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METHOD AND APPARATUS FOR
CLUSTERING AND VISUALIZATION OF
MULTICOLOR CYTOMETRY DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit and priority of U.S.
Provisional Application No. 60/997,388, filed on Oct. 2,
2007. The entire disclosures of the above applications are
incorporated herein by reference.

GOVERNMENT RIGHTS

This invention was made with government support under
CCR-0325571 awarded by the National Science Foundation.
The U.S. Government has certain rights in the invention.

FIELD

The present disclosure relates to a method for clustering,
classifying and visualization of multi-dimensional data.

BACKGROUND

The fields of statistical learning and machine learning are
used to study problems of inference, which is to say gaining
knowledge through the construction of models in order to
make decisions or predictions based on observed data. In
some problems, the observations can be represented as points
in a Euclidean space with the L,-norm as a natural dissimi-
larity metric. Solutions to problems of dimensionality reduc-
tion, clustering, classification, and other learning tasks have
been formulated using the Euclidean representation. Unfor-
tunately, when no obvious natural Euclidean representation
for the data is available, such inference tasks require indepen-
dent solutions.

A straightforward strategy is to express the data in terms of
a low dimensional feature vector for which the curse of
dimensionality is alleviated. This initial processing of data as
real-valued feature vectors in Euclidean space, which is often
carried out in ad hoc manner, has been called the “dirty
laundry” of machine learning. This procedure is highly
dependent on having a good model for the data and in the
absence of such model may be highly suboptimal, resulting in
much information loss. When a statistical model is available,
the process of obtaining a feature vector can be done opti-
mally by extracting the model parameters for a given data set
and thus characterizing the data through its lower dimen-
sional parameter vector.

In clinical flow cytometry, cellular suspensions are pre-
pared from patient samples (blood, bone marrow, solid tis-
sue), and evaluated simultaneously for the presence of several
expressed surface antigens and for characteristic patterns of
light scatter as the cells pass through an interrogating laser.
Antibodies to each target antigen are conjugated to fluores-
cent markers, and each individual cell is evaluated via detec-
tion of the fluorescent signal from each marker. The result is
a characteristic multi-dimensional distribution that, depend-
ing on the panel of markers selected, may be distinct for a
specific disease entity.

The data from clinical flow cytometry can be considered
multi-dimensional both from the standpoint of multiple char-
acteristics measured for each cell, and from the standpoint of
thousands of cells analyzed per sample. Nonetheless, clinical
pathologists generally interpret clinical flow cytometry
results in the form of two-dimensional scatter plots in which
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the axes each represent one of multiple cell characteristics
analyzed (up to 8 parameters per cell in routine clinical flow
cytometry, and many more parameters per cell in research
applications). Additional parameters are often utilized to
“gate” (i.e. select or exclude) specific cell sets based on anti-
gen expression or light scatter characteristics; however, clini-
cal flow cytometry analysis remains a step-by-step process of
2-dimensional histogram analysis, and the multi-dimensional
nature of flow cytometry is routinely underutilized in clinical
practice.

Document classification is another problem that may be
better understood when a document’s multi-dimensional
nature is taken into account. Recent work has shown interest
in using dimension reduction for the purposes of document
classification and visualization.

The statements in this section merely provide background
information related to the present disclosure and may not
constitute prior art.

SUMMARY

A computer implemented method is provided for cluster-
ing and visualization of an n-dimensional space in a Euclid-
ean space. The method includes: collecting a plurality of
multi-dimensional data sets; estimating a probability density
function from each data set; approximating a dissimilarity
between every pair of said probability density functions and
recording every dissimilarity in a dissimilarity matrix;
embedding the dissimilarity matrix into a Euclidean space
having a dimensionality of three or less using a multi-dimen-
sional scaling method; and graphically displaying relation-
ships between data sets using data in the Euclidean space on
a display of a computing device.

Further areas of applicability will become apparent from
the description provided herein. The description and specific
examples in this summary are intended for purposes of illus-
tration only and are not intended to limit the scope of the
present disclosure.

DRAWINGS

FIG. 1 illustrates a method for clustering and visualizing
the relationship between multi-dimensional data sets in a low
dimensional Euclidean Space;

FIG. 2 is an example of a manifold which illustrates the
difference between a geodesic distance and a strict probabi-
listic distance;

FIG. 3 is a graph demonstrating the convergence of a geo-
desic approximation of the Fischer information distance
using the Kullback-Leibler divergence and the actual Fischer
information distance as the number of sampled points
increases;

FIG. 4 illustrates an embodiment of the claimed methods;

FIG. 5 is a diagram demonstrating the use of Fisher infor-
mation non parametric embedding to analyze cytometry data;
and

FIG. 6 is a diagram demonstrating the use of Fisher infor-
mation non parametric embedding to classify unknown docu-
ments.

