
IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 12, DECEMBER 2003 1

Secure Space–Time Communication
Alfred O. Hero, III, Fellow, IEEE

Abstract—Network security is important for information pro-
tection in open, secure, or covert communications. One such re-
quirement is to achieve high-rate communications between clients,
e.g., terminals or sensors, in the network while hiding informa-
tion about the transmitted symbols, signal activity, or other sen-
sitive data from an unintended receiver, e.g., an eavesdropper. For
wireless links, the single-user capacity advantages of deployment
of multiple antennas at the transmitter is well known. One of the
principal conclusions of this paper is that proper exploitation of
space–time diversity at the transmitter can also enhance informa-
tion security and information-hiding capabilities. In particular, we
show that significant gains are achievable when the transmitter and
the client receiver are both informed about their channel while the
transmitter and eavesdropper receiver are uniformed about their
channel. More generally, we compare capacity limits for both in-
formed and uninformed transmitter and informed receiver sce-
narios subject to low probability of intercept (LPI) and low prob-
ability of detection (LPD) constraints. For several general cases,
we can characterize the LPI- and LPD-optimal transmitted source
distributions and compare them to the standard optimal source
distribution satisfying a power constraint. We assume the stan-
dard quasi-static flat Rayleigh-fading channel model for the trans-
mitter–receiver pairs. This paper is a step toward answering the
fundamental question: what are the qualitative and quantitative
differences between the information-carrying capabilities of open
space–time channels versus secure space–time channels?

Index Terms—Chernoff exponents, covert channels, flat
Rayleigh-fading models, information hiding, perfect secrecy,
space–time channel capacity, space–time coding, wireless eaves-
droppers.

I. INTRODUCTION

THIS paper proposes an information-theoretic frame-
work for investigating information security in wireless

multiple-input multiple-output (MIMO) links. The results
presented here have broad applications including: wireless
communications networks, wireless sensor networks, private
broadcast networks, and steganography for multiphonic audio.
For example, researchers in commercial wireless have pri-
marily focused on quality of service (QoS) expressed in terms
of deliverable information rates, channel capacity and outage
capacity, throughput, and delay. While these are relevant quality
measures there is increasing interest in network security both
for assurance of data privacy, reliable user authentication, and
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protection of information from malicious eavesdroppers intent
on discovering network vulnerabilities. The starting point of
this paper is that a well-designed secure link should have low
probability of intercept (LPI) and low probability of detection
(LPD) with respect to an unauthorized eavesdropper. An
important question which has motivated the work reported in
this paper is: what is the fundamental impact of implementing
link-level security measures on information rates and channel
capacity? This paper describes a theoretical framework for
answering such questions which is based on analyzing the
fundamental impact on capacity imposed by different classes
of link security constraints.

One cannot hope to ensure security without some cooperation
of the transmitter and receiver (client) to put an eavesdropper at a
relative disadvantage [30]. One of the most most common forms
of cooperation is the use of a cipher [21] to encrypt each data
stream transmitted which can only be deciphered at the client re-
ceiver using a private shared key. One can refer to this method as
temporal (single-channel) data encryption, an example of which
is the U.S. National Data Encryption Standard (DES) for sym-
metric data encryption/decryption. Use of temporal encryption
is a very flexible measure for preventing unauthorized intercep-
tion of private messages which can be applied to any message
sequence without considering the physical layer of the network.
Another common form of cooperation is for the transmitter and
receiver to adopt information-hiding measures [26] to prevent
unauthorized detection of any signaling activity which could be
used, for example, for geolocation of the transmitter. Informa-
tion hiding is a form of covert encryption which encodes private
messages in a background signal or noise process in such a way
that the presence of the messages is hidden from those without
access to the private key. A well-known example is spread-spec-
trum modulation for wireless channels which hides the spec-
tral signature of the signal in the broad-band noise background
using a pseudorandom convolution sequence as a private key.
Another example is watermarking, where a owner-identifying
watermark is hidden in an image or video signal [4]. The results
of this paper can be applied to watermarking of space–time sig-
nals. The thesis of this paper is that additional security against
detection or interception can be achieved by space–time coding
over multiple antennas (or acoustic transducers) at transmitter
and receiver. In particular, when such information is available
to the transmitter, one can design the spatio-temporal modula-
tion/demodulation to exploit known propagation and interfer-
ence characteristics of the channel available to the client but not
to the eavesdropper. For the memoryless channels considered
here, this corresponds to spatial (multichannel) encryption and
information hiding where the shared channel information plays
the role of a shared private key that can be used to unlock the
message.

0018-9448/03$17.00 © 2003 IEEE
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It is useful to place the contributions of this paper in the
background of previous work. Shannon introduced the infor-
mation-theoretic framework for studying secrecy in communi-
cations [30]. As secrecy involves at least three terminals, the
transmitter, the client receiver, and the eavesdropper, the study
of achievable information rates for secure communications is
a branch of multiterminal (more than two) information theory
[6]. Wyner and coworkers [37], [25] developed the concept of
the wire-tap channel for wired links and assessed the impact of
secrecy on achievable information rate pairs. This work was ex-
tended by Csiszár and Körner to more general broadcast chan-
nels in [5]. The possibility of enhancing secrecy by incorpo-
rating common knowledge of channel impulse response into
the data encryption was identified and exploited by Hassan and
coworkers [15] and was applied to single-antenna mobile radio
links in [10] and [20]. This paper takes a different point of view
from previous work in that we evaluate the fundamental im-
pact of transmission secrecy (LPI and LPD) on two-terminal
channel capacity in the setting of multiple-antenna spatio-tem-
poral quasi-static Rayleigh-fading channels.

