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Abstract

An approach that is common in the machine learning literature, known as active sensing, is applied to provide a

method for managing agile sensors in a dynamic environment. We adopt an active sensing approach to scheduling

sensors for multiple target tracking applications that combines particle filtering, predictive density estimation, and

relative entropy maximization. Specifically, the goal of the system is to learn the number and states of a group of

moving targets occupying a surveillance region. At each time step, the system computes a sensing action to take, based

on an entropy measure called the Rényi divergence. After the measurement is made, the system updates its probability

density on the number and states of the targets. This procedure repeats at each time where a sensor is available for use.

The algorithms developed here extend standard active sensing methodology to dynamically evolving objects and

continuous state spaces of high dimension. It is shown using simulated measurements on real recorded target

trajectories that this method of sensor management yields more than a ten fold gain in sensor efficiency when compared

to periodic scanning.
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1. Introduction

The problem of sensor management is to
determine the best way to task a sensor or group
of sensors when each sensor may have many
modes and search patterns. Typically, the sensors
are used to gain information about the kinematic
state (e.g. position and velocity) and identification
of a group of targets. Applications of sensor
d.
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management are often military in nature [36], but
also include things such as wireless networking [28]
and robot path planning [29]. There are many
objectives that the sensor manager may be tuned
to meet, e.g. minimization of track loss, max-
imization of probability of target detection,
minimization of track error/covariance, and max-
imization of identification accuracy. Each of these
different objectives taken alone may lead to a
different sensor allocation strategy [36,38].
Many researchers have approached the sensor

scheduling problem with a Markov decision
process (MDP) strategy. However, a complete
long-term (non-myopic) scheduling solution suf-
fers from combinatorial explosion when solving
practical problems of even moderate size. Re-
searchers have thus worked at approximate solu-
tion techniques. For example, Krishnamurthy
[26,27] uses a multi-arm bandit formulation
involving hidden Markov models. In [27], an
optimal algorithm is formulated to track multiple
targets with an electronically scanned array that
has a single steerable beam. Since the optimal
approach has prohibitive computational complex-
ity, several suboptimal approximate methods are
given and some simple numerical examples invol-
ving a small number of targets moving among a
small number of discrete states are presented. Even
with the proposed suboptimal solutions, the
problem is still very challenging numerically. In
[26], the problem is reversed, and a single target is
observed from a collection of sensors. Again,
approximate methods are formulated due to the
intractability of the globally optimal solution.
Bertsekas and Castanon [1] formulate heuristics
for the solution of a stochastic scheduling problem
corresponding to sensor scheduling. They imple-
ment a rollout algorithm based on their heuristics
to approximate the stochastic dynamic program-
ming algorithm. Additionally, Castanon [5,6]
formulates the problem of classifying a large
number of stationary objects with a multi-mode
sensor based on a combination of stochastic
dynamic programming and optimization techni-
ques. Malhotra [32] proposes using reinforcement
learning as an approximate approach to dynamic
programming. Very recently, Hernandez et al. [12]
have used posterior Cramer-Rao bounds [41] to
control the measurement sequence in a setting
similar to that studied here.
Others have proposed using information mea-

sures a means of sensor management. In the
context of Bayesian estimation, a good measure of
the quality of a sensing action is the reduction in
entropy of the posterior distribution that is
expected to be induced by the measurement.
Therefore, information theoretic methodologies
strive to take the sensing action that maximizes
the expected gain in information. The possible
sensing actions are enumerated, the expected gain
for each measurement is calculated, and the action
that yields the maximal expected gain is chosen.
Hintz et al. [15,16] focus on using the expected
change in Shannon entropy when tracking a single
target moving in one-dimension with Kalman
Filters. A related approach uses discrimination
gain based on a measure of relative entropy, the
Kullback–Leibler (KL) divergence. Schmaedeke
and Kastella [42] use the KL divergence to
determine optimal sensor-to-target tasking. Kas-
tella [21,23] uses KL divergence to manage a
sensor between tracking and identification mode in
the multitarget scenario. Mahler [30,31] uses the
KL divergence as a metric for optimal multisensor
multitarget sensor allocation. Zhao [47] compares
several approaches, including simple heuristics,
entropy, and relative entropy (KL).
Information-based adaptivity measures such as

mutual information (related to the KL divergence)
and entropy reduction are a common learning
metric that have been used in the machine learning
literature in techniques with the names ‘‘active
object recognition’’ [8], ‘‘active computer vision’’
[44], and ‘‘active sensing’’ [10]. These techniques
are iterative procedures wherein the system has the
ability to change sensor parameters to make the
learning task easier. The ultimate goal is to learn
something about the environment, e.g. the class of
an object, the orientation of a robot’s tool, robot
location.
A specific example of the role of information

theoretic measures in machine learning is the
repeated interrogation of an object to determine
the object class. Denzler et al. [8] study a situation
in which a camera has many adjustable para-
meters, including focal length, pan and tilt angles,
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and camera viewing position. They use mutual
information to determine the action (set of camera
parameters) that will maximally decrease uncer-
tainty about the object class after the measurement
is made. This set of parameters is used to acquire
the next measurement. That work considers the
case where the object comes from one of a finite
number of classes, and the state of the object does
not change throughout the experiment.
In the context of multitarget tracking, we use

information theoretic methods to learn the number
of targets present in the surveillance region as well
as their states. Unlike object recognition applica-
tions, the number and states of the targets is a
dynamic process which evolves over time. There-
fore, we utilize a target tracking algorithm to
recursively estimate the joint multitarget prob-
ability density (JMPD) for the set of targets under
surveillance. Furthermore, the target states are
continuous rather than coming from a collection
of discrete possibilities. Due to this, we use a
Monte Carlo method known as particle filtering to
represent the JMPD.
In a manner analogous to active sensing for

object recognition, at each iteration of our
algorithm we use an information measure to
decide on the optimal sensing action to make.
The decision as to how to use a sensor then
becomes one of determining which sensing action
will maximize the expected information gain
between the current JMPD and the JMPD after
a measurement has been made. In this work, we
consider a quite general information measure
called the Rényi information divergence [39] (also
known as the a-divergence), which reduces to the
KL divergence under a certain limit. The Rényi
divergence has additional flexibility in that in
allows for emphasis to be placed on specific
portions of the support of the densities to be
compared. To the best of our knowledge, this is
the first time Rényi divergence has been used in
this setting.
This paper contains two main contributions.