The drawings described herein are for illustrative purposes
only of selected embodiments and not all possible implemen-
tations, and are not intended to limit the scope of the present
disclosure. Corresponding reference numerals indicate cor-
responding parts throughout the several views of the draw-
ings.
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DETAILED DESCRIPTION

FIG. 1 depicts a method for clustering and visualizing a
data collection consisting of sets contained in a multi-dimen-
sional space in a two or three dimensional Euclidean Space.
First, a computing device must receive a plurality of multi-
dimensional data sets 11. Each data set is assumed to have
been realized from some parametric model where the param-
eters are unknown. Using known nonparametric methods of
estimating a probability density, the probability density func-
tion which defines each data set is estimated 13. Given a pair
of'probability density functions whose parameters are known,
the Fisher information distance defines the dissimilarity or
geodesic distance between the probability density functions.
When the parameters of the probability density functions are
unknown, however, an a.-divergence can be used to approxi-
mate the dissimilarity or geodesic distance between two
PDFs 13. By approximating the dissimilarity of every pair of
PDFs, a dissimilarity matrix can be constructed. The dissimi-
larity matrix can then be embedded into a Euclidean space of
predetermined dimensionality using a known multidimen-
sional scaling method 15. The resulting embedding can be
used to visualize the data in either a 2 or 3 dimensional
Euclidean space 17. The computing device can output a graph
depicting each data set as a point in the d-dimensional Euclid-
ean space 19.

Information geometry has emerged from the study of geo-
metrical structures on manifolds of probability distributions.
It has been used for analysis in such fields as statistical infer-
ence, neural networks, and control systems. The following
provides a brief background on the methods of information
geometry that may be utilized in the provided disclosure.

It is important to understand the notion of statistical mani-
folds, or a set M whose elements are probability distributions.
A probability density function (PDF) on a set X is defined as

a function P ¥ = B in which

px)=0,Vxey M

fp(x)dx =1.

This pertains to the case for continuum on the set X. If X
was discrete valued, however, equation (1) will still apply by
replacing fp(x)dx=1 with Zp(x)=1. Considering M to be a
family of PDFs on the set X, in which each element of M is a
PDF which can be parameterized by 0, then M is known as a
statistical model on X Specifically, let

M={p(xi0)0c0= B},

with p(x10) satisfying the equations in (1). Additionally, there
exists a one-to-one mapping between 0 and p(xI0).

Given certain properties of the parameterization of M, such
as differentiability and C* diffeomorphism (details of which
are described in S. Amari and H. Nagaoka, Methods of Infor-
mation Geometry, vol. 191, American Mathematical Society
and Oxford University Press, 2000, Translations of math-
ematical monographs), the parameterization 0 is also a coor-
dinate system of M. In this case, M is known as a statistical
manifold. The terms ‘manifold’ and ‘statistical manifold’ are
used interchangeably hereinafter.

Referring to FIG. 2. In Euclidean space, the distance
between two points is defined as the length of a straight line
between the points. On a manifold C, however, one can mea-
sure distance by a trace of the shortest path B between the
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points along the manifold. This path B is called a geodesic,
and the length of the path B is the geodesic distance. In
information geometry, the distance between two points on a
manifold C is analogous to the difference in information
between them with respect to the parameterization, and is
defined by the Fisher information metric. This measures the
amount of information a random variable X contains in ref-
erence to an unknown parameter 0. For the single parameter
case it is defined as

I = [E(%logf(X; 0)]2|0}.

If the condition

62
fwf(X; OdX =0
is met, then the above equation can be written as
I = E[ 9 1 X; 0]
()= ~E| 55108/ (X: 6)|.

For the case of multiple parameters 0=[6", . . ., 6”], the Fisher
information matrix is defined [1(8)], whose elements consist
of the Fisher information with respect to specified param-
eters, as

e ff(X O)Blogf(X 0) dlogf (X:0)

ao Tl

For a parametric family of PDFs it is possible to define a
Riemannian metric using the Fisher information matrix,
known as the information metric. This information metric
distance, or Fisher information distance, between two distri-
butions p(x; 0,) and p(x; 6,) in a single parameter family is

Dy, 0) = f ' 10240,
61

where 0, and 0, are parameter values corresponding to the
two PDFs and 1(0) is the Fisher information for the parameter
0. Extending to the multi-parameter case, the following is
obtained:

D6y, ) = mi (—de]rf(e)(—de)dﬁ ”
Fl01, U2) = mun

9((9)()2'91 ak ak
o(1)=6,

where 0(p) is the parameter path along the manifold.

The metric in (3) provides an information-based means of
comparing PDFs on the appropriate statistical manifold. The
shortest path 6* that minimizes (3) does so by considering
only routes which lie on the manifold C, guaranteeing that
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each point along the path 6* is a PDF governed by M. Other
distances that do not restrict measured paths to the manifold
may lead to inaccurate “short cut” distances; i.e., paths that
consist of PDFs not governed by M, as seen in A of FIG. 2.
This is clearly the case with the L,-distance, which only
considers the straight-line path A between points, but is also
the case for other probabilistic distances which measure the
“portion of a great circle” on a hypersphere.