We investigate the client’s channel capacity and the capacity-
achieving transmission strategy under LPI and LPD constraints.
For this we consider MIMO links where both client and eaves-
dropper access space–time Rayleigh-fading channels. For the
discrete time and space channels considered here, the trans-
mitted signals are complex-valued matrices whose rows
span time samples and whose columns span space samples
equal to the number of transmit antennas. We show that when
both the transmitter and client receiver know the channel they
can exploit this knowledge to achieve improved LPI and LPD
beyond those achievable by single-channel systems. Such ex-
ploitation is possible to a lesser extent when the transmitter does
not know the client’s channel. Following the terminology used
in [2] we say that the client and/or transmitter are informed when
they know their channel propagation coefficients, while we say
that the eavesdropper’s link is uniformed, i.e., neither trans-
mitter nor eavesdropper know their propagation coefficients.

The LPI constraint can be imposed by constraining the
eavesdropper’s channel capacity, cutoff rate, or decoding error
probability. For example, when the eavesdropper’s channel
capacity is significantly lower than the client’s capacity the
converse to Shannon’s channel coding theorem implies that,
by setting his rate between the capacities of the client and the
eavesdropper, the transmitter can deprive the eavesdropper
of arbitrarily low probability of decoding error while reliably
communicating to the client. Here we show that when the
eavesdropper is uninformed about his channel, the transmitter
can enforce zero information rate to the eavesdropper while
delivering positive information rate to the client. This LPI
condition is equivalent to the perfect secrecy condition in
cryptography [30]. We derive integral expressions for the
perfect-secrecy capacity for the informed receiver and for
certain cases characterize the optimal signaling distributions
which achieve it. The LPD constraint is imposed by con-
straining the eavesdropper’s probability of correctly detecting
the presence of any signaling activity by the transmitter. This
is closely related to the steganography problem [26]. We make
conservative assumptions on the information possessed by the

eavesdropper, e.g., the eavesdropper knows only the transmitted
signal distribution and the received signal-to-noise ratio (SNR).
To obtain a tractable LPD constraint with which to derive a
capacity expression we will rely on Chernoff error exponents,
large eavesdropper standoff assumptions, and Edgeworth
expansions of the eavesdropper’s probability densities. The
Chernoff exponent defines the asymptotic rate of decrease of
the probability of detection error as the block length of the code
goes to infinity. The mathematical form of this exponent is used
to motivate a constraint on the transmitter which constrains
LPD as contrasted to total transmitted power.

Most of the results presented here apply to the case where
the eavesdropper is at large standoff from the client’s link. This
implies that the eavesdropper has both low received SNR and
approximately Gaussian multiuser interference and noise sta-
tistics. In addition, while many of these results can be general-
ized, we assume that both the client and the eavesdropper access
the transmitted energy through distinct mutually independent
quasi-static Rayleigh-fading channels [1]. As mentioned above,
exploiting channel information known to transmitter and client
receiver can be viewed as a form of spatial encryption where the
shared private key corresponds to the channel coefficients. As a
practical matter, this private key is distributed to the transmitter
and client receiver in the form of a training sequence, unknown
to the eavesdropper. The initial portion of each coherent fade in-
terval is reserved for transmission of the training sequence to the
client receiver which permits it to estimate the set of channel co-
efficients. For the case of a link having informed transmitter and
informed receiver, these coefficients must be communicated to
the transmitter by some unspecified form of (secure) feedback.
On the other hand, for the case in which only the receiver is in-
formed no feedback is required. In both cases, it has been shown
by us and others that the effect of channel estimation errors on
channel capacity may be significant [11], [3]. However, while
we do investigate the effect of erroneous channel information at
the transmitter, we do not focus on broader channel estimation
or feedback issues in this paper.

We present the following results.

1) Under the aforementioned space–time Rayleigh channel
informed/uninformed dichotomy it is possible for the
transmitter to communicate reliably to the client while
depriving the eavesdropper of any transmitted informa-
tion whatsoever. Thus, the transmitter attains perfect
secrecy as defined by Shannon [29]. This can be ac-
complished by restricting the space–time modulation to
a class of complex transmitted matrices whose spatial
inner product is equal to a constant matrix.
Two examples of such perfect-secrecy constellations
are square unitary space–time codes and quaternion
space–time codes [18], [17], [31]. The channel capacity
when restricted to these signals is herein called the per-
fect-secrecy capacity for which we give integral forms
for the case of an informed transmitter and receiver.

2) When the eavesdropper knows both the signal and his
channel exactly, constraining the eavesdropper’s Cher-
noff exponent is equivalent to constraining the mean
power over the transmitter antennas, which we call a
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mean-power constraint. Thus, we conclude that in this
case no additional countermeasures beyond minimizing
average transmitter power are required to enhance secu-
rity of the client’s link.

3) When the channel is unknown but the signal is known
to the eavesdropper, constraining the Chernoff exponent
is equivalent at low SNR to constraining the trace of the
fourth moment of the signal matrix.

4) When both channel and signal are unknown (but the
signal distribution is known) to the eavesdropper, the
Chernoff exponent reduces to the sum of two terms:
a function of the determinant of the spatio-temporal
receiver covariance matrix and a tensor product of the
receiver kurtosis and the signal covariance. The kurtosis
is defined as the expectation of a four-fold product of
the spatio-temporal signal amplitudes. The kurtosis
tensor product is nonnegative and equal to zero when the
received signal is complex Gaussian. As the channel is
Gaussian, zero kurtosis is only possible when the trans-
mitted signal is nonrandom. When the kurtosis tensor
product increases from zero, as occurs, for example,
when elements of the received signal matrices obey an
increasingly heavy tailed (super-Gaussian) distribution,
the eavesdropper’s detection performance degrades. This
result is reminiscent of the well-known negative kurtosis
condition under which blind equalization is possible for
an unknown single-input single-output (SISO) channel
with memory [28], [32].