First, we give a particle filter (PF) multitarget
tracking algorithm that by design explicitly en-
forces the multitarget nature of the problem. Each
particle is a sample from the JMPD and thus an
estimate of the status of the system—the number
of targets in the surveillance area as well as their
individual states. Using a single particle to
represent the states of multiple targets has been
previously done in [17,37] and elsewhere. Our
method builds on the independent partition
method of [37]. We find that the PF based
multitarget tracker allows for successful tracking
in a highly non-linear non-Gaussian filtering
scenario. Furthermore, the PF implementation
allows both target tracking and sensor manage-
ment to be done in a computationally tractable
manner, primarily due to use of an adaptive
sampling scheme for particle proposal that auto-
matically factorizes the JMPD when possible. We
demonstrate the algorithm by evaluating the
sensor management scheme and tracking algo-
rithm on a surveillance area containing ten targets,
with target motion that is taken from real recorded
target trajectories from an actual military battle
simulation.
Second, we detail an active sensing approach to

sensor management where the Rényi divergence is
used as the method for estimating the utility of
taking different actions. The sensor management
algorithm uses the estimated density to predict the
utility of a measurement before tasking the sensor,
thus leading to actions which are expected to
maximally gain information. We illustrate the
efficacy of this algorithm in a scenario where
processed sensor measurements consist of detec-
tions or no-detections, which leads to a computa-
tionally efficient algorithm for tasking the sensor.
We show that this method of sensor management
yields more than a ten-fold increase in sensor
efficiency over periodic scanning in scenarios
considered.
The paper is organized as follows. In Section 2,

we give the details of the JMPD target tracking
algorithm and examine the numerical difficulties
involved in directly implementing JMPD on a grid.
In Section 3, we present our PF based implemen-
tation of JMPD. We see that this implementation
provides computational tractability, allowing rea-
listic scenarios to be considered. Our sensor
management scheme, which uses the Rényi diver-
gence as a metric, is extensively detailed in Section
4. A performance analysis of the tracker using
sensor management on two model problems of



ARTICLE IN PRESS

C. Kreucher et al. / Signal Processing 85 (2005) 607–624610
increasing realism is given in Section 5. We include
comparisons to a non-managed (periodic) scheme
and two other sensor management techniques. We
briefly illustrate the effect of non-myopic (long
term) planning in this information theoretic
context. We conclude with thoughts on future
direction in Section 6.
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Fig. 1. A scenario with three moving targets. Target paths are

indicated by lines, and direction of travel by arrows. There are

two instances where target paths cross.
2. The joint multitarget probability density

In this section, we give the details of a Bayesian
method of multitarget tracking via recursive
estimation of the JMPD. Others have studied
Bayesian methods for multitarget tracking
[2,33,45].
Mahler [11,31,35] advocates an approach to

multitarget tracking based on random sets called
‘‘finite-set statistics’’ (FISST). Since FISST and the
JMPD approach attack some of the same pro-
blems, many of the concepts that appear here, such
as multitarget motion models and multitarget
measurement models, also appear in the work of
Mahler et al. [11]. FISST is a theoretical frame-
work for unifying most techniques for reasoning
under uncertainty (e.g. Dempster Shafer, fuzzy,
Bayes, rules) in a common structure based on
random sets. JMPD can be derived in the FISST
framework and both strategies can both be traced
back to the expectation averaged maximum like-
lihood estimator (EAMLE) work of Kastella
[19–21,35]. The EAMLE work, of course, builds
on early multitarget tracking work such as
[18,34,43] and others. The JMPD technique does
not require the random set formalism of FISST; in
particular, in contrast to the random set approach
the JMPD technique adopts the view that like-
lihoods and the JMPD are conventional Bayesian
objects to be manipulated by the usual rules of
probability and statistics. Therefore, the JMPD
approach described here makes no appeal to
random sets or related concepts such as Radon–-
Nikodym derivatives.
The concept of JMPD was discussed in [21,35],

where a method of tracking multiple targets
that moved between discrete cells on a line
was presented. We generalize the discussion here
to deal with targets that have N-dimensional
continuous valued state vectors and arbitrary
kinematics. In the model problems, we are
interested in tracking the position ðx; yÞ and
velocity ð _x; _yÞ of multiple targets and so we
describe each target by the four-dimensional state
vector ½x; _x; y; _y�0: A simple schematic showing
three targets (Targets A, B, and C) moving
through a surveillance area is given in Fig. 1.
There are two target crossings, a challenging
scenario for multitarget trackers.
JMPD provides a means for tracking an

unknown number of targets in a Bayesian setting.
The statistics model uses the joint multitarget
conditional probability density pðxk

1 ;x
k
2 ; . . . ;x

k
T�1;

xk
T ;T

kjZkÞ as the probability density for exactly T

targets with states xk
1 ;x

k
2 ; . . . ; x

k
T�1;x

k
T at time k

based on a set of observations Zk: The number of
targets T is to be estimated simultaneously with
the states of the T targets. The observation set Zk

is the collection of measurements up to and
including time k, i.e. Zk ¼ fz1; z2; . . . ; zkg; where
each zi may be a single measurement or a vector of
measurements made at time i.
Each of the state vectors xi in the density

pðxk
1 ;x

k
2 ; . . . ;x

k
T�1; x

k
T ;T

kjZkÞ is a vector quantity
and may (for example) be of the form ½x; _x; y; _y�0:
We refer to each of the T target state vectors
xk
1 ; x

k
2 ; . . . ;x

k
T�1; x

k
T as a partition of the multi-

target state X: For convenience, the density will be
written more compactly in the traditional manner
as pðXk;TkjZkÞ; which implies that the state-vector
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X represents a variable number of targets each
possessing their own state vector. As an illustra-
tion, some examples illustrating the sample space
of p are
pð;;T ¼ 0jZÞ;
 posterior probability
density for no targets in
surveillance area,
pðx1;T ¼ 1jZÞ;
 posterior probability
density for 1 target with
state x1;
pðx1; x2;T ¼ 2jZÞ;
 posterior probability
density for 2 targets with
states x1 and x2;
pðx1; x2; x3;T ¼ 3jZÞ;
 posterior probability
density for 3 targets with
states x1; x2 and x3:
We have suppressed the time superscript k

