing
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numbers of signals. To overcome this drawback, we adopt the
false discovery rate (FDR) criterion suggested by Benjamini and
Hochberg [1] to keep balance between type one error control and
power.1 The difference between the FWE and FDR-controling
procedure becomes more dramatic when the size of problems
becomes larger [2]. Therefore, using the FDR criterion can lead
to a significant gain in power in situations involving many sig-
nals. To ensure the desired FDR level to be controlled by the
Benjamini-Hochberg procedure, we shall carefully examine the
independence condition on the test statistics as well.

Since the test statistics have no closed form distribution func-
tion for broadband signals, we shall apply the bootstrap tech-
nique to obtain the observed significance level, the -value, re-
quired by the FDR-controling procedure.

This paper is organized as follows. We give a brief descrip-
tion about the signal model in the next section. The multiple
test procedure for signal detection is developed in Section III.
Section IV introduces the idea of false discovery rate (FDR) and
the Benjamini-Hochberg procedure. In the subsequent section
we show that the condition required by the Benjamini-Hochberg
procedure is satisfied. The concepts of bootstrap and the proce-
dure for estimating -values are illustrated in Section VI. Sim-
ulation results are presented and discussed in Section VII. Our
concluding remarks are given in Section VIII.

II. PROBLEM FORMULATION

Consider an array of sensors receiving broadband signals
emitted by far-field sources located at positions described by
their angles of arrival . We consider to be
known and fixed, whereas is an unknown nonnegative integer
which is to be determined from the observed array output data.
The -dimensional sensor array output is modelled by the
time-invariant linear convolution model,

Here, is the matrix of impulse responses and its
th element links the th element of to the th element

of . The -dimensional stochastic process models the ad-
ditive noise. We assume that is bandlimited and we sample
at the Nyquist rate which we normalize to one. The sensor array
outputs , are divided into snapshots
of length where . The data in the th obser-
vation snapshot is short-time Fourier-transformed

(1)

For large number of samples , the frequency domain data is
described approximately by the regression model [4], [6]

(2)

1The power of a test is the probability of correctly rejecting the null hypoth-
esis.

where the matrix
consists of plane-wave steering vectors with the

th column corresponding to the th incoming wave
arriving from angle . The short-time Fourier transformed
signals and noise are denoted by and in (2),
respectively. In the following analysis, the signal waveform

is considered to be unknown and deterministic.
consists of spatially uncorrelated sensor noise with cavariance
matrix where is the unknown noise
spectral parameter and is an identity matrix of corresponding
dimension.2

From the stochastic properties of the Fourier transform [6],
we know that the Fourier transformed data is charac-
terized by asymptotic normality and independence. More pre-
cisely, under the regularity conditions formulated in Theorem
4.4.1 in [6], for large and , the following properties hold.

1) The Fourier transformed data , , where
, are mutually in-

dependent for and all .
2) , , are mutually

independent for and all .
3) Given the signal waveform , is complex

normally distributed with mean and
covariance matrix .

Properties (1) and (2) provide us a natural way to combine in-
formation from different frequency bins and snapshots. Further-
more, property (3) ensures the data’s normality without addi-
tional assumption on noise. Based on the data set

, the problem of central interest is
to determine the number of signals embedded in the obser-
vations.

III. SIGNAL DETECTION USING A MULTIPLE HYPOTHESIS TEST

We formulate the problem of detecting the number of signals
as a multiple hypothesis test. Let denote the maximal
number of sources. The following procedure provides an esti-
mate for the number of signals.

For ,

For

(3)

(4)

We use the subscript or to emphasize the dimension
of the steering matrix and the signal vector under null hypothesis

or alternative . Let be an arbitrary subset
of and suppose that among hypotheses, are

2Extensions to spatially colored noise are discussed in Section III-A below.
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rejected, namely , then the number of signals
is determined by

(5)

Which hypotheses are to be rejected depends on the adopted
error criterion. In this paper, we shall apply the Ben-
jamini-Hochberg procedure to control the false discovery
rate.

We apply the generalized likelihood ratio (LR) principle to
construct the test statistic ,

(6)

where and denote the concentrated log-like-
lihood function under and , respectively. The concen-
trated likelihoods depend on the nonlinear parameters (angles
of arrival) only, whereas the linear parameters have been elimi-
nated by a closed-form optimization

Here represents a
nonparametric power spectral estimate of sensor outputs over

snapshots3 and , is the projec-
tion matrix onto the column space of . For ,
we define .