5) Under the scenario where channel and signal are un-
known to the eavesdropper, at low SNR the constraint
on the Chernoff exponent reduces to a constraint on the
trace of the square of the channel-averaged transmitted
spatio-temporal signal covariance matrix, which we call
the mean-squared-power constraint. Unlike the standard
mean-power constraint, this constraint penalizes large
spatial power variation of the transmitted signals.

6) For informed transmitter and client receiver operating
under a channel-dependent version of the mean-squared
power constraint, the capacity of the client’s link is
attained by a Gaussian signaling strategy, called the
LPD-optimal strategy. In this signaling strategy, the
transmitted energy is distributed more evenly over the
modes of the channel as compared to the water-pouring
solution, called the power-optimal strategy, which is
optimal under the standard mean-power constraint.

7) For uninformed transmitter but informed client receiver
operating under the mean-squared power constraint both
the capacity and the capacity-attaining signaling strategy
are of identical form to the standard power-optimal ca-
pacity obtained under a mean-power constraint. In this
case, no additional countermeasures are required to en-
hance security of the client’s link against eavesdropping.

8) The LPD-optimal and power-optimal signaling strategies
achieve different information transmission rates for equal
signal power or for equal LPD performance as measured

by the Chernoff exponent. For fixed Chernoff exponent,
the power-optimal signal achieves lower information rate
than the LPD-optimal signal and conversely. We investi-
gate the relative advantages of power-optimal and LPD-
optimal signaling as a function of spatial diversity at the
transmitter and received SNR. In particular, while LPD-
optimal signaling has no advantage over power-optimal
signaling for a single transmit antenna (no diversity), it is
shown that almost a factor of two information rate advan-
tage is achievable at low SNR with 16 transmit antennas.

We provide a brief outline of the paper. In Section II, the
Rayleigh-fading measurement model is introduced. In Sec-
tion III, an integral expression is given for the perfect-secrecy
capacity. In Section IV, we give Chernoff error exponents for
detection error probability for differing levels of channel and
signal information available to the eavesdropper. In Section V,
we provide numerical comparisons illustrating the loss in
capacity due to adoption of the LPD strategy.

II. BACKGROUND

An -element transmitter antenna array transmits a
signal matrix over a time interval of time samples,

called the coherent fade sampling interval (Fig. 1). Let de-
note the signal received by the client over channel and
the signal received by the eavesdropper over a channel
(Fig. 2). For notational simplicity, throughout this paper su-
perscripts and subscripts will be used interchangeably when
no confusion ensues. We will assume that the two receivers
have and receive antennas, respectively. Similarly to
much previously published research on space–time coding [33],
[8], [16], [22], [34], [11], [13], [14], we will assume the multi-
channel quasi-additive Rayleigh-fading models for the received
signals. Over independent frames of time samples each the
models are

(1)

where is the th transmitted signal, ,
, are the normalized SNRs with the expected

SNRs at each receiver per transmit antenna, and are
mutually independent and matrices of com-
plex channel coefficients, and and are mutually un-
correlated and matrices of complex circu-
larly symmetric Gaussian noises. Note that we are assuming that

and have coherent fade intervals of identical dura-
tion . When multiuser interference is present we can account
for it in our capacity calculations by assuming the worst case
Gaussian interference scenario. The theory developed here ap-
plies to the case where the interferers have known covariances

and ; specifically, is known to the transmitter and
the client and is known to the transmitter and the eaves-
dropper. In this case, the client and eavesdropper models can be
reduced to the white noise models (1) by suitable prewhitening
at the receivers. Extension of the theory developed in the se-
quel to unknown and is a difficult open problem which
we do not consider here. We denote by common notation ,
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Fig. 1. Secure space–time link (M = 3, N = N = 2).

Fig. 2. A link in a wireless network between a transmitter (T) and a receiver
(R) who have cooperated to learn their channel H . Eavesdropper E
attempts to detect a message (known signal), detect signaling activity (known
modulation), or intercept data transported by the link H without knowing
the channel H . The eavesdropper and the client receiver must generally
perform these tasks in the presence of multiuser interference. In this paper, we
assume Gaussian interferers with known spatial covariances.

the quantities , and , when no risk of confusion en-
sues. The quasi-static Rayleigh flat-fading model corresponds to
taking the elements of the matrices and

to be independent and identically distributed (i.i.d.)

complex zero mean (circularly symmetric) Gaussian random
variables with unit variance.

Let and denote the se-
quence of measurement and signal matrices, respectively, and

the channel matrix of either the client or the eavesdropper
over the th frame. Under the assumption that the channel ma-
trices are independent over each coherent fade interval, indexed
by , the joint conditional probability density of the observations
factors into a product of marginals

where, if the channel is known to the receiver

(2)
while if the channel is unknown to the receiver

(3)

where is the identity matrix, and
denotes the magnitude determinant of square matrix .