One property of the Fisher information metric is that it is
independent of the parameterization of the manifold.
Although the evaluation remains equivalent, calculating the
Fisher information metric requires knowledge of the param-
eterization, which is generally not available in real world
problems. Instead, it is assumed that the collection of density
functions lies on a manifold that can be described by some
natural parameterization. Specifically, one is given
p={p1, - - -, P} Where p,eM is a PDF and M is a manifold

embedded in R”.. In order to find an approximation for the
geodesic distance between points on M using only the infor-
mation available in P, one can use an approximation function
G which yields:

[)F(pi:pj):G(pixpj;P ), 4
such that ]A)F(pl., P.)—=Dx(p.p,) as n—.

Defining said approximation function G is similar to the
setting of classical papers on manifold learning and dimen-
sionality reduction, where only a set of points on the manifold
are available. See J. B. Tenenbaum, V. de Silva, and J. C.
Langford, “A global geometric framework for nonlinear
dimensionality reduction,” Science, vol. 290, pp. 2319-2323,
2000; and M. Belkin and P. Niyogi, “Laplacian eigenmaps
and spectral techniques for embedding and clustering,” in
Advances in Neural Information Processing Systems, Vol-
ume 14, T. G. Diettrich, S. Becker, and Z. Ghahramani, Eds.
MIT Press, 2002. As such, one can use these manifold learn-
ing techniques to construct a low-dimensional, information
based embedding of that family. This not only allows for an
effective visualization of the manifold (in 2 or 3 dimensions),
but by embedding the family into a Euclidean space one can
perform clustering of the PDFs lying on the manifold with
existing Euclidean methods.

Many metrics have been defined to approximate the Fisher
information distance when the specific parameterization of
the manifold is unknown. An important class of such diver-
gences is known as the f-divergence, in which f(u) is a
convex function on u =0 and

Dstpl) = [pns(45)

A specific and important example of the f-divergence is the
a-divergence, where ‘=D ¢« forareal number c.. The func-
tion () is defined as

4
- Uy g 2]

ulogu
—logu

f@w =

a=1

a=-1.
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As such the “"divergence can be evaluated as

@ 4 La Lo
D (plig) = m(l—fp(x) g0 T dxle# 1, and

P ®

1) _p - L
D" (pllg) =D (qllp)—fp(X)Iqu(x)-

The a-divergence is the basis for many important and well
known divergence metrics, such as the Hellinger distance,
discussed in detail below, the Kullback-Leibler divergence
(5), and the Renyi-Alpha entropy (as seen in A. Renyi, “On
measures of information and entropy,” in Proceedings of the
4th Berkeley Symposium on Mathematics, Statistics and
Probability, 1961, pp. 547-561). The Kullback-Leibler (KL.)
divergence is defined as

) ©

KL(plig) = fp(X)IOgm,

which is equalto DY (5). The KL-divergence is a very useful
metric in information theory, and is commonly referred to as
the relative entropy of a probability distribution. The follow-
ing shows the relation between the Kullback-Leibler diver-
gence and the Fisher information distance,

VIRLplg)—=Dr(p.9),

as p—q.

It should be noted that the KI.-divergence is not a distance
metric, as it does not satisfy the symmetry, KL(p||q)=KL(p||q),
or triangle inequality properties of a distance metric. To
obtain this symmetry, the symmetric KL. divergence may be
defined as:

Dy (p.9)=KL(plg)+KL(q|p), M
which is still not a distance as it does not satisfy the triangle
inequality. Since the Fisher information is a symmetric mea-
sure,

VIRL(qIp)=D(4.0)-Dr(p.9)- ®
Combining (7) and (8), one can approximate the Fisher infor-
mation distance as:

VDL ®.9—>Dr(p.9), ©
as p—q. This approximation allows one to approximate the
dissimilarity between to data sets, when the parameteriza-
tions of the data sets is unknown.

It is important to note that there are other methods of
calculating a similarity between PDFs. The KL-divergence it
is an accurate means of differentiating shapes of densities.
Analysis of (6) shows that as p(x)/q(x)—c, KL(p|lq)—>.
This property ensures that the KL-divergence will be ampli-
fied in regions where there is a significant difference in the
probability distributions. As such, the difference in the tails of
the distributions is a strong contributor to the KL-divergence.

As noted earlier (YD, (py:5,)—>D(p, p,) as p,—ps. I p,
and p, do not lie closely together on the manifold, the Kull-
back-Leibler divergence becomes a weak approximation of
the Fisher information distance. However, a good approxima-
tion can still be had if the manifold is densely sampled
between the two end points by defining the path between p,
and p, as a series of connected segments, and summing the
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length of those segments. Specifically, given the set of n
probability density functions parameterized by P={6,, . . .,
8,,}, the Fisher information distance between p, and p, can be
approximated as

Dr(p1, p2)~ ~ min Z Dr(pB), pBsrn))
30y S} 51

where p(6,,,)=p,, p(6,,))=ps, and {6, ..., 6, }€P. One can
then form an approximation of the Fisher information dis-
tance using the Kullback-Leibler divergence for distant
points on the manifold:

m

min Z v Die(pays pasy)

Dr(p1, p2) =
mlpys o Pom) i1

Pa = eV i

Intuitively, this estimate calculates the length of the shortest
path between points in a connected graph on the well sampled
manifold.