everywhere for notational simplicity. We will do
this whenever time is not relevant to the discussion
at hand.
The JMPD is symmetric under permutation of

the target indices. This symmetry is a fundamental
property of the JMPD and not related to any
assumptions on the indistinguishability of targets.
The multitarget state X ¼ ½x1;x2� and X ¼ ½x2;x1�
refer to the same event, namely there are two
targets—one with state x1 and one with state x2:
This is true regardless of the makeup of the single
target state vector. For example, the single target
state vector may include target ID or even a target
serial number and the permutation symmetry
remains. This issue arises in many other contexts,
including Bayesian analysis of mixtures with an
unknown number of components [40]. Therefore,
all algorithms designed to implement the JMPD
(and algorithms that implement the active sensing
based sensor management) are permutation invar-
iant. Proper treatment of this permutation sym-
metry has a significant impact on how to
implement particle sampling schemes, as described
in the Appendix A.
If the targets are widely separated in the sensor’s

measurement space, each target’s measurements
can be uniquely associated with it, and the joint
density factorizes. In this case, the problem may be
treated as a collection of single target trackers. The
characterizing feature of multitarget tracking is
that in general some measurements have ambig-
uous associations, and therefore the conditional
density does not factorize into a product of single
target densities.
The temporal update of the posterior on this

density proceeds according to the usual rules of
Bayesian filtering. Given a model of how the
JMPD evolves over time pðXk;TkjXk�1;Tk�1Þ; we
may compute the time-updated or prediction
density via

pðXk;TkjZk�1Þ

¼
X1

Tk�1¼0

Z
dXk�1pðXk;TkjXk�1;Tk�1Þ


pðXk�1;Tk�1jZk�1Þ ð1Þ

pðXk;TkjZk�1Þ is referred to as the prior or
prediction density at time k, as it is the density at
time k conditioned on measurements up to and
including time k � 1: This model describes how the
state of the system ðX;TÞ which includes both the
kinematic states of the individual targets and the
number of targets evolves with time. Therefore,
the time evolution of the JMPD may be a
collection of target kinematic models or may also
involve target birth and death. In the case where
target identity is part of the state being estimated,
different kinematic models may be used for
different target types.
Given a model of the sensor, pðzkjXk;TkÞ; and

assuming conditional independence of the mea-
surements given the state, Bayes’ rule is used to
update the posterior density as new measurements
zk arrive via

pðXk;TkjZkÞ ¼
pðzkjXk;TkÞpðXk;TkjZk�1Þ

pðzkjZk�1Þ
(2)

pðXk;TkjZkÞ is referred to as the posterior as it is
the density at time k conditioned on all measure-
ments up to and including time k. The sensor
model pðzkjXk;TkÞ describes how measurements
couple to the system state (both the number of
targets and their individual states). This formula-
tion allows JMPD to avoid altogether the problem
of measurement to track association. There is no
need to identify which target is associated with
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which measurement because the Bayesian frame-
work keeps track of the entire joint multitarget
density.
In practice, the sample space of Xk is very large.

It contains all possible configurations of state
vectors xi for all possible values of T. The
implementation given by Kastella [22] approxi-
mated the density by discretizing on a grid. It was
found that the computational burden in this
scenario makes evaluating realistic problems in-
tractable, even when using the simple model of
targets moving between discrete locations in one-
dimension. In fact, the number grid cells needed
grow as LocationsTargets; where Locations is the
number of discrete locations the targets may
occupy and Targets is the number of targets.
Thus, we need a method for approximating the
JMPD that yields more tractable computations. In
the next section, we show that the Monte Carlo
methods collectively known as particle filtering
break this computational barrier.
3. The particle filter implementation of JMPD

A PF implementation of JMPD allows us to
investigate more realistic problems. Other authors
[17,46] have investigated using PF algorithms to
approximate a multi-object density in the context
of computer vision. The PF implementation we
use is an extension of that given by Orton [37].
The similarities and differences are detailed in
Appendix A. In particular, the algorithm we
present here introduces an adaptive sampling
scheme that substantially increases the efficiency
of particles so as to allow tracking of large
numbers of objects with a relatively few number
of particles. A more detailed description of our
algorithm is given in [24,25].
To implement JMPD via a PF, we approximate

pðX;T jZÞ by a set of Npart weighted samples
(particles). Let the multitarget state vector be
written X ¼ ½x1;x2; . . . ;xT�1;xT � and be defined
for all T, T ¼ 0; . . . ;1: Next, let the particle state
vector be written Xp ¼ ½xp;1;xp;2; . . . ;xp;Tp

� where
Tp is the estimate particle p has for the number of
targets in the region. Letting dD denote the Dirac
delta where it is understood that it is defined on the
domain of its argument (i.e. finite dimensional real
or complex vector), we define

dðX� XpÞ ¼
0 TaTp;

dDðX� XpÞ otherwise:

(
(3)

Then the PF approximation to the JMPD is
given by

pðX;T jZÞ �
XNpart

p¼1

wpdðX� XpÞ: (4)

Different particles in the approximation may have
different estimates target number, Tp: In practice,
the maximum number of targets a particle may
track is truncated at some large finite number
Tmax:
Particle filtering is a method of approximately

solving the prediction and update equations by
simulation [9]. Samples are used to represent the
density and to propagate it through time. The
prediction equation (Eq. (1)) is implemented by
proposing new particles from the existing set of
particles using a model of state dynamics and the
measurements. The update equation (Eq. (2)) is
implemented by assigning a weight to each of the
particles that have been proposed using the
measurements and the model of state dynamics.
This method differs from other PF algorithms

where a single particle corresponds to a single
target, as it explicitly enforces the multitarget
nature of the problem by encoding in each particle
an estimate of the number of targets and the states
of those targets. The permutation symmetry
discussed in Section 2 is inherited by the PF. Each
particle contains many partitions (the estimate of
target number) and the permutation symmetry of
JMPD is visible through the fact that the relative
ordering of targets may change from particle to
particle. Algorithms for particle proposal, sensor
management and estimation of target parameters
must all be permutation invariant.
Representing the full joint density rather than