A. Mean-Power Constrained Capacity

Following the standard random block coding construction of
channel capacity, is interpreted as a block
code consisting of statistically independent symbols drawn from
a source distribution . Define the concatenation of the

rows of one of these symbols, denoted as matrix
, into a -element row vector. The covariance of
is defined as the Hermitian symmetric matrix

. Let be a specified posi-
tive constant. For an informed link where both transmitter and
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receiver know the channel over each frame of time sam-
ples, the channel capacity can be derived under the per-frame
mean transmitted power constraint

(4)

Under this constraint, the capacity is [33], [34] as

(5)

where are the eigenvalues of . The capacity is at-
tained by a zero mean circularly symmetric Gaussian source dis-
tribution with covariance where

, are the (right) eigenvectors of , ,
are given by water-filling

(6)

and is a parameter such that .
In the sequel, we will call the T/R-informed power-ca-
pacity and the informed capacity-achieving spatial signal co-
variance will be called the T/R-informed power-optimal
signal covariance. Note that the capacity-achieving signal ma-
trix has i.i.d. Gaussian rows each having (spatial) covariance

whose eigenvectors are the modes (columns of ) of .
Note also that the water-filling strategy allocates transmitter en-
ergy only to those channel modes which have the highest asso-
ciated SNR. it can be shown that the optimal receiver applies a
beamformer which is matched to the channel prior to max-
imum a posteriori (MAP) decoding.

When only the receiver has information about the channel,
the transmitter cannot exploit the highest SNR modes and the
average power constrained channel capacity takes the form [33]

We call this capacity the R-informed power capacity. The ca-
pacity achieving source is a matrix with i.i.d. zero mean
circularly symmetric Gaussian elements having identical vari-
ances equal to .

For an uninformed link where neither transmitter and receiver
know the channel, the channel capacity under an average trans-
mitted power constraint was first investigated in [22].

While approximations have been investigated [22], [38], no
closed-form expression exists for either the capacity or the
capacity-achieving source. However, it was shown in [22] that
the capacity-achieving source has the abstract form

where is an isotropically distributed matrix and is
an independent nonnegative diagonal matrix.

III. LOW PROBABILITY OF INTERCEPT:
THE PERFECT-SECRECY CAPACITY

Here we focus on the LPI strategy of designing transmitter
signaling to zero out the channel information rate available to
the eavesdropper while maintaining high information rate com-
munication to the client. We motivate this section by considering
cutoff rates.

A. Motivation: Channel Cutoff Rate

The channel cutoff rate is a lower bound on the Shannon
channel capacity . Cutoff rate analysis has frequently been
adopted to establish practical coding limits [35], [9] as the cutoff
rate specifies the highest information rate beyond which sequen-
tial decoding becomes impractical [27], [36] and as it is fre-
quently simpler to calculate than channel capacity. The cutoff
rate for an uninformed link with quasi-static Rayleigh channel
was derived in [14], [13].

B. Single-Link Cutoff Rates

For a space–time channel , the cutoff rate has the general
expression [14]

where the maximization is over suitably constrained source dis-
tributions and is a signal dissimilarity measure
between pairs of transmitted signals and . The cutoff rate
increases as dissimilarity between pairs of signals increases, i.e.,
as the average of increases. Thus, is di-
rectly related to the information transport and decoding limita-
tions imposed by a particular channel.

The following expressions are easily derived for receivers
and received SNR .

1) Trasmitter/receiver (T/R) informed cutoff rate: known
to both T/R

2) Receiver (R) informed cutoff rate: known to R only

3) Uninformed cutoff rate: unknown to either T/R [14]

Note that in the T/R-informed case, the channel cutoff rate
depends on the dissimilarity of the signal pair after they are
received, i.e., the difference squared between and ,
while in the R-informed case, the cutoff rate depends on the dif-
ference squared between the pair of transmitted signals. On the
other hand, in the uninformed case the cutoff rate depends on
the difference between the determinant of the arithmetic mean
(numerator) and the geometric mean (denominator) of the con-
ditional received covariances and

. Thus, only temporal information
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can be used to distinguish between different signals. A user or
eavesdropper on an uninformed channel cannot use any spatial
information to help decode the symbols since this spatial infor-
mation is completely unknown to him.

When the source has constant spatial inner product , the
uninformed receiver’s absolute blindness to all spatial informa-
tion can also be deduced directly from the form of the receiver’s
likelihood function , given in (3), as this func-
tion is constant. This also implies that the channel capacity will
be equal to zero and the minimum probability of decoding error
will be equal to one if a source with constant is transmitted
over a uninformed Rayleigh-fading link.

C. Perfect-Secrecy Signaling

We conclude that if the eavesdropper has a uninformed
channel, his information rate can be reduced to zero if the trans-
mitter adopts a signaling strategy which uses a constellation

having constant spatial inner product

(7)

where is a prespecified nonrandom matrix. When
is diagonal, many known signal constellations satisfy this
perfect-secrecy property.

• Doubly unitary codes ( )

Some instances of such codes are as follows.
– Square unitary codes ( ) [31]:

– Space–time quaternary phase-shift keying (QPSK):
Quaternion codes [19]: ( ):

• Constant spatial modulus (CM) codes :

D. Perfect-Secrecy Capacity

Of obvious interest is the channel capacity of a T/R-informed
link with signaling limited to the class of signals satisfying the
constant spatial inner product condition (7), which we define
as the T/R-informed perfect-secrecy capacity. In Appendix A,
we give an integral expression for this capacity. The capacity-
achieving source density satisfies an equalization condi-
tion that says in essence that the optimal source should make
the instantaneous per-symbol mutual information independent

of the particular transmitted symbol . In the special case that
and the eigenvalues of are identical, we show

that the optimal source distribution is the uniform codeword dis-
tribution supported on where

is the perfect secrecy constraint set. When
and this set is the hypersphere

which is also known as the Stiefel manifold. This source dis-
tribution is similar to the isotropically random unitary source
introduced in [22] and suggests that if a tessellation of the hy-
persphere is possible the equispaced constellation constructed
on each lattice point in the tessellation might be close to op-
timal.