Consider the 2-dimentional manifold M of univariate
Gaussian PDFs parameterized by mean p and variance o.
FIG. 3 illustrates this approximation by comparing the KL,
graph approximation 31 to the actual Fisher information dis-
tance 33. The KL-divergence between univariate normal dis-
tributions is available in a closed-form expression:

1 (o3} of
KL(pillp2) = z(log(o_—i] + U_—; - -1,
1 3

while the closed-form expression for the Fisher information
distance is presented in S. I. R. Costa, S. Santos, and J.
Strapasson, “Fisher information matrix and hyperbolic
geometry,” in Proceedings of IEEE ITSOC Information
Theory Workshop on Coding and Complexity, August 2005.
As the manifold is more densely sampled (uniformly in mean
and variance parameters while maintaining the same support
for this simulation), the approximation converges to the true
Fisher information distance 33 for the univariate normal case.

Given a matrix of dissimilarities between entities, many
algorithms have been developed to find a low dimensional

embedding of the original data 1:M— ¥, These techniques
have been classified as a group of methods referred to as
multi-dimensional scaling (MDS). There are supervised
methods, which are generally used for classification pur-
poses, and unsupervised methods, which are often used for
clustering and manifold learning. Using these MDS methods
allows for a single low-dimensional coordinate representa-
tion of each high-dimensional, large sample data set.

Classical MDS is an unsupervised learning method that
takes a matrix of dissimilarities between entities and embeds
them into a Euclidean space. This is performed by first cen-
tering the dissimilarities about the origin, then calculating the
singular value decomposition (SVD) of the centered matrix.
This permits the calculation of the low-dimensional embed-
ding coordinates.

Define D as a dissimilarity matrix of Euclidean distances
(may also approximate Euclidean distances). Let B be the
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“double centered” matrix which is calculated by taking the
matrix D, subtracting its row and column means, then adding
back the grand mean and multiplying by

As a result, B is a version of D centered about the origin.
Mathematically, this process is solved by

B 1HD2H
=-3 ,

where D? is the matrix of squared distances (with a slight
abuse of notation), H=I-(1/N)11%, I is the N-dimensional
identify matrix, and 1 is an N-element vector of ones.

The embedding coordinates, Ye " can then be deter-
mined by the taking the eigenvalue decomposition of B,

B=[V Vsldiag (Ay, . .., M) [V Vol

and calculating

Y=diag 0\, 12, ..., W)W T

The matrix V, consists of the eigenvectors corresponding to
the d largest eigenvalues A, . . ., A, while the remaining N-d
eigenvectors are represented as V, refers to an diag (A, . . .,
Ay refers to NxN diagonal matrix with A, as its i diagonal
element.

Laplacian Eigenmaps (LEM) is an unsupervised learning
technique that performs non-linear dimension reduction by
performing an eigenvalue decomposition on the graph Lapla-
cian formed by the data. As such, this algorithm is able to
discern low-dimensional structure in high-dimensional
spaces that were previously indiscernible with methods such
as principal components analysis (PCA). The algorithm con-
tains three steps and works as follows:

1) Construct Adjacency Graph

Given dissimilarity matrix D_between data points in the set
X, define the graph G over all data points by adding an edge
between points 1 and j if X, is one of the k-nearest neighbors
of X; (k is defined by the user).

2) Compute Weight Matrix W

If points i and j are connected, assign

W.=e ¢

otherwise W,=0.
3) Construct Low-Dimensional Embedding
Solve the generalized eigenvalue problem

Lf=ADf,

where D is the diagonal weight matrix in which D, =2, W, and
L=D-W is the Laplacian matrix. If [{}, . . ., f,] is the collec-
tion of eigenvectors associated with d smallest generalized
eigenvalues which solve the above, the d-dimensional
embedding is defined by y,=(v,, . . ., v,,))", 1=i=N.

While this disclosure only details the cMDS and LEM
algorithms, there are many other methods for performing

dimensionality reduction in a linear fashion (PCA) and non-
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linearly (ISOMAP and Local Linear Embedding) for unsu-
pervised learning, all of which can be applied to the disclosed
method.

Thus far, a series of methods for manifold learning devel-
oped in the field of information geometry have been pre-
sented. By reducing the above described techniques into
machine readable code and executing the code on a computer,
dimensionality reduction on a family of data sets can be
performed. This allows for better visualization and clustering
of multi-dimensional data. In order to obtain a lower dimen-
sional embedding, one can calculate a dissimilarity metric
between data sets within the family by approximating the
Fisher information distance between their corresponding
probability densities.

In problems of practical interest, however, the parameter-
ization of the PDF's are usually unknown. Problems of interest
instead give a family of data sets X={X, X,, .. ., X, }. in
which one may assume that each data set X, is a realization of
some underlying probability distribution to which the param-
eters are unknown. As such, one may utilize a number of
nonparametric techniques to estimate both the probability
density and the approximation of the Fisher information dis-
tance. For example, one embodiment utilizes kernel density
estimation (KDE) methods for deriving the probability den-
sity function estimates; although nearest neighbor methods as
well as other density estimation techniques will suffice as
well.