merely a factorized version provides the advantage
that correlations between targets are explicitly
modelled. However, due to the dramatic increase
in dimensionality, a simplistic implementation
leads to greatly increased computational burden.
The key to tractability of the PF algorithm
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presented here is an adaptive sampling scheme for
particle proposal that automatically factorizes the
JMPD when targets or groups of targets are acting
independently from the others (i.e. when there is
no measurement to target association ambiguity),
while maintaining the couplings when necessary.
Estimating the multitarget states from the PF

representation of JMPD is done in a way that is
invariant to particle permutation. Before estimat-
ing target states, we permute the particles so that
each of the particles has the targets in the same
order. We use the K-means algorithm to cluster
the partitions of each particle, where the optimiza-
tion is done across permutations of the particles.
In practice, this is a very light computational
burden. First, those partitions that are not coupled
(see Appendix A) are already correctly ordered
and are not included in the clustering procedure.
Second, since this ordering occurs at each time
step, those partitions that are coupled are nearly
ordered already, so one iteration of the K-means
algorithm is enough to find the best permutation.
4. An active sensing approach to sensor

management

The goal of the multitarget tracker is to learn the
number and states of a set of targets in a
surveillance region. This goal is to be obtained as
quickly and accurately as possible by using the
sensor in the best manner possible. A good measure
of the quality of each sensing action is the reduction
in entropy of the posterior distribution expected to
be induced by the measurement. Therefore, at each
instance when a sensor is available, we use a
divergence based method to compute the best
action to take. This is done by first enumerating
all possible sensing actions. A sensing action may
consist of choosing a particular mode (e.g. SAR
mode or GMTI mode), a particular dwell point/
pointing angle, or a combination of the two. Next,
the expected information gain is calculated for each
of the possible actions, and the action that yields
the maximum expected information gain is taken.
The measurement received is used to update the
JMPD, which is in turn used to determine the next
measurement to make.
The calculation of information gain between
two densities f 1 and f 0 is done using the Rényi
information divergence [14,39], also known as the
a-divergence:

Daðf 1jjf 0Þ ¼
1

a� 1
ln

Z
f a
1ðxÞf

1�a
0 ðxÞdx: (5)

The adoption of the Rényi divergence as a sensor
scheduling criterion can be motivated by universal
hypothesis testing results of large deviation theory
[4,7]. Specifically, consider the problem of testing
between the hypotheses

H0 : pðXk;TkjZkÞ ¼ pðXk;TkjZk�1Þ;

H1 : pðXk;TkjZkÞapðXk;TkjZk�1Þ ð6Þ

based on an i.i.d. sample fXk
ðjÞg

n
j¼1 from the

posterior pðXk;TkjZkÞ; e.g., as generated by the
PF algorithm described above. H1 is the hypoth-
esis that the new measurement has changed the
target state density, while H0 is the hypothesis that
the new measurement has not changed the target
state density. The performance of any test of H0

versus H1 is specified by its receiver operating
characteristic ðan;bnÞ where we have defined the
false alarm probability an ¼ pðdecide H1jH0Þ and
the miss probability bn ¼ pðdecide H0jH1Þ: If the
true posterior distribution under H1 were known,
the Neyman–Pearson likelihood ratio test, para-
meterized by a decision threshold g; is optimal in
the sense of achieving minimum bn for any
specified level an (determined by g). Under broad
assumptions, for large n the error rates of the
optimal test satisfy Theorem 3.4.3 in [7]:

1

n
log an � � sup

a2½0;1�
ag� ð1� aÞDaðp1kp0Þ

� �
; (7)

1

n
log bn � � sup

a2½0;1�
f�ag� ð1� aÞDaðp0kp1Þg: (8)

where p0 and p1 denote the posterior pðXk;TkjZkÞ

under H0 and H1; respectively.
In particular, if one selects g ¼ 0 then the two

error rate exponents (right sides of Eqs. (7) and
(8)) are identically �ð1� a�ÞDa� ðp1kp0Þ for some
a� 2 ½0; 1�: Thus the Rényi a-divergence specifies
the error exponents of the Neyman–Pearson
optimal test.
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For the composite hypotheses (Eq. (6)) the
generalized likelihood ratio test (GLRT) of H0

versus H1 is asymptotically (large n) optimal and
can be implemented by thresholding an empirical
estimate of the error rate exponent (Eq. (7)) to
achieve a specified level of false alarm an (Theorem
7.1.3 in [7]). This lends strong theoretical justifica-
tion for using the Rényi divergence sensor selec-
tion criterion proposed in this paper.
Returning to Eq. (5), we note that the a

parameter may be used to adjust how heavily
one emphasizes the tails of the two distributions f 1
and f 0: In the limiting case of a! 1 the Rényi
divergence becomes the commonly utilized (KL)
discrimination (9).

lim
a!1

Daðf 1jjf 0Þ ¼

Z
f 0ðxÞ ln

f 0ðxÞ

f 1ðxÞ
dx: (9)

In the case that a ¼ 0:5; the Rényi information
divergence is related to the Hellinger–Battacharya
distance squared [13]

dH ðf 1; f 0Þ ¼
1

2

Z ffiffiffiffiffiffiffiffiffiffiffi
f 1ðxÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffi
f 0ðxÞ

p� 	2
dx: (10)

The function Da in Eq. (5) is a measure of the
divergence between the densities f 0 and f 1: In our
application, we are interested in computing the
divergence between the predicted density
pðXk;TkjZk�1Þ and the updated density after a
measurement is made, pðXk;TkjZkÞ: Therefore,
we write

Daðpð�jZ
kÞjjpð�jZk�1ÞÞ

¼
1

a� 1
ln

X1
Tk¼0

Z
dXkpðXk;TkjZkÞ

a


pðXk;TkjZk�1Þ
1�a; ð11Þ

which implies that the JMPD must be integrated
over all possible (discrete) target numbers T and
all possible configurations of T targets.
After algebra and incorporation of Bayes’ rule,

Eq. (11) can be simplified to

Daðpð�jZ
kÞjjpð�jZk�1ÞÞ

¼
1

a� 1
ln

1

pðzjZk�1Þ
a

X
pðXk;TkjZk�1Þ


pðzjXk;TkÞ
a: ð12Þ
The integral reduces to a summation since any
discrete approximation of pðXk;TkjZk�1Þ only has
non-zero probability at a finite number of target
states. In the PF case, the approximation consists
of only a set of samples and associated weights
from the density. In the special case where
the positions of the particles in both sets are
identical (which they are in this application since
the two densities differ only in that one has been
measurement updated and one has not) it is
possible to compute the divergence by straightfor-
ward calculation.
The particle approximation of the density