An integral expression for the R-informed perfect-secrecy ca-
pacity is not available. However, we make the following conjec-
ture: for and the case of an uninformed transmitter but
informed receiver a uniform is close to optimal for any
for large T and large SNR. The intuition is that in this limiting
regime the transmitter knows that the receiver can accurately
estimate the channel and diagonalize it, thereby converting the
channel to for which the uniform source distribution

is optimal. Recent techniques such as that of Hassibi and
Marzetta [12] for deriving compact integral expressions for the
mutual information for isotropically random unitary transmitted
source matrices may be useful here. This is an interesting open
problem.

IV. LOW PROBABILITY OF DETECTION: IMPACT ON CAPACITY

In this scenario, the eavesdropper attempts to detect the pres-
ence of a transmitted signal against noise alone based on ob-
servations of his channel output. Formally, define
two hypotheses and ,

. For any strictly positive prior probabilities
and of these hypotheses, the minimum
attainable probability of decision error of the eavesdropper
has the following large sample limiting behavior [7], shown at
the bottom of the page. The nonnegative constant is called
the Chernoff error exponent and is the error rate which deter-
mines how quickly the decision error decays exponentially to
zero. This error rate is the minimum (unnormalized) -diver-
gence between the eavesdropper’s densities (the alternative
density) and (the null density) which is a measure of the
ease of discrimination between the two statistical distributions.
This constant must be negative for a patient eavesdropper to be
able to correctly detect signal presence with arbitrarily low prob-
ability of error as number of time frames increases. The objec-
tive of LPD-secure modulation is to design signaling strategies
which constrain to a large value (small negative value near
zero if possible) and achieve highest possible information rates
to the client. To this aim, we will compute the informed channel
capacity of the client under such an LPD constraint for low SNR
and for several eavesdropper scenarios.
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A. -Informed Eavesdropper

Assume that the eavesdropper knows his channel sequence
and also knows the matrix valued amplitudes

of the signals sequence transmitted
over the frames. The eavesdropper’s null and alternative den-
sities become

An exact analysis of minimum probability of error is pos-
sible in this Gaussian case from which it can be shown that
is monotone decreasing in the detectability index that is lin-
early proportional to the magnitude Chernoff error exponent

. The -divergence is simply computed

which is minimized over by the choice .
Thus,

(8)

where

Since the eavesdropper would not normally be cooperating with
the transmitter to provide feedback of his channel coefficients,
a reasonable LPD signaling strategy would be to try to constrain
the channel-averaged Chernoff error exponent

For example, the transmitter could constrain the magnitude of
the channel-averaged Chernoff exponent for each signal frame

where denotes “ linearly proportional to .” We identify
the above as an instantaneous power constraint.

An alternative strategy would be for the transmitter to gen-
erate i.i.d. signal matrices from a source having source
distribution and satisfying the mean power constraint

(9)

where . By the strong law of large numbers
this is equivalent to constraining the exponent (8) under the
assumption that and are i.i.d. sequences of matrices.

Recall that under the mean power constraint

the informed channel capacity is attained by zero mean complex
Gaussian with covariance . Hence, (9)
is an equivalent constraint on and we conclude that when the

eavesdropper knows both the channel and the signal, the stan-
dard mean transmit power constraint also ensures a modicum of
LPD performance.

B. -Informed Eavesdropper

Assume that the eavesdropper knows the signal amplitudes
but not the channel . In this case, the

eavesdropper’s densities become

As both densities are multivariate Gaussian the -divergence is
again simply computed

A simple asymptotic development gives

Thus, after substituting the minimizing value , the
Chernoff exponent has the low-SNR representation

(10)

We conclude that for the -informed eavesdropper and low
SNR, an appropriate “instantaneous LPD” constraint for the
transmitter is

a constraint which we call the instantaneous fourth moment con-
straint.

If the transmitted signal matrices are i.i.d. realiza-
tions of a source with source distribution , then with
probability one, from the strong law of large numbers applied
to (10), constraining is equivalent to constraining the mean
fourth moment of the source

(11)

where is a specified constant.

C. Uninformed Eavesdropper

In this case, the eavesdropper does not know the amplitudes
of the transmitted signals nor the channel .

We will assume that is a realization of an i.i.d. source
for which the source distribution is known to the eaves-
dropper. This is a conservative assumption—in the absence of
such knowledge, the eavesdropper can only have worse detec-
tion error rates than predicted below.

The eavesdropper’s densities are
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The -divergence is not closed form for the uninformed
eavesdropper since it involves the difficult marginalization over

required for computation of . However, we can apply the
method of Edgeworth expansion to develop about
a Gaussian density to obtain the low-SNR approximation (see
Appendix B)

(12)

where is the covariance
matrix associated with the source matrix ,

is the fourth-order
kurtosis tensor of the matrix and Einstein sum-
mation notation is used for the tensor product in the second term
of (12). For a more precise definition of see Appendix B.

As the additive eavesdropper noise is Gaussian, the kur-
tosis of the eavesdropper’s received signal satisfies

If an element of is negative, then the received signal ma-
trix has a sub-Gaussian (light-tailed) component while if an el-
ement of is positive, this matrix has a super-Gaussian
(heavy-tailed) component. The kurtosis tensor product in (12)
can be explicitly expressed as a function of the moments of the
transmitted signal matrix using the fact that the entries of
are i.i.d. complex Gaussian (see equation at the bottom of the
page). As for fixed

(13)

is a nonnegative-definite function in the pairs of indexes
and , the kurtosis tensor product is nonnegative and in-
creases in the centralized fourth moment
of the source. This reflects the fact that under the assumption
of a random Gaussian channel, the received signal is always
super-Gaussian, i.e., its kurtosis is greater than zero, unless the
signal has zero variance.