Kernel methods are non-parametric techniques used for
estimating PDFs of data sets. These methods are similar to
mixture-models in that they are defined by the normalized
sum of multiple densities. Unlike mixture models, however,
kernel methods are non-parametric and are comprised of the
normalized sum of identical densities centered about each
data point within the set. This yields a density estimate for the
entire set in that highly probable regions will have more
samples, and the sum of the kernels in those areas will be
large, corresponding to a high probability in the resultant

density. Given X=[x,, . .., x|, where x,. %, the kernel density
estimate (KDE) of the PDF of X is defined as

where K is some kernel satisfying the properties of a PDF and
h is the bandwidth or smoothing parameter.

There are two key points to note when using kernel density
estimators. First, it is necessary to determine which PDF to
use as the kernel. Without a priori knowledge of the original
distribution, one can use Gaussian kernels,

K(x) =

1 1 -1
T

Z ,l,e"p(‘i 2 x]’

272|312

where X is the covariance matrix, as they have the quadratic
properties that will be useful in implementation. Secondly,
the bandwidth parameter is very important to the overall
density estimate. Choosing a bandwidth parameter too small
will yield a peak filled density, while a bandwidth that is too
large will generate a density estimate that is too smooth and
loses most of the features of the distribution. There has been
much research done in calculating optimal bandwidth param-
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eters, resulting in many different methods which can be used
in this framework. See Bernard Silverman, Density Estima-
tion for Statistics and Data Analysis (Monographs on Statis-
tics and Applied Probability); and John Wiley and Sons, 1986
and George Terrell, “The maximal smoothing principle in
density estimation,” Journal of the American Statistical Asso-
ciation, vol. 85, no. 410, pp. 470-477, June 1990,

Note that the mean squared error of a KDE decreases only
as n-?%?_which becomes extremely slow for a large d. As
such it may be difficult to calculate good kernel density esti-
mates as d increases. Within this framework, however, the
estimation of densities is secondary to the estimation of the
divergence between them. As such, the issues with mean
square error of density estimates in large dimensions are not
of concern.

Using the above mentioned approximations, a computer
can perform the same multi-dimensional scaling operations
as previously described when dealing with families of PDFs
with unknown parameterizations.

Referring now to FIG. 4. a method is presented that com-
bines all of the methods that have been presented in order to
find alow-dimensional embedding ofa collection of data sets.
This method is referred hereinafter as Fisher Information
Nonparametric Embedding (FINE). This method includes a
characterization of high-dimensional data sets 41 in terms of
a nonparametric statistical model 43, a geodesic approxima-
tion of the Fisher information distance as a metric for evalu-
ating similarities between data sets 45, and a dimensionality
reduction procedure to obtain a low-dimensional Euclidean
embedding 45 of the original high-dimensional data set for
the purposes of both classification and visualization 47. Pre-
suming that each data set is a realization of an underlying
probability density, and each of those densities lies on a
manifold with some natural parameterization, then this
embedding can be viewed as an embedding of the actual
manifold into Euclidean space. Note that in line 5 below,
embed(G; d) 47 refers to using any multi-dimensional scaling
method (such as Isomap, cMDS, Laplacian Eigenmaps, etc)
to embed the dissimilarity matrix into a Fuclidean space with
dimension d. The method may output a d-dimensional graph
illustrating relative distances between data sets 49. It is
important to stress that the FINE method does not require any
a priori knowledge of a data set.

Fisher Information Nonparametric Embedding (FINE)

Input: Collection of data sets X = {X, X,, . .
embedding dimension d

., X, }; the desired

1: fori=1toNdo

2: Calculate p(x), the density estimate of Xi

3: end for

4: Calculate dissimilarity matrix G, where G(i; j) is the geodesic

approximation of the Fisher information distance between pi and

pJ
5: Y =mds(G; d)
Output: d-dimensional embedding of X, into Euclidean space
Y ERd ¥

Many problems of practical interest involve data sets which
are not naturally represented in Euclidean space. Due to the
curse of dimensionality it is difficult to both visualize and find
a natural separation within the data for clustering purposes.
This disclosure presents the FINE framework, which may be
used to solve both of these problems. By using methods from
information geometry, a computer can learn the manifold
from which the probability distributions governing the data
lie. Moreover the FINE framework allows a computer to find
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a low-dimensional embedding of the manifold, which allows
it to not only find the natural separation and clustering of the
data, but to also reconstruct the original manifold and display
it in a low-dimensional space.

While the embodiments presented express the use of the
Kullback-Leibler divergence as our dissimilarity measure, it
is important to stress the FINE method is not tied to it. Many
other methods of determining a ‘distance’ between probabil-
ity distributions fit within this framework. For example, when
dealing with high-dimensional, sparse data sets (such as term-
frequencies in document classification), the KL-divergence is
not an appropriate measure, due to divide-by-zero issues. In
this case, the Hellinger distance may be more representative.