(Eq. (4)) reduces Eq. (12) to

Daðpð�jZ
kÞjjpð�jZk�1ÞÞ

¼
1

a� 1
ln

1

pðzÞa

XNpart

p¼1

wppðzjXpÞ
a; ð13Þ

where pðzÞ ¼
PNpart

p¼1 wppðzjXpÞ:
We note here that the sensor model pðzjXpÞ is

used to incorporate everything known about the
sensor, including signal to noise ratio, detection
probabilities, and even whether the locations
represented by Xp are visible to the sensor.
We want to perform the measurement that

makes the divergence between the current
density and the density after a new measure-
ment as large as possible. This indicates that
the sensing action has maximally increased
the information content of the measurement
updated density, pðXk;TkjZkÞ; with respect to
the density before a measurement was made,
pðXk;TkjZk�1Þ:
We propose as a method of sensor manage-

ment calculating the expected value of Eq. (13)
for each of the M possible sensing actions and
choosing the action that maximizes the expec-
tation. In this notation m ðm ¼ 1; . . . ;MÞ will
refer to a sensing action under considera-
tion, including but not limited to sensor mode
selection and sensor beam positioning. In this
manner, we say that we are making the measure-
ment that maximizes the expected gain in infor-
mation.
The expected value of Eq. (13) may be written as

an integral over all possible outcomes zm when
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Table 1

The sensor management algorithm

(1) Generate particles representing pðXk ;TkjZk�1Þ by

proposing particles representing pðXk�1;Tk�1jZk�1Þ

forward via the kinematic prior.

(2) Compute the expected gain in information for each possible

sensing action (i.e. evaluate Eq. (17) using the particles

generated in step (1) for all m).

(3) Use particles representing pðXk�1;Tk�1jZk�1Þ and zk to

propose a new set of particles representing pðXk ;TkjZkÞ:
(The method of sampling is briefly described in the

Appendix—see [24,25] for complete details)

(a) Segment targets into coupled and independent

partitions

(b) Propose all partitions forward using the

measurements

(c) Weight particles appropriately (via Bayes’ rule)

(4) set k k þ 1; and go to step (1)
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performing sensing action m:

/DaSm ¼

Z
dzpðzjZk�1;mÞDaðpð�jZ

kÞjjpð�jZk�1ÞÞ:

(14)

In the special case where measurements are
thresholded (binary) and are therefore either
detections or no-detections, the integral reduces to

/DaSm ¼ pðz ¼ 0jZk�1ÞDajm;z¼0

þ pðz ¼ 1jZk�1ÞDajm;z¼1; ð15Þ

which, using Eq. (13) results in

/DaSm ¼
1

a� 1

X1
z¼0

pðzÞ ln
1

pðzÞa

XNpart

p¼1

wppðzjXpÞ
a:

(16)

Computationally, Eq. (16) is calculated for M

possible sensing actions in OðMNpartÞ: Notice the
sensor management algorithm is permutation
invariant as it only depends on the likelihood of
the measurements given the particles.
We have specialized to the case where measure-

ments are thresholded, but make the following
comments about extension to more complicated
scenarios. It is straightforward to extend the
binary case to a situation where the measurement
z may take on one of a finite number of values.
This would be relevant in a situation where, for
example, raw sensor returns are passed through an
automatic target recognition algorithm and trans-
lated into target identifications that come from a
discrete set of possibilities. When z is continuous
the integral of Eq. (14) is in principle very
challenging to evaluate. However, we have found
that quantizing z using an algorithm such as LGB
and then calculating the sensor management
actions assuming a discrete set of possible out-
comes results in very little degradation in tracking
performance.
In summary, our sensor management algorithm

proceeds as follows. At each occasion where a
sensing action is to be made, we evaluate the
expected information gain as given by Eq. (16) for
each possible sensing action m. We then perform
the sensing action that gives maximal expected
information gain. The measurement made is fed
back into the JMPD via Bayes’ rule. The complete
particle filtering and sensor management algo-
rithm is outlined in Table 1.

4.1. On the value of a in the Rényi divergence

The Rényi divergence has been used in many
diverse applications, including content-based im-
age retrieval, image georegistration, and target
detection [13,14]. These studies provide guidance
as to the optimal choice of a:
In the georegistration problem [14] it was

empirically determined that the value of a leading
to highest resolution clusters around either a ¼ 1
or a ¼ 0:5 corresponding to the KL divergence
and the Hellinger affinity respectively. The deter-
mining factor appears to be the degree of
differentiation between the two densities under
consideration. If the densities are very similar, i.e.
difficult to discriminate, then the indexing perfor-
mance of the Hellinger affinity distance ða ¼ 0:5Þ
was observed to be better than the KL ða ¼ 1Þ:
These results give reason to believe that either a ¼
0:5 or a ¼ 1 are good choices. We investigate the
performance of our scheme under both choices in
Section 5.
An asymptotic analysis [14] shows that a ¼ 0:5

results in maximum discriminatory ability between
two very similar densities. The value a ¼ 0:5
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provides a weighting which stresses the tails, or the
minor differences, between two distributions. In
the case where the two densities of interest are very
similar (as in our application where one is a
prediction density and one is a measurement
updated density), the salient differences are in the
regions of low probability, and therefore we
anticipate that this choice of a will yield the best
results.