Note that the -divergence (12), and hence the error rate ,
is an increasing function of the received kurtosis tensor
for all . We conclude that the best countermeasure
to thwart eavesdropper signal detection is for the transmitter to
transmit signals leading to as high positive kurtosis of as pos-
sible. In particular, for fixed nonzero transmitted power, an ef-
fective LPD signaling scheme would transmit signals having
large centralized fourth-moment tensor (13). This strategy may

be closely related to diminishing the ability of the eavesdropper
to perform blind equalization which, for the case of a scalar
channel with memory, is known to be possible only when the
source’s fourth moment is sufficiently small to make the kur-
tosis negative valued [32]. The choice of a signal distribution

which minimizes the -divergence (12) or maximizes
the tensor product therein is an interesting open problem.

Considerable simplification occurs when the SNR is very low
and terms of order can be neglected. In this case, the Cher-
noff error exponent, i.e., the minimum of the -divergence (12),
becomes

(14)

V. LPD-CONSTRAINED CAPACITY

Here we use the asymptotic error rate (14) to motivate an LPD
constraint under which we derive the channel capacity for
the case where both transmitter and receiver know their channel
(T/R-informed) and for the case that only the receiver
knows the channel (R-informed).

The asymptotic LPD constraint (14) is equivalent to the mean
squared power constraint

(15)

where is a prespecified maximum tolerable mean-squared
power and are the eigenvalues of the matrix

.

A. T/R-Informed LPD-Capacity

Motivated by constraint (15), consider the simpler constraint
on -conditioned mean-squared transmitted power

(16)

where are the eigenvalues of the conditional
covariance matrix . Under constraint (16) we can de-
rive (Proposition 3 in Appendix C) the following expression for
T/R-informed capacity:

(17)

where are the eigenvalues of and is an
unitary matrix whose columns are the (right) eigenvec-

tors of . The capacity (17) is attained by a zero-mean
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Gaussian source with covariance
where ,

(18)

and is a parameter such that . In
the sequel, we will call the T/R-informed LPD-capacity
and the capacity-achieving signal covariance will be called the
T/R-informed LPD-optimal signal covariance.

Observe the following.

1) Like the power-optimal source (6) which achieves T/R-in-
formed power-capacity , the LPD-optimal source
has i.i.d. Gaussian rows and each row has (spatial) covari-
ance whose eigenstructure is matched to the eigen-
structure (modes) of the channel.

2) In contrast to the water-filling strategy, distributing trans-
mitted energy only to the highest SNR channel modes is
not optimal for attaining the LPD capacity.

3) The T-informed mean-squared-power and mean-power
constraints can be related to each other by the Schwarz
inequality

Thus, the mean-squared-power constrains the mean
power of the transmitted signal. However, the two con-
straints produce qualitatively different optimal source
covariances.

4) The eavesdropper’s Chernoff exponent (14) only depends
on his antennas through his received SNR . Hence,
if the eavesdropper’s Chernoff exponent is to be con-
trolled via the mean-square-power constraint (15), the
transmitter’s LPD-optimal signaling strategy depends on

only through the mean-square-power constraint level
. In particular, if the transmitter knows that has

increased he will only need to reduce his transmit power
to ensure the same eavesdropper Chernoff exponent.

5) The LPD constraint (15) is weaker than the -dependent
constraint (16). Specifically, for the capacity-achieving
source Jensen’s inequality asserts that ,
so that the constraint (16) guarantees the LPD constraint
(15). The form of the capacity under constraint (15) is an
open problem.

B. R-Informed LPD Capacity

In Proposition 4 of Appendix C we establish that when the
transmitter does not know the channel but the receiver does
know the channel, the mean-squared-power constraint (15) and
the mean-power constraint (4) produce the same optimal sig-
naling strategy and result in identical forms for the channel ca-
pacity. Thus, we conclude that when the eavesdropper has low
received SNR, his Chernoff exponent is controlled by average
transmitter power and no special countermeasures are required
to enhance security of the client’s link.

Fig. 3. Spectra of optimal source covariance matrices under T/R-informed
LPD (mean-squared-power) and mean-power constraints: SNR= 20 dB; M =

N = 32.

VI. NUMERICAL COMPARISONS

Here we compare the T/R-informed power capacities and
LPD capacities derived in the previous section. Simulations of a
Rayleigh-fading channel were performed and the T/R-informed
capacities under both and constraints were computed
empirically. The number of transmit antennas was chosen
equal to the number of the client’s receive antennas. In
Fig. 3, we show the eigenvalues (diagonal entries) of the
optimal signal covariance matrices which achieve each one of
the capacities. These eigenvalues are indexed by the modes of
the channel and are denoted as such in the figure. Both signal
covariances are power normalized, i.e., they have the same
trace. The LPD-optimal eigenvalue distribution is flatter and
its peaks are much less prominent than the standard power-op-
timal eigenvalue distribution. This reflects the intuitive fact
that an eavesdropper can less easily detect the presence of
a flat signal eigenvalue profile and hence the LPD-optimal
signaling strategy better hides the signal information than the
power-optimal signaling strategy.

In Figs. 4 and 5 are plotted the T/R-informed standard power
capacity and LPD capacity as a function of SNR for
various numbers of antenna elements .

Next we investigated tradeoffs between the T/R-informed
LPD-optimal signaling strategy and the standard power-optimal
water-filling signaling strategy. Define

the average information rate attained by a zero-mean Gaussian
source with covariance matrix satis-
fying the constraint denoted by . The notation means that if

then satisfies and if
then it satisfies . Thus, the standard power
capacity is
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Fig. 4. T/R informed power capacity C (N = M).

Fig. 5. T/R informed LPD capacity C (N = M).

where the power-optimal signal covariance is specified by
(6) and the LPD capacity is where LPD-
optimal signal covariance is specified by (18).