The Hellinger distance is another important result of the
a-divergence is the evaluation with a=0:

DOp|lg)y=2f(VpE) V) dx,

which is called the closely related to the Hellinger distance,

1
Dy =4/ 500,

which satisfies the axioms of distance—symmetry and the
triangle inequality. The Hellinger distance is related to the
information distance in the limit by

2Dy(p.9)—=Drp.9)

as p—>q [21]. We note that the Hellinger distance is related to
the Kullback-Leibler divergence as in the limit
VRIGI)—D 4(p.a)-

The FINE framework may be applied to any real data sets
coming from unknown underlying probability distributions.
This will include document classification, internet anomaly
detection, as well as biological problems. The FINE method
can be used for a variety of different learning problems as
long as the problem can be formatted into the following
setting: large sample size data sets derived from an underly-
ing probability distribution in which the parameterization is
unknown.

Referring now to FIG. 5. Applying this framework to the
practice of cytometry, it is potentially beneficial, therefore, to
develop systems of clustering and classification of clinical
flow cytometry data 53 that utilize all dimensions of data
derived for each cell during routine clinical analysis. Apply-
ing the disclosed method 55 to clinical flow cytometry 51, the
FINE method allows observers to differentiate between two
different samples that display similar characteristics 57 when
analyzed using traditional comparison techniques. For
example, compare patients with two distinct, but immu-
nophenotypically similar forms of lymphoid leukemia,
mantle cell lymphoma (MCL) and chronic lymphocytic leu-
kemia (CLL). These diseases display similar characteristics
with respect to many expressed surface antigens, but are
distinct in their patterns of expression of two common B
lymphocyte antigens CD23 and FMC?7 (a distinct conforma-
tional epitope of the CD20 antigen). Typically, CLL is posi-
tive for expression of CD23 and negative for expression of
FMC?7, while MCL is positive for expression of FMC7 and
negative for expression of CD23. These distinctions lead to a
difference in densities between patients in each disease class,
and should show a natural clustering 59A and B.

Defining X={X,, X,, . . ., X,,} where X, is the data set
corresponding to the flow cytometer output of the i patient.
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Each patient’s blood is analyzed for 5 parameters: forward
and side light scatter, and 3 fluorescent markers (CD45,
CD23, FMC7). Hence, each data set X is 5-dimensional with
n,, elements corresponding to individual blood cells (each n,
may be different). Given that X is comprised of both patients
with CLL and patients with MCL, this example demonstrates
the performance of an embodiment of this disclosure, where
the MDS is an unsupervised classification algorithm.

In this example, the data set consists of 23 patients with
CCL and 20 patients with MCL. The set X, for each patient is
on the order of N;=5000 cells. FIG. 5 shows a 2-dimensional
embedding of 5-dimensional cytometry data sets, using
cMDS, with the Kullback-Leibler divergence set as the dis-
similarity metric. Each point in the plot 57 represents an
individual patient. Although the discussed methods perform
the dimensionality reduction and embedding in unsupervised
methods, the class labels have been provided as means of
demonstration. It should be noted that there exists a natural
separation between the different classes. As such, one can
conclude that there is a natural difference in probability dis-
tribution between the disease classes as well. Although this
specific classification has been observed through years of
clinical experience, one can quickly determine this without
any a priori knowledge, simply by utilizing Fisher-informa-
tion Non-Parametric Embedding methods.

Raw flow cytometry data for this example was generated
by analysis on a Beckman-Coulter FC-500 flow cytometer
using Beckman-Coulter CXP acquisition software (Beck-
man-Coulter, Hialeah, Fla.) and stored as list mode data in
standard fcs format. However, other flow cytometers can be
used to obtain similar results.

Referring to FIG. 6. Similarly, document classification pre-
sents a problem of high-dimensionality without an efficient
means of classification. Typically documents 61A and B are
represented as very high dimensional PDFs, and learning
algorithms suffer from the curse of dimensionality. Dimen-
sion reduction not only alleviates these concerns, but it also
reduces the computational complexity of learning algorithms
due to the resultant low-dimensional space. As such, the
problem of document classification is an interesting applica-
tion for FINE.

Given a collection of documents of known class 61A, one
may wish to best classify documents of unknown class 61B.
A document can be viewed as a realization of some overriding
probability distribution 63, in which different distributions
will create different documents. For example, in a newsgroup
about computers one could expect to see multiple instances of
the term “laptop™, while a group discussing recreation may
see many occurrences of “sports”. The counts of “laptop” in
the recreation group, or “sports” in the computer group would
predictably be low. As such, the distributions between articles
in computers and recreation should be distinct. In this setting,
one may define the PDF's as the term frequency representation
of each document. Specifically, let x, be the number of times
term i appears in a specific document. The PDF of that docu-
ment can then be characterized as the multinomial distribu-
tion of normalized word counts, with the maximum likeli-
hood estimate provided as

X1

ﬂ’ e
i

10

plx) = (

where n is the number of words in the dictionary of interest.
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By utilizing the term frequencies as multinomial distribu-
tions, and not implementing a kernel density estimator, it will
be apparent that the FINE methods are not tied to the KDE,
but in the case of continuous densities it can be used as a
means of estimation. Additionally, the Hellinger distance
may be used to approximate the geodesic distances due to the
multinomial nature of the distribution. A dissimilarly matrix,
D, can be defined whose elements may include the geodesic
distances between each term frequency 65. The dissimilarity
matrix can then be embedded into ad-dimensional Euclidean
space 67.