After some manipulations [4], [21], we obtain the following
generalized LR test statistic for testing against

(7)

(8)

where is the vector of ML estimates for all angles of arrival
assuming that signals are present.

Under hypothesis , the statistic

(9)

is asymptotically -distributed with degrees of freedom
, , cf. Chapter 26 in [18]. For the single-frequency case,

, (8) and (9) show the equivalence to the narrowband
-test proposed by Shumway [24]. The statistic (9) can be in-

terpreted as an estimate for the SNR increase induced by the th
signal. The th signal is declared to be detected if it is strong
enough so that the statistic (9) exceeds a given threshold.

3(�) denotes conjugate transpose.

If the parameters and were known a priori, testing
against is equivalent to testing the linear model (3)

against (4). The degrees of freedom could be obtained as
, . However, and are unknown

and need to be estimated. Taking the estimated nonlinear param-
eters into account, the degrees of freedom are given by [21]

(10)

with denoting the dimension of the non-
linear parameter vector associated with the th signal. The
additional term is obtained through Taylor expansion around
the true parameter .

For certain types of wavefields, may be larger than one.
For instance, in seismic applications, the array geometry is usu-
ally planar, and the source is often described by two angular
parameters, azimuth and elevation. In this setting, . In
shallow ocean matched field applications with a linear array, the
source location is often characterized in cylindrical coordinates.
This results in or depending on the array’s am-
biguity structure.

In the broadband case, a suitable closed-form expression for
the distribution of the test statistic under is unknown to
the authors. We shall use the bootstrap technique to overcome
this difficulty in Section VI.

A. Spatially Colored Noise

If the noise is spatially correlated, i.e., ,
we expect a performance degradation if the proposed detec-
tion procedure is applied as described in Section III. It is rel-
atively straightforward to extend the proposed method by gen-
eralizing to a noise covariance matrix where is
a known Hermitian positive-definite (and, hence, of full-rank)
matrix, suitably normalized to . When the signal
model is extended in this way and the log-likelihoods are eval-
uated then we see that this amounts to extending the test pro-
cedure by a pre-whitening step. The corresponding test statis-
tics are computed from the whitened sensor array output. The
short-time Fourier transformed sensor array output (2) is lin-
early transformed via the whitening filter so that the

noise of the transformed data be-
comes spatially white. The matrix denotes the inverse
of a suitably chosen square root of the positive definite matrix

.
The generalisation to superposed noise covariance models

with several parameters, e.g.

is possible, but cumbersome.

IV. CONTROL OF FALSE DISCOVERY RATE

The control of type one error is an important issue in mul-
tiple inferences. A type one error occurs when the null hypoth-
esis is wrongly rejected. The traditional concern in multiple
hypothesis problems has been about controling the probability
of committing any type one error in families of simultaneous
comparisons. The control of this familywise error-rate (FWE)
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usually requires each of the tests to be conducted at a lower
level. For example, given a significance level , the significance
level of each test is given by in the classical Bonferroni
procedure. When the number of tests increases, the power of the
the FWE-controling procedures such as Bonferroni-type proce-
dures [17] is substantially reduced.

The false discovery rate (FDR), suggested by Benjamini and
Hochberg [1], is a completely different point of view for consid-
ering the errors in multiple testing. The FDR is defined as the ex-
pected proportion of errors among the rejected hypotheses. Sup-
pose that among the tested hypotheses ,

are true null hypotheses. The number of hypotheses rejected
is denoted by . This observable random variable can be de-
composed , where is the number of incorrectly
rejected null hypotheses and is the number of correctly re-
jected hypotheses. In terms of these random variables, the FWE
is , the probability of making any type one error.
The proportion of errors committed by falsely rejecting null hy-
potheses can be viewed through . Let be the unobserv-
able random quotient,

if
otherwise.

(11)

The FDR is simply , the expected error rate. The Ben-
jamini-Hochberg Procedure proposed in [1] calls for controling
the FDR at a desired level , while maximizing . As noted
in [1], if all null hypotheses are true, the
FDR-controling procedure controls the traditional FWE. But
when many hypotheses are rejected, indicating that many hy-
potheses are not true, an erroneous rejection is not as crucial
for drawing conclusion from the whole family of tests. In many
applications, it has been argued that the FDR is the more appro-
priate error rate to control [2]. The difference between FWE-
and FDR-controling procedure is more significant when the size
of problems becomes larger. In the proposed detection scheme,
large size problem means the maximal number of signals, , is
large. Such ’s are typical in a wireless multipath propagation
environment [12].