The loss in power capacity due to using the LPD-optimal
signal covariance structure is defined as

(19)

while the loss in LPD capacity due to using the power-optimal
signal covariance structure is

(20)

In (19), both the LPD-optimal and the power-optimal covari-
ances are forced to satisfy the same mean-power constraint
while in (20) they both satisfy the same mean-squared-power
constraint. Figs. 6 and 7 plot the capacity losses as a function
of mean power and mean-squared power, respectively. Notice

Fig. 6. Loss in power capacity due to mean-squared-power (LPD) constraint
(N = M).

Fig. 7. Loss in LPD capacity due to mean-power constraint (N =M).

that the loss increases as more antennas are deployed
by transmitter and client. This is because a higher proportion
of the signal covariance eigenspectrum is flattened out by the
LPD-optimal signaling strategy as compared to the power-op-
timal strategy. Also note, that as the client’s SNR increases
the relative capacity loss becomes negligible while as
decreases to 20 dB, the losses flatten out. This is because at
very low , the power-optimal water-filling strategy requires
the transmitter to use only a single transmit antenna while the
LPD-optimal signal applies energy to all antennas no matter
how low gets. Finally, for a single transmitter antenna
element there is no loss in capacity since in this case
the average-power and the mean-squared-power constraints are
equivalent up to a scale factor.

Finally, we investigated the sensitivity of the T/R-informed
power capacity and LPD capacity due to errors in the trans-
mitter’s channel estimate. The receiver is assumed to have
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Fig. 8. T/R informed power capacity loss due to transmitter-channel mismatch
(N = M).

decode symbols with zero channel estimation error. This
asymmetric channel error scenario is an idealization of the
situation where channel estimation errors occur during training
which are then fed back to the transmitter. While we offer no
proof, we believe that the effect on capacity of using erroneous
channel information at the transmitter is greater than using
equivalent error estimates at the receiver and therefore these
results should approximate actual information rate reductions
due to training. This would have to be verified by doing more
extensive simulations to determine the mutual information
loss due to training errors at both transmitter and receiver.
In our simulation, the total number of samples in a coherent
fade was 1024 and 128 of these samples were used for
estimating the channel at the receiver. 500 realizations of dif-
ferent Gaussian channels were generated for various numbers
of antennas and SNRs. Over each frame, the channel was
estimated at the receiver via the exact least squares estimator
based on 128 -element snapshots generated by transmitted
zero mean i.i.d. Gaussian training symbols. These channel
estimates were then substituted into the power-optimal and
LPD-optimal covariances and and substituted into
the capacity (5) and (17), respectively. Figs. 8 and 9 shows
the resultant degradation in these two capacities. Observe
that for the example simulated here, for moderate-to-large
SNR, the relative loss due to transmitter-channel mismatch is
significantly less than the loss due to not accounting for the
eavesdropper LPD constraint (compare Fig. 9 to Fig. 7).

VII. CONCLUSION

This paper has presented a study of capacity under link se-
curity constraints corresponding to low probability of intercept
(LPI) and low probability of detect (LPD). We have established
that optimal signaling for LPD- and LPI- constrained secure
channels is qualitatively different from open channels. We have
also shown that constraining moment quantities, such as trace
of the fourth-moment matrix, are relevant for eluding detection

Fig. 9. T/R informed LPD capacity loss due to transmitter-channel mismatch
(N = M).

by eavesdroppers who have only limited knowledge about the
channel and transmitter modulation. A smart eavesdropper with
information on data or training sequences can be handled simi-
larly by constraining the fourth moment of the transmitted signal
matrices. The analysis in this paper holds only for doubly in-
formed links for which the receiver and transmitter know their
channel exactly. Extensions of these results to the case of net-
work-wide QoS metrics such as min- and sum-capacity are of
interest. This paper has treated the case of Gaussian noise and
known receiver noise covariance matrices. Generalizations to
the case of non-Gaussian multiuser interference (MUI) would
be worthwhile for answering questions such as: to what extent
are LPD and MUI resistance compatible goals in wireless net-
works. Finally, another interesting avenue for exploring the in-
formation-hiding capabilities of space–time channels would be
the information-theoretic framework of Moulin [24].

APPENDIX A

Propositions 1: Assume that is an matrix of i.i.d.
zero mean and unit variance circularly symmetric Gaussian el-
ements. If the density defined below exists, the T/R-in-
formed perfect-secrecy capacity is where

(21)

where

• is the probability density of a standard zero
mean and identity covariance complex normal ma-
trix.

• is a probability density over the perfect secrecy con-
straint set , a nonrandom matrix,
which makes the right-hand side of (22) functionally in-
dependent of over
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If then, with the singulara-value
decomposition (SVD) of

(22)

where the matrix is defined by the following column
partition of the matrix : . Furthermore, if

for then is the
uniform density over .

Proof: For fixed , the T/R-informed perfect secrecy ca-
pacity is defined as

where the maximization is over distributions supported on .
As

we focus on the entropy function

where . As is concave as a function of
, a standard calculus of variations argument can be used

to derive a sufficient condition for the maximum of .
Define the Lagrangian

where is an undetermined positive multiplier which enforces
the constraint that . The stationary point condi-
tion on the maximizing follows from consid-
ering

For the above to be zero for all such that
remains a valid distribution over we require

which, upon substituting , gives
the expression (21) of the proposition.

Specializing to the case that , and using the given
SVD of and definitions of and , observe that

Plugging this back into the expression for and using
simple algebra this establishes (22).