4.2. Extensions to non-myopic sensor management

The sensor management algorithm proposed
here is myopic as it does not take into account
long-term ramifications when deciding the optimal
action. In some scenarios, the greedy approach
may be close to optimal. However, in scenarios
where the problem dynamics are changing in a
predictable manner, tracking performance may
benefit from non-myopic scheduling. For example,
if a target is about to become invisible to a sensor
(e.g. by passing into an area where the target to
sensor line of sight is obstructed) extra sensor
dwells should be tasked before the target disap-
pears. This will reduce uncertainty about this
target at the expense of the other targets, but is
justified because the target will be unable to be
measured at the next epoch due to obstruction.
Our ability to predict times when targets will
become invisible is of course tied to having
accurate ancillary information, such as sensor
trajectories and ground elevation maps. We
propose as a first step towards non-myopic sensor
management a Monte Carlo rollout technique like
that described by [1].
At each time a decision is to be made, we

enumerate all possible measurements and corre-
sponding expected information gains. For each
candidate measurement, we simulate making the
measurement based on our estimated JMPD,
update the density to the next time step based on
the simulated measurement, and compute the
actual information gain received under this simu-
lated measurement. We then compute the expected
gains of all possible measurements at the new time,
and the actual gain received plus the maximum
expected gain at the new time give the total (two-
step) information gain for making the particular
measurement. Running this procedure many times
gives a Monte Carlo estimate of ramification of
making a particular measurement. N-step exten-
sions are straightforward, but computationally
burdensome.
5. Simulation results

In this section, we provide simulation results to
show the benefit of sensor management in the
multitarget tracking scenario. We first present a
synthetic scenario and then proceed to a more
realistic scenario using real recorded target trajec-
tories from a military battle simulation. In both
cases, we assume the sensor is limited by time,
bandwidth and other physical constraints which
only allow it to measure a subset of the surveil-
lance area at any epoch. We conclude with
preliminary results on the benefit of non-myopic
sensor scheduling.

5.1. An extensive evaluation of sensor management

performance using three simulated targets

We first illustrate the performance of the sensor
management scheme by considering the following
model problem. There are three targets moving on
a 12
 12 sensor grid. Each target is modelled
using the four-dimensional state vector ½x; _x; y; _y�0:
Target motion is simulated using a constant-
velocity (CV) model with large plant noise.
Motion for each target is independent. The
trajectories have been shifted and time delayed so
there are two times during the simulation where
targets cross paths (i.e. come within sensor
resolution).
The target kinematics assumed by the filter (Eq.

(1)) are nearly CV as in the simulation. At each
time step, a set of L (not necessarily distinct) cells
are measured. The sensor is at a fixed location
above the targets and all cells are always visible to
the sensor. When measuring a cell, the imager
returns either a 0 (no detection) or a 1 (detection)
which is governed by a probability of detection
(Pd) and a per-cell false alarm rate (Pf ). The signal
to noise ratio (SNR) links these values together. In
this illustration, we take Pd ¼ 0:5; and Pf ¼
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P
ð1þSNRÞ
d ; which is a standard model for thre-

sholded detection of Rayleigh returns [3]. When
there are T targets in the same cell, the detection
probability increases according to PdðTÞ ¼

P
ð1þSNRÞ=ð1þT�SNRÞ
d : This model is known by the

filter and used to evaluate pðzjX;TÞ in Eq. (2).
Specifically, the likelihood of a measurement z in
cell c under hypothesis X is evaluated by first
determining the number of targets T that X

predicts are in cell c, and then using

pðzjXÞ ¼
PdðTÞ z ¼ 1;

1� PdðTÞ z ¼ 0:

(

The filter uses 500 particles and is initialized with
10% of the particles in the correct state (both
number of targets and kinematic state). The rest of
the particles are uniformly distributed in both the
number of targets and kinematic state.
We contrast the performance of the tracker

when the sensor uses a non-managed (periodic)
scheme with the performance when the sensor uses
the divergence based scheme presented in Section
4. The periodic scheme measures each cell in
sequence. At time 1, cells 1; . . . ;L are measured. At
time 2, cells Lþ 1; . . . ; 2L are measured. This
sequence continues until all cells have been
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Fig. 2. Comparison of managed and non-managed tracking. (L) Usin

marked with an asterisk, the covariance of the filter estimate is given

times each cell has been measured at this time step (the total number of

twelfth of the region is scanned at each time step starting at the bottom

indicated by the white stripe). With sensor management, measuremen
measured, at which time the scheme resets. The
managed scheme uses the expected information
divergence to calculate the best L cells to measure
at each time. This often results in the same cell
being measured several times at one time step.
Multiple measurements made in the same cell are
independent (i.e. each measurement in a target
containing cell returns a detection with probability
Pd irrespective of earlier measurement outcomes).
Fig. 2 presents a single-time snapshot, which

graphically illustrates the difference in behavior
between the two schemes.
Qualitatively, managed measurements are fo-

cused in or near the cells the targets are in.
Furthermore, covariance ellipses, which reflect the
current state of knowledge of the tracker condi-
tioned on all previous measurements, are tighter.
In fact, the non-managed scenario has confusion
about which tracks correspond to which target as
the covariance ellipses overlap.
A more detailed examination is provided in the

Monte Carlo simulation results of Fig. 3. We refer
to each cell that is measured as a ‘‘Look’’, and are
interested in empirically determining how many
looks the non-managed algorithm requires to
achieve the same performance as the managed
algorithm at a fixed number of looks. The sensor
1

X Position

Y
 P

os
iti

on

Periodic Scan

2 4 6 8 10 12

2

4

6

8

10

12

g sensor management, and (R) A periodic scheme. Targets are

by the ellipse, and grey scale is used to indicate the number of

looks is identical in each scenario). In the periodic scenario, one

and proceeding to the top before repeating (cells scanned at are

ts are used only in areas that contain targets.



ARTICLE IN PRESS

1 2 3 4 5 6 9 12 15
0

0.5

1

1.5

2

2.5

SNR

M
ed

ia
n 

E
rr

or

periodic 24 looks 
periodic 72 looks 
periodic 120 looks
periodic 216 looks
periodic 312 looks
Managed 24 looks  

Fig. 3. The median error versus signal to noise ratio (SNR).

Managed performance with 24 looks is similar to non-managed

with 312 looks.