Let denote the -values corresponding
to the test statistics and

denote the ordered -values corresponding to
the hypotheses and test statistics

. By definition,
where is the distribution function under the null hy-
pothesis . Benjamini and Hochberg showed that when the
test statistics corresponding to the true null hypotheses are
independent, the following procedure controls the FDR at level

[1].

The Benjamini Hochberg Procedure

Define

(12)

and reject . If no such exists, reject no
hypothesis.

Remark 1: If the test statistics do not ensure dependency
or positive dependency, the above procedure is conducted with

instead of to control the FDR at the
same level [2]. Since is smaller than , the modified Ben-
jamini-Hochberg procedure will induce a loss in power. As the
independence condition required by the Benjamini-Hochberg
procedure is satisfied in the proposed multiple test, we shall use
the original version (12) to control the FDR. The resulting test
procedure is summarized in Table I.

Remark 2: In the sequentially rejective Bonferroni-Holm
procedure [17], the ordered is compared with

where is the desired FWE level. Given the same
desired FDR and FWE level, i.e. , it is easy to verify
that . Thus the FDR-con-
troling procedure should lead to more powerful results than the
FWE-controling procedure.

Remark 3: In practice, the proposed multiple test can be im-
plemented in a sequential manner as in [21]. The detection pro-
cedure starts with . If is rejected, one signal is de-
clared to be detected and the procedure goes to . Once

is retained, the procedure stops and signal are de-
clared to be detected. Such implementations assume implicitly
that the -values are in an ascending order, i.e.

. However, this assumption is not proved yet and does not al-
ways happen with finite samples. Consequently, the sequential
implementation results in a lower probability of detection.

V. INDEPENDENCE OF TEST STATISTICS

In the following, we shall show that the test statistics under
null hypotheses , are independent. This
ensures that the FDR of the proposed test (3) is controlled by
the Benjamini-Hochberg procedure. The following result from
[18], [20] regarding properties of beta distribution plays a key
role in our proof.

Result 1: Let be a sample of mutually inde-
pendent random variates where follows a distribution
with degrees of freedom . Then

...

(13)

are mutually independent random variables, each with a beta
distribution with parameters , denoted by . The pa-
rameters for are , respectively.

Theorem 1: The test statistics , defined
by (7) corresponding to the true null hypotheses are mutually
independent.

Proof: The test statistic con-
sists of frequency bins with

(14)

and
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TABLE I
MULTIPLE HYPOTHESIS TESTS FOR DETECTION OF THE NUMBER OF SIGNALS

(15)

According to the asymptotic properties of Fourier transformed
data, , are independent. There-
fore, , are independent for

. We need only to consider whether at each frequency bin
, the statistics under are independent. Further-

more, and are related through a monotone
function, independence of the implies independence of
the .

Now we show that under null hypothesis, are in-
dependent beta distributed random variables. The term

appearing in (15) can be decomposed as

(16)

where

are asymptotically independent and dis-
tributed under null hypotheses. The denominator

can be decomposed in a similar
manner. From (15) and (16), we have

(17)

According to Result 1, for the independent random variables
, , each with central distribu-

tion, the random variables are mutually
independent, each with beta distribution. The independence of

follows immediately. Because of frequency indepen-
dence, are also independent under .

Remark Theorem 1 is valid for . Therefore, the FDR-
controling procedure can be applied to the narrowband signals
directly. Since the null hypothesis distribution is completely
specified by the distribution, the -values can be deter-
mined without bootstrap procedure.

VI. THE BOOTSTRAP TEST

The bootstrap is a powerful technique for estimating confi-
dence interval or testing hypothesis when conventional methods
are not valid. It requires little prior knowledge on the data model
[13], [15], [29]. More importantly, it provides accurate estima-
tion of probability distribution when only few data samples are
available. The key idea behind bootstrap is that, rather than re-
peating the experiment, one obtains the samples by reassign-
ment of the original data samples. We start with general boot-
strap procedures and apply them to the proposed detection pro-
cedure.
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A. General Concept

Let be an i.i.d. sample set from a com-
pletely unspecified distribution with denoting an unknown
parameter, such as the mean or variance, of . The goal of the
following procedure is to construct the distribution of an esti-
mator derived from .

The bootstrap principle

1) Given a sample set
2) Draw a bootstrap sample from

by resampling with replacement.
3) Compute the bootstrap estimate from .
4) Repeat 2. and 3. to obtain bootstrap estimates

5) Approximate the distribution of by that of .