Finally, assuming , from (22), we must show that

is equal to a constant over independent of . Note that

and observe that by change of variable in the integrals above,
for any unitary matrix : . Hence, by
Vinograd’s theorem, only depends on through . Since

over , must, in fact, be constant over and the
optimality of the uniform distribution is established.

APPENDIX B

As in Section II, let be a matrix
of complex amplitudes measured at antennas over time
samples at the output of an i.i.d. zero-mean complex Gaussian

channel with additive complex Gaussian noise
and input signal (source) with complex amplitudes .
While cooperation between client and transmitter may lead to
dependency between and , we assume there is no such co-
operation between eavesdropper and transmitter. Thus, as the
following results are applied to the eavesdropper, we assume
here that is independent of and .

Let be a complex-valued matrix where
and are real matrices. Define the real-valued -ele-

ment vector as the concatenation of the columns of the
matrix . Following the notation of [23], for zero mean

, define the tensors , , and as the variance,
skewness, and kurtosis of

Note that as is Gaussian

Further, define the element of the inverse of the covari-
ance matrix and the positive-definite square-root
factor of , i.e., using the Einstein summation convention

, the Kronecker delta function, and .
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Propositions 2: Assume that is independent of and
and that and are mutually independent zero-mean

complex Gaussian matrices. The (normalized) -divergence
between and has the asymptotic
expression

(23)

(24)

where , is the kurtosis of the whitened
and variance normalized measurement , and is the
variance of the prewhitened signal .

Proof: Using the expression in [23] for the Edge-
worth expansion of a zero-mean multivariate density about
a Gaussian multivariate density with zero mean and co-
variance we have the representation shown
at the bottom of the page, where is the

-variate Gaussian density with zero mean and covariance
, and , , etc., are Hermite tensors given in [23].

As and are independent zero-mean
Gaussian random matrices, and is independent of and :

and the representation reduces to

Using , after some algebra,
the substitution of the Edgeworth expansion into the -diver-
gence expression gives

(25)

where is the matrix inverse of
and

Apply the small argument formula to perform
the integration (25)

Next we use the Hermite tensor expression [23]

where

Substituting this back into (25) and noting that, as tensors
have the same eigenvectors they commute

This establishes (24).

Noting that and
so that we have the following.

Corollary 1:

(26)

where is the kurtosis tensor of the
matrix .

APPENDIX C

For a realization of the channel, define

the mutual information for a T/R-informed link over an
quasi-static Rayleigh channel which is constant over the co-
herent fade interval of time samples. Note that
is a function of and is not the standard conditional mutual
information. The LPD capacity of this link is defined as

where the expectation is over and the maximization is over
conditional source distributions which satisfy the
mean-squared-power constraint

(27)

and is the source’s
conditional covariance matrix and is a -ele-

ment row vector constructed by concatenating the rows of .
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Let have eigendecomposition where
.

Propositions 3: Let be an channel matrix with
zero mean and unit variance i.i.d. complex circularly symmetric
Gaussian entries. For the case that both transmitter and receiver
know the channel capacity under the mean-squared-power
constraint (27) is

(28)

which is attained by a zero-mean Gaussian source distribution
with covariance where

,

and is a parameter such that .
Proof: The argument is similar to that used in [33] in

proving optimality of the water-filling solution for the case
of informed transmitter and receiver under a mean-power
constraint. The matrix observation model over a single frame

has the equivalent vectorized form

(29)

where is a -element row vector from
concatenating rows of and, similarly, for ,

is a similarly defined -element row vector,
and is a block-diagonal matrix with
identical diagonal blocks . Invoking the maximum entropy
property of the Gaussian distribution for having fixed covari-
ance , we have the following inequality:

(30)
with equality when is a zero-mean complex Gaussian
distribution with a covariance matrix .
It remains to maximize the right-hand side of this inequality
over nonnegative definite symmetric matrices subject to

.
With the eigendecomposition , the eigende-

composition of is simply

Let

have diagonal elements . Then, by Hadamard’s in-
equality

(31)

with equality when . Note that

The maximizer of the right-hand side of the preceding equation
subject to the inequality constraint
achieves the constraint with equality as (31) is increasing in .
The Lagrangian for this constrained optimization problem is

where is an undetermined multiplier. This concave func-
tion has a unique unconstrained maximum which occurs when

or equivalently

There is one positive root

where . Thus, , the optimum source
covariance is , and plugging this into
(31), the capacity is (28) as claimed.

Propositions 4: Let be an channel matrix with
zero mean and unit variance i.i.d. complex circularly symmetric
Gaussian entries. For the case that only the receiver knows the
channel capacity under the mean-squared-power constraint (27)
is identical to the standard mean-power constrained capacity for
this case

(32)

which is attained by a source matrix whose elements
are zero mean i.i.d. circularly symmetric Gaussian random vari-
ables with variances .

Proof: The proof parallels the proof of the mean-power
constrained capacity in [33]. The capacity for the case that only
the receiver knows the channel is defined as

where satisfies the power constraint

Using the vectorized signal representation (29) and (30) ob-
tained in the proof of Proposition 3 we have

(33)

where equality is achieved when is zero-mean circularly
symmetric complex Gaussian with covariance ma-
trix . As in [33], for any matrix the function

is concave and for any unitary matrix ,
. Thus, specializing to the eigenvector

matrix in the eigendecomposition , we
have so that, as ,
without loss of generality we can assume that the capacity
achieving covariance is a nonnegative diagonal matrix

. Next, specializing to , a permutation matrix
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. Thus, by Jensen’s inequality, summing
over all permutation matrices

where which is a scaled
identity matrix. It follows from the following inequality that the
constraints

and

are equivalent so that is the optimal source
covariance

where the last line follows from Jensen’s inequality. This estab-
lishes the proposition
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