2 3 4 5 6 9 12 15 1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

M
ed

ia
n 

E
rr

or

SNR

α = 0.99999
α = 0.5    
α = 0.1    

Fig. 4. The performance of the sensor management algorithm

with different values of a: We find that in the case where the

filter dynamics match the actual target dynamics, the algorithm

is insensitive to the choice of a:
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management algorithm was run with 24 looks (i.e.
was able to scan 24 cells at each time step) and is
compared to the non-managed scheme with 24 to
312 looks. Here we take a ¼ 0:99999 (approxi-
mately the KL divergence) in Eq. (9). It is found
that the non-managed scenario needs approxi-
mately 312 looks to equal the performance of the
managed algorithm in terms of RMS error.
Multitarget RMS position error is computed by
taking the average RMS error across all targets.
The sensor manager is approximately 13 times as
efficient as allocating the sensors without manage-
ment. This efficiency implies that in an operational
scenario target tracking could be done with an
order of magnitude fewer sensor dwells. Alterna-
tively put, more targets could be tracked with the
same number of total resources when this sensor
management strategy is employed.
To determine the sensitivity of the sensor

management algorithm to the choice of a; we test
the performance with a ¼ 0:1; a ¼ 0:5; and a � 1:
Fig. 4 shows that in this case, where the actual
target motion is very well modelled by the filter
dynamics, that the performance of the sensor
management algorithm is insensitive to the choice
of a: We generally find this to be the case when the
filter model is closely matched to the actual target
kinematics.
5.2. A comparison using ten real targets

We test the sensor management algorithm again
using a modified version of the above simulation,
which is intended to demonstrate the technique in
a scenario of increased realism. Here we have ten
targets moving in a 5000m
 5000m surveillance
area. Each target is modelled using the four-
dimensional state vector ½x; _x; y; _y�0 . Target trajec-
tories for the simulation come directly from a set
of recorded data based on GPS measurements of
vehicle positions over time collected as part of a
battle training exercise at the Army’s National
Training Center. Targets routinely come within
sensor cell resolution (i.e. cross). Therefore, there
is often measurement to track ambiguity, which is
handled automatically by JMPD since there is no
measurement to track assignment necessary. Tar-
get positions are recorded at 1 s intervals, and the
simulation duration is 1000 time steps.
The filter again assumes nearly constant velo-

city motion with large plant noise as the model
of target kinematics. However, in this case the
model is severely at odds with the actual target
behavior which contains sudden accelerations and
move-stop-move behavior. This model mismatch
adds another level of difficulty to this scenario
that was not present previously. We use 500
particles, each of which is tracking the states of
all ten targets, and therefore each particle has 40
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Table 2

Sensor management performance with different values of a

a Mean position error

(m)

Position error variance

(m)

0.1 49.57 614.01

0.5 47.28 140.25

0.99999 57.44 1955.54
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dimensions (i.e. the filter knows there are ten
targets in the region).
At each time step, an imager is able to measure

cells in the surveillance area by making measure-
ments on a grid with 100m
 100m detection cell
resolution. The sensor emulates a moving target
indicator (MTI) sensor. A real MTI sensor
measures a long narrow beam in cross range
consisting of many returns in the range direction.
Our model emulates this in that the sensor lays a
beam down on the ground that is one resolution
cell wide and ten resolution cells deep. Each time a
beam is formed, a vector of measurements (a
vector zeros and ones corresponding to non-
detections and detections) is returned, one mea-
surement for each of the ten resolution cells. In
this simulation, we refer to each beam that is laid
down as a ‘‘Look’’.
As in the previous simulation, the sensor is

at a fixed location above the targets and all
cells are always visible to the sensor. When
making a measurement, the imager returns either
a 0 (no detection) or a 1 (detection) governed
by Pd; Pf ; and SNR. In this illustration, we take
Pd ¼ 0:5; SNR ¼ 2 ð3 dBÞ; and Pf ¼ P

ð1þSNRÞ
d :

When there are T targets in the same cell,
the detection probability increases according to
PdðTÞ ¼ P

ð1þSNRÞ=ð1þT�SNRÞ
d :

We compare first the performance of the sensor
management algorithm under different values of a
in Eq. (5). This problem is more challenging then
the simulation of Section 5.1 for several reasons
(e.g. number of targets, number of target crossing
events, and model mismatch). Of particular inter-
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est is the fact that the filter motion model and
actual target kinematics do not match very well.
The asymptotic analysis performed previously (see
Section 4.1) leads us to believe that a ¼ 0:5 is the
right choice in this scenario.
In Fig. 5, we show the results of 50 Monte Carlo

trials using our sensor management technique with
a ¼ 0:1; a ¼ 0:5; and a ¼ 0:99999: The statistics
are summarized in Table 2. We find that indeed the
sensor management algorithm with a ¼ 0:5 per-
forms best here as it does not lose track on any of
the 10 targets during any of the 50 simulation runs.
We define the track to be lost when the filter error
remains above 100m after some point in time.
Both the a � 1 and a ¼ 0:1 case lose track of
targets on several occasions.
Due to the asymptotic analysis and these

empirical results, we employ a ¼ 0:5 for the rest
of the comparisons involving this scenario.
In addition to a comparison between the

divergence based sensor management algorithm
and a naive periodic scheme, we consider two
additional methods of sensor management.
Management algorithm ‘‘A’’ manages the sensor

by pointing it at or near the estimated location of
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the targets. Specifically, algorithm ‘‘A’’ performs a
gating to restrict the portion of the surveillance
area that the sensor will consider measuring. The
PF approximation of the time updated JMPD (Eq.
(1)) is used to predict the location of each target at
the current time. The set of cells considered is then
restricted to those cells containing targets plus the
surrounding cells, for a total of 9 cells in
consideration per target. The dwells are then
allocated randomly among the gated cells.
Management algorithm ‘‘B’’ tasks the sensor

based on the estimated number of targets in each
sensor cell. Specifically, the particle approximation
of the time updated JMPD is projected into sensor
space to determine the filter’s estimate of the
number of targets in each sensor cell. The cell to
measure is then selected probabilistically, favoring
cells that are estimated to contain more targets. In
the single target case, this method breaks down to
measuring the cell that is most likely to contain the
target.
We compare the performance of the various

managed strategies and the periodic scheme in
Fig. 6 by looking at RMS error versus number of
sensor dwells (‘‘looks’’). As before, multitarget
RMS error is computed by taking the average
RMS error across all targets. In all cases, the filter
10
1

10
2

10
3

10
2

10
3

Number of Looks

R
M

S
 E

rr
or

 (
m

)

Performance of Divergence Based Sensor Management

Periodic Scan
Method A
Method B
α−Divergence (α=.5)

Fig. 6. A comparison of the performance of the various

managed strategies and the periodic scheme in terms of RMS

error versus number of looks. The a-divergence strategy out

performs the other strategies, and at 35 looks performs similarly

to non-managed with 750 looks.
is initialized with the true number and states of the
targets.
Fig. 6 shows that the non-managed scenario at

750 looks is approximately the same as the
managed algorithm at 35 looks in terms of RMSE
error. We say that the sensor manager is approxi-
mately 20 times as efficient as allocating the
sensors without management. Furthermore, the
additional sensor management schemes are out-
performed by the divergence driven method.
As mentioned in Section 4, this technique

provides for an efficient algorithm computation-
ally. A combination of modestly optimized
MatLabTM code and C-code running on an off-
the-shelf 3GHz Linux machine tracks ten targets
using the sensor management algorithm in about
10% longer than real-time.