The following example utilizes the well known 20 News-
groups data set, which is commonly used for testing docu-
ment classification methods. This set contains word counts
for postings on 20 separate newsgroups. This example
restricts the simulation to the 4 domains with the largest
number of sub-domains (comp.*, rec.*, sci.*, and talk.*), and
will classify each posting by its highest level domain. Spe-
cifically we are given P={p; . .. p,,} where eachp, corresponds
to a single newsgroup posting and is estimated with (10). Itis
noted that the data can be preprocessed to remove all words
that occur in 5 or less documents for the purpose of optimi-
zation

Within the classification framework in general, one can
utilize either supervised or unsupervised learning methods to
reduce dimensionality. Unsupervised methods may be used
to determine if a natural separating geometry exists between
domains. The unsupervised methods disclosed above may be
applied to the task of document classification.

By configuring FINE to use supervised methods for
embedding, one can dramatically improve classification per-
formance. By embedding with Classification Constrained
Dimensionality Reduction (CCDR), see Raich, J. A. Costa,
and A. O. Hero, “On dimensionality reduction for classifica-
tion and its applications,” in Proc. IEEE Intl. Conference on
Acoustic Speech and Signal Processing, May 2006, which is
essentially LEM with an additional tuning parameter defining
the emphasis on class labels in the embedding.

Once dimensionality has been reduced, the unknown docu-
ments can be classified based on their proximity to the clus-
ters of known documents 69. Algorithms such as linear kernel
support vector machines, and support vector machines in
general, may be implemented to choose a classification for
the unknown document once the data sets have been embed-
ded into a Euclidean space. See Hyunsoo Kim, Peg Howland,
and Haesun Park, “Dimension reduction in text classification
with support vector machines,” in Journal of Machine Learn-
ing Research 6, January 2005, pp. 37-53; and C.-C. Chang
and C.-J. Lin, LIBSVM: A library for support vector
machines, 2001.

While our focus when using a supervised FINE implemen-
tation has been on jointly embedding both the training and test
samples (while keeping the test samples unlabeled), an alter-
native embodiment implements out of sample extension
(OO0S) with FINE. In this scenario, the training samples are
embedded as normal with CCDR, while the test samples are
embedded into the low-dimensional space using interpola-
tion. This setting allows for a significant decrease in compu-
tational complexity given the fact that the FINE embedding
has already been determined for the training samples (i.e. new
test samples are received). A decrease in performance exists
when compared to the jointly embedded FINE, which is
reduced as the number of training samples increases.

In conclusion, the assumption that high-dimensional data
lies on a Fuclidean manifold is based on the ease of imple-
mentation due to the wealth of knowledge and methods based
on Euclidean space. This assumption is not viable in many
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problems of practical interest, as there is often no straightfor-
ward and meaningful Euclidean representation of the data. In
these situations it is more appropriate to assume the data is a
realization of some PDF which lies on a statistical manifold.
Using information geometry, one now has the ability to find a
low-dimensional embedding of the manifold, which allows a
user to not only find the natural separation of the data, but to
also reconstruct the original manifold and visualize it in a
low-dimensional Euclidean space. This allows the use of
many well known learning techniques which work based on
the assumption of Euclidean data.

By approximating the Fisher information distance, FINE is
able to construct the Euclidean embedding with an informa-
tion based metric, which is more appropriate for non-Euclid-
ean data. This disclosure has illustrated this approximation by
finding the length of the geodesic along the manifold, using
approximations such as the Kullback-Leibler divergence and
the Hellinger distance. The specific metric used to approxi-
mate the Fisher information distance is determined by the
problem, and FINE is not tied to any specific choice of metric.
Additionally, it is noted that that although we utilize kernel
methods to obtain PDFs, the method used for density estima-
tion is only of secondary concern. The primary focus is the
measure of dissimilarity between densities, and the method
used to calculate those PDF's is similarly determined by the
problem.

The foregoing description of the embodiments has been
provided for purposes of illustration and description. It is not
intended to be exhaustive or to limit the invention. Individual
elements or features of a particular embodiment are generally
not limited to that particular embodiment, but, where appli-
cable, are interchangeable and can be used in a selected
embodiment, even if not specifically shown or described. The
same may also be varied in many ways. Such variations are
not to be regarded as a departure from the invention, and all
such modifications are intended to be included within the
scope of the invention.

What is claimed is:

1. A computer implemented method for clustering and
visualization of an n-dimensional space in a Euclidean space,
comprising:

collecting a plurality of multi-dimensional data sets;

estimating a probability density function from each data

set;

approximating a dissimilarity between every pair of said

probability density functions and recording every dis-
similarity in a dissimilarity matrix;

embedding the dissimilarity matrix into a Euclidean space

having a dimensionality of three or less using a multi-
dimensional scaling method, where the steps of estimat-
ing, approximating and embedding are executed by a
processor of a computing device; and

graphically displaying relationships between data sets

using data in the Fuclidean space on a display of the
computing device.