In step 2., a pseudo random number generator is used to
draw a random sample of values, with replacement,
from . A possible bootstrap sample might look like

. Given the sample set , the
bootstrap procedure can be easily adapted to calculate a confi-
dence interval of or construct a hypothesis test.

For the problem testing the hypothesis against
, we define the test statistic as

(18)

where and denotes an estimator of the variance
of . The inclusion of guarantees is asymptotically piv-
otal. Given a significance level , the bootstrap test computes
the threshold based on the bootstrap approximation for the
distribution of under .

In the Benjamini-Hochberg procedure, the observed signifi-
cance level, denoted by , rather than the threshold is needed.
We use bootstrap samples to estimate the -value through the
following relation [15],

(19)

where represents the probability that the bootstrap esti-
mates larger than the normalized test statistic . The square
root of variance, , can be obtained through direct computa-
tion or nested bootstrap [29]. In the bootstrap sample

, we use instead of to have good power prop-
erties. Originally, (19) is used to construct confidence interval.
Here we apply it to obtain -values.

The bootstrap procedure for estimating -values

1) Resampling: Draw a bootstrap sample .
2) Compute the bootstrap statistic

3) Repeat 1. and 2. to obtain bootstrap statistics.
4) Ranking:
5) Choose so that

Estimate the observed -value by .

B. Application to Multiple Signal Detection

To apply the bootstrap principle, we recall that the test
statistic in (7) is the sample mean of samples

(20)

Because of asymptotic independence between various fre-
quency bins, the random variables in (20) are
asymptotically independent, identically -distributed.
Therefore, are i.i.d. samples from the random
variable

(21)

with being -distributed. Note that , are func-
tions of and must be computed for each by the formula
(10).

Furthermore, under , is beta-distributed with
parameters , . The mean and variance of

, denoted by , , respectively, are determined by ,
through the following equation [22],

(22)

(23)
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TABLE II
THE BOOTSTRAP PROCEDURE FOR ESTIMATING p CORRESPONDING TO THE TEST STATISTIC T . �̂ CAN BE OBTAINED BY DIRECT COMPUTATION OR

NESTED BOOTSTRAP SAMPLING

where and represent the first deriva-
tive of logarithm of the gamma function and , respectively.4

Based on the above observations, we reformulate the hypoth-
esis test (3) as a two-sided test

Clearly, the test statistic is a natural esti-
mator for . For each hypothesis , we apply the boot-
strap procedure for estimating -values to obtain .

VII. SIMULATIONS

We demonstrate performance of the proposed algorithm by
numerical experiments. A uniform linear array of 15 sensors
with inter-element spacings of half a wavelength is used.
The wavelength is defined by where represents
the propagation velocity and is a pre-selected reference fre-
quency. In the following, we apply the proposed multiple test
to narrowband and broadband data generated pseudo-randomly
by , 8, and 12 uncorrelated signal sources. The noise is
complex normally distributed with zero mean and covariance
matrix . In additional to the FDR criterion, we apply the
sequentially rejective Bonferroni-Holm procedure [17] to con-
trol the FWE level. The FDR and FWE are controlled at level

and , respectively. Each experiment performs
100 trials.

A. Narrowband Signals

1) Comparison With the MDL Approach: In the narrow-
band case, we use the MDL criterion [26] as a benchmark.

4	, 	 are also known as polygamma functions.

Similar to the proposed method, the performance of [26] is not
affected by fully correlated signals. The MDL criterion derived
in [26] differs from other information theoretic approaches
[14], [25], [28] in that it exploits the nonzero eigenvalues

of the noise covariance matrix
rather than the

smallest eigenvalues of the sample covariance matrix .
This is the key to its robustness against signal coherence. The
number of signals is determined by minimizing the following
function of [26, Eq. (22.b)]:

(24)

The first term is a measure for the spherical equality of the eigen-
values. The second term is a penalty function that avoids over-
estimation of model order. The test statistic (9) of the proposed
multiple testing procedure relies on the estimated increase in
SNR while (24) depends on the equality of the estimated noise
eigenvalues. Since the ML estimate is required to compute

, the computational cost associated with the criterion
is comparable to that associated with the test statistic

(8).
2) Signals of Equal Strengths: In the first experiment, the

narrowband signals are generates by sources located at
relative to the broadside of the array. All

signal sources are of equal strengths. The signal to noise ratio
(SNR), defined as , varies from 10 to
6 dB in 1 dB step. The number of snapshots . Note that
two sources are located closely to each other. The maximum
number of signals is set to be 4.
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Fig. 1. Empirical probability of correct detection versus SNR. Number of sig-
nalsm = 3, number of snapshotsK = 30. Two sources are located closely to
each other. All signals are of equal strengths. ‘�’: FDR-controling procedure,
‘-’: FWE-controling procedure, ‘��’: minimum description length.