5.3. The effect of non-myopic scheduling

Finally, we give preliminary results on the
ramifications of non-myopic sensor management
on algorithm performance. We inspect a challen-
ging scenario in which the sensor is prevented from
seeing half of the region every other time step. At
even time steps, all of the targets are visible; at odd
time steps only half of the targets are visible. For
the purposes of exposition, we assume that this
pattern is fixed and known ahead of time by the
sensor manager.
The myopic (greedy) management scheme sim-

ply measures the targets whose expected informa-
tion gain is highest at the current time. This
implies that at odd time steps it will only measure
targets that are visible to the sensor, but at even
time steps will have no preference as to which
targets to measure. Intuitively, we would like the
manager to measure targets that are about to
become obscured from the sensor preferentially,
since the system must wait two time steps to have
an opportunity to revisit.
The non-myopic sensor management technique

discussed in Section 4.2 takes the dynamics of the
scene into account. When making a measurement
at even time steps it prefers to measure those
targets that will be invisible at the next time step,
because it rolls out the ramifications of its action
and determines the best action to take is to
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measure targets that are about to become obscured
since this will result in the maximum total (2-step)
information gain. We show in Fig. 7 the results of
tracking in this challenging scenario. It turns out
that it is only modestly important to be non-
myopic. Myopic sensor scheduling results in loss
of track approximately 22% of the time, while
non-myopic scheduling only loses track 11% of
the time. It is especially important to be non-
myopic around time step 150, where the dynamics
of the problem accelerate due to the speed up of
some of the targets.
6. Discussion

We have applied an approach common in the
machine learning literature, known as active
sensing, to provide a method for managing agile
sensors. The sensor management algorithm is
integrated with the target tracking algorithm in
that it uses the posterior density pðX;T jZÞ
approximated by the multitarget tracker via
particle filtering. The posterior is used in conjunc-
tion with target kinematic and sensor models to
predict which measurements will provide the most
information gain. In simulated scenarios, we find
that the tracker with sensor management gives
similar performance to the tracker without sensor
management with more than a ten-fold improve-
ment in sensor efficiency. Furthermore, the algo-
rithm outperforms simplistic sensor management
strategies that are predicated on looking at the
targets expected location.
The future direction for this work includes

expanding the information based sensor schedul-
ing to long term planning. We are currently
investigating approximation techniques and learn-
ing methods. In addition, a second possible future
direction is decentralized estimation and decision
making. In many realistic scenarios, sensor man-
agement must be accomplished over a network of
collaborating platforms with limited communica-
tion abilities.
Appendix A. Adaptive sampling for particle

proposal

Estimating the entire joint density rather than a
factorized approximation provides the advantage
that correlations between targets are modelled.
However, the dramatic increase in dimensionality
requires advanced sampling schemes to prevent
undue computational burden. We detail herein the
adaptive sampling scheme we utilize to provide
computational tractability. A more thorough
treatment of this topic is given in [24,25].
The standard method of particle proposal used

in the literature, referred to as sampling from the
kinematic prior, proposes new particles at time k

using only the particles at time k � 1 and the
model of target kinematics. This method has the
benefit that it is simple to implement and is
computationally inexpensive. However, it neither
makes use of the fact that the state vector in fact
represents many targets nor the current measure-
ments. These two considerations taken together
result in a very inefficient use of particles and
therefore require large numbers of particles to
successfully track.
To overcome these deficiencies, we have em-

ployed an alternative particle proposal technique
which biases the proposal process towards the
measurements and allows for factorization of
the target state when permissible. These strategies
propose each target in a particle separately, and
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form new particles as the combination of the
proposed partitions. Particle weighting is then
appropriately adjusted to account for this biased
sampling. In this manner, particles are herded
toward the correct location of state space. Both of
these measurement-aided techniques still rely on
the kinematic prior for proposing particles and so
all proposed particles are consistent with the
model of target kinematics.

A.1. Independent-partition (IP) method

The independent partition (IP) method given by
Orton [37] is a convenient way to propose particles
when part or all of the joint multitarget density
factorizes. When applicable, we apply the IP
method of Orton to propose new partitions
independently as follows. For a partition i, each
particle at time k � 1 has it’s ith partition
proposed via the kinematic prior and weighted
by the measurements. From this set of Npart

weighted estimates of the state of the ith target,
we select Npart samples with replacement to
form the ith partition of the particles at time k.
In the case of well separated targets, this
method allows many targets to be tracked with
the same number of particles needed to track a
single target.

A.2. Coupled partition (CP) proposal method

When targets are close together in sensor space,
the joint multitarget density does not completely
factorize. We say the corresponding partitions are
coupled, and the IP method is no longer applicable
to those partitions. In these cases we use instead a
method called coupled partitions (CP).
We apply the CP method as follows. To propose

partition i of particle p, CP proposes M possible
realizations of the future state using the kinematic
prior. The M proposed futures are then given
weights according to the current measurements
and a single representative is selected. This process
is repeated for each particle until the ith partition
for all particles has been formed. As in the IP
method, the final particle weights must be adjusted
for this biased sampling. This algorithm is a
modified version of the traditional SIR technique
that operates on partitions individually. It im-
proves tracking performance over SIR at the
expense of additional computations.
A.3. Adaptive particle proposal method

At any particular time, some of partitions are
coupled while others are independent. We use a
hybrid scheme, called the adaptive partitions (AP).
AP again considers each partition separately.
Those partitions sufficiently separated from all
other partitions are treated as independent and
proposed using IP. When targets are not suffi-
ciently distant, the CP method is used. In practice,
it has been found that using a Euclidian distance
criterion is sufficient to determine when targets are
well separated. Therefore, the AP method is
permutation independent, as it only uses IP when
target partitions are already identically ordered.
The AP method dramatically increases the

efficiency of each particle, by automatically
factorizing the state into a product of independent
and coupled partitions. In the extreme case where
all targets are well separated AP operates like a set
of single target filters. In the opposite extreme
where all targets are coupled the AP method
correctly models the correlation between targets.
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