2. The method of claim 1 further comprising estimating the
probability density function using a nonparametric method.

3. The method of claim 2 wherein the nonparametric
method is a kernel density estimation method.

4. The method of claim 1 further comprising approximat-
ing the dissimilarity between every pair of probability density
functions using a divergence metric.

5. The method of claim 4 wherein the divergence metric
estimates of a Fisher information distance.

6. The method of claim 5 further comprising approximat-
ing the Fisher Information Distance using a Kullback-Leibler
divergence.



US 7,853,432 B2

15

7. The method of claim 5 further comprising approximat-
ing the Fisher Information Distance using a Hellinger dis-
tance.

8. The method of claim 1 wherein the multi-dimensional
scaling method is an unsupervised multi-dimensional scaling
method.

9. The method of claim 8 wherein the multi-dimensional
scaling method is Laplacian Eigenmaps.

10. The method of claim 8 wherein the multi-dimensional
scaling method is Classical Multi Dimensional Scaling.

11. The method of claim 1 wherein a parametric method is
used to estimate the probability density functions.

12. The method of claim 11 further comprising approxi-
mating the dissimilarities between probability density func-
tions using the Fisher information distance.

13. A computer implemented method for clustering and
visualization of multicolor flow cytometry data comprising:

receiving blood samples from a plurality of patients;

analyzing the blood samples using a flow cytometer,
thereby yielding a multi-dimensional data set for each
blood sample;

estimating a probability density function for each data set

using a non parametric method;

determining a geodesic distance between each pair of prob-

ability density functions using a divergence metric to
estimate the distance;

organizing said geodesic distances in a dissimilarity

matrix;

embedding said dissimilarity matrix in a Euclidean space

using a multi-dimensional scaling method, where the
steps of estimating, determining, organizing, and
embedding are executed by a processor of a computing
device; and

graphically displaying relationships between data sets in

the Euclidean space.

14. The method of claim 13 further comprising estimating
the probability density function using a kernel density esti-
mation method.

15. The method of claim 13 further comprising determin-
ing the geodesic distance using a Kullback-Leibler diver-
gence.

16. A computer implemented method for classifying an
unknown multi-dimensional data set into a predetermined
classification based on the proximity of the unknown data set
to the clusterings of the predetermined classifications in a
reduced space, comprising:

collecting a plurality of multi-dimensional data sets of

predetermined classifications;

collecting a data set of unknown classification;

estimating a probability density function from each data
set, wherein said probability density function estimates
a model for producing the corresponding data set;

approximating a dissimilarity between every pair of said
probability density functions and recording every dis-
similarity in a dissimilarity matrix;

embedding the dissimilarity matrix into a Euclidean space
of predetermined dimensionality using a multi-dimen-
sional scaling method, wherein a cluster of data sets may
be realized for each predetermined classification, where
the steps of estimating, approximating and embedding
are executed by a processor of a computing device; and

classifying said data set of unknown classification into one
of the predetermined classifications based on the prox-
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imity of the data set of unknown classification to the
clusters of classified data sets, wherein the data set of
unknown classification is classified with the cluster of
data sets which it is in closest proximity to in the reduced
space.

17. The method of claim 16 wherein the multi-dimensional
scaling method includes a supervised learning method,
wherein a training set is used by the supervised learning
method to define an output for unknown data sets.

18. The method claim of 17 wherein the training set com-
prises at least a portion of the data sets of predetermined
classifications.

19. The method of claim 18 wherein the data set of
unknown classification is used as training data after it has
been classified.

20. The method claim of 17 wherein the supervised method
for learning is Classification Constrained Dimensionality
Reduction.

21. A computer implemented method for classifying docu-
ments of unknown classification into one of a plurality of
predetermined classifications comprising:

collecting a plurality of documents, wherein each docu-

ment is stored in an electronic format and has a prede-
termined classification;

collecting at least one document of unknown classification

and storing the document of unknown classification in
an electronic format;

defining a dictionary of interest having n entries, wherein n

is the number of words in the dictionary of interest;
determining a term frequency of each document;
approximating the geodesic distance between every pair of
term frequencies and storing said geodesic distances ina
dissimilarity matrix;

embedding said dissimilarity matrix in a d dimensional

Euclidean space, wherein d is the desired dimension;
determining a cluster in the d dimensional Euclidean space
for each predetermined classification;
comparing proximities of the document of unknown clas-
sification to the clusters of documents having predeter-
mined classifications in the d dimensional space;

determining which cluster is in the greatest proximity to
the document of unknown classification; and

classifying the document of unknown classification as the
predetermined classification of the cluster which has the
greatest proximity to the document of greatest proxim-
ity.

22. The method of claim 21 wherein the dissimilarity
matrix is embedded in a d dimensional Euclidean space using
a supervised learning technique.

23. The method of claim 22 wherein the supervised learn-
ing technique is Classification Constrained Dimensionality
Reduction.

24. The method of claim 22 wherein the documents of
known classification are used as a training set.

25. The method of claim 24 wherein the document of
unknown classification is a member of the training set once
said document has been correctly classified.

26. The method of claim 21 further comprising determin-
ing which cluster is in the greatest proximity to the document
of unknown classification using linear kernel support vector
machines.