Fig. 1 shows the empirical probability of correct detection
versus SNR. By correct detection we mean that the estimated
number of signals equals the true number of signals, i.e. .
All three curves go to 100% as SNR increases. The FDR-con-
troling procedure performs slightly better than the FWE-con-
troling procedure in the threshold region 10 to 4 dB. From

4 dB on, both methods achieve almost 100% probability of
correct detection. At 4 dB, the MDL approach has only 25%
probability of correct detection. It requires 4 dB more than the
other two procedures to provide 100% probability of correct de-
tection.

In the second experiment, the number of signals is increased
to . The maximum number of signals is set to be
9. All signal sources are well separated except two located at

. The results are depicted in Fig. 2. Because the number
of signals is increased, all three methods require higher SNR to
achieve the same performance. Since larger implies more hy-
potheses, the difference between the FDR- and FWE-controling
procedures becomes more significant in the region from 10 to

4 dB. At 8 dB, one can observe a difference as large as 10%.
Although the gap between the MDL approach and the multiple
test based approaches is reduced in the second experiment, its
SNR threshold still remains much higher than the other proce-
dures. For 90% of correct detection, both multiple test based
methods require 5 dB SNR, but the MDL approach requires

1 dB SNR.
In the third experiment, we increase the number of signals to

which is slightly smaller than the number of sensors
. The maximum number of signals is set to be 13.

Two sources remain closely located at . From Fig. 3,
we observe that this relatively large number of signals leads to a
significantly higher SNR threshold. Clearly, the FDR-controling
procedure leads to the best performance. As expected, the differ-
ence between the FDR- and FWE-controling procedure is most

Fig. 2. Empirical probability of correct detection versus SNR. Number of sig-
nalsm = 8, number of snapshotsK = 30. Two sources are located closely to
each other. All signals are of equal strengths.

Fig. 3. Empirical probability of correct detection versus SNR. Number of sig-
nalsm = 12, number of snapshots K = 30. Two sources are located closely
to each other. All signals are of equal strengths.

significant among these three experiments as the number of hy-
potheses is the largest. Although the threshold region comes
closer to those of the multiple test based procedures, the MDL
approach has an overall lower probability of correct detection.
In particular, the FDR-controling procedure has more than 30%
higher probability of correct detection at .

3) Signals of Various Strengths: The simulations discussed
previously are carried out with signals of equal strengths. We
repeat these experiments with signals of various strengths. For

, the SNR difference of the signals is [ 2 1 0] dB where
0 dB corresponds to the reference signal. For , three
sources differ from the reference signal by 2, 1, 1 dB, re-
spectively. For , four signals from the reference signal
by 2, 1, 1, 2 dB, respectively.
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TABLE III
EMPIRICAL PROBABILITY OF CORRECT DETECTION VERSUS SNR. NARROWBAND SIGNALS WITH VARIOUS STRENGTHS

Numerical results show that all three algorithms behave sim-
ilarly to Figs. 1, 2 and 3. Table III summaries samples taken in
the threshold regions. Compared to signals of equal strengths,
the probability of correct detection is slightly reduced. In all ex-
periments, the FDR-controling procedure has the highest prob-
ability of correct detection. The gain in power of the FDR crite-
rion becomes more significant with increasing . In the consid-
ered scenarios, the MDL approach always needs higher SNRs
to achieve the same performance as the multiple testing based
methods. The gap between them is largest for and de-
creases when increases. The cause for this phenomena may
be that the test statistic (8) is more sensitive to the presence of a
new signal when the number of signals is small. In other words,
when is large, a new signal will not cause so much change in
SNR as when is small.

B. Broadband Signals

In the broadband case, we choose frequency bins
equally spaced between and for processing. The
number of snapshots . Each experiment uses the same
number of signals and source locations as in the narrowband
case. We consider two scenarios: 1) signals of equal strengths
and 2) signals of various strengths.

1) Signals of Equal Strengths: The first experiment considers
. From Fig. 4, we observe that the FDR-controling pro-

cedure performs slightly better than the FWE-controling proce-
dure. Both procedures achieve 100% of correct detection at 3
dB. This is 1 dB higher than in the narrowband case.

In the second experiment, the number of signals is increased
to . The results presented in Fig. 5 show that the FDR-
controling procedure has a significant gain in power compared
to the FWE-controling procedure. In the region from 2 to 2
dB, the difference between two curves is more than 15%. At
0 dB, FDR-controling procedure has 77% probability of correct
detection, while FWE-controling procedure has only 45% prob-
ability of correct detection. For SNR as high as 4 dB, the prob-
ability of correct detection of the FWE-controling procedure is
still below that of the FDR-controling procedure and does not
achieve 100% probability of correct detection.

In the third experiment, . Both procedures need
higher SNRs to achieve reliable estimation. As shown in Fig. 6,

Fig. 4. Empirical probability of correct detection versus SNR. Number of sig-
nalsm = 3, number of frequency bins J = 10, number of snapshotsK = 10.
Two sources are located closely to each other. All signals are of equal strengths.
‘�’: FDR-controling procedure, ‘��’: FWE-controling procedure.

the SNR threshold region covers a wider range than those
in Figs. 4 and 5. Compared to experiments with and

, the advantage of the FDR criterion becomes even more
remarkable. From to 12 dB, the FDR-controling
procedure performs significantly better than the FWE-con-
troling procedure. At , the probability of correct
detection of the FWE-controling procedure is improved by the
FDR-controling procedure from 38% to 78%. To reach 100%
probability of correct detection, the FDR-controling procedure
requires 12 dB, while the FWE-controling procedure requires
17 dB.

2) Signals of Various Strengths: The above experiments are
repeated with signals of various strengths. The relative signal
strengths are the same as in the narrowband case. We obtain
similar results as Figs. 4, 5 and 6. Table IV includes relevant
values in the threshold regions. The FDR-controling procedure
outperforms the FWE-controling procedure in all experiments.
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TABLE IV
EMPIRICAL PROBABILITY OF CORRECT DETECTION VERSUS SNR. BROADBAND SIGNALS WITH VARIOUS STRENGTHS

Fig. 5. Empirical probability of correct detection versus SNR. Number of sig-
nalsm = 8, number of frequency bins J = 10, number of snapshotsK = 10.
Two sources are located closely to each other. All signals are of equal strengths.

Fig. 6. Empirical probability of correct detection versus SNR. Number of sig-
nalsm = 12, number of frequency bins J = 10, number of snapshotsK = 10.
Two sources are located closely to each other. All signals are of equal strengths.

Fig. 7. Empirical probability of correct detection versus number of snapshots.
Array data contains noise only (m = 0). Number of frequency bins J = 1.

The increase in the power gain of the FDR-controling procedure
becomes more significant with increasing .

C. Noise Only

To test the reliability of the proposed test, we simulate data
that contains only noise. The maximum number of signals is
chosen to be 4. The number of snapshots varies from 10 to 40
in a . Since the number of signals is zero, correct
detection occurs when . From Fig. 7 one can observe that
both procedures have probability of correct decision higher than
96% for all ’s. This implies that although and are chosen
to be 0.1, the false alarm rate is lower than 4%. Using broadband
signals, we can observe similar results.

In summary, the FDR-controling procedure provides more
powerful results than the FWE-controling procedure in all ex-
periments. When narrowband signals are applied, both multiple
test based procedures outperform the MDL approach in the con-
sidered settings. The advantage of using the FDR criterion be-
comes more significant for large numbers of signals and broad-
band signals. In the broadband case, the FDR-controling pro-
cedure leads to a gain as high as 40% in probability of correct
detection. Furthermore, the gain in power does not affect relia-
bility of the proposed test.
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VIII. CONCLUSION

We discussed broadband signal detection using a multiple
hypothesis test under an FDR consideration of Benjamini and
Hochberg. Compared to the classical FWE criterion, the FDR
criterion leads to more powerful tests and controls the errors at
a reasonable level. We proved that the independence condition
required by the Benjamini-Hochberg procedure is satisfied in
the proposed detection scheme. Since the test statistics have no
closed form distribution function, we applied the bootstrap tech-
nique to determine the -values numerically. Simulation results
show that the FDR-controling procedure has always a higher
probability of correct detection than the FWE-controling pro-
cedure. As expected, the advantage of using the FDR criterion
becomes more significant when the number of signals increases.
More importantly, the false alarm rate remains low despite a po-
tential gain in power of the FDR-controling procedure.
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