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ABSTRACT

This paper addresses the problem of sensor scheduling for
simultaneous target detection, tracking and identification.
We consider sensors with agility in waveform and point-
ing direction. Scheduling decisions are made using an in-
formation based approach, where the merit of competing
actions is judged by the information expected to be gained
when taking the action. We focus on non-myopic schedul-
ing, where the long-term ramifications of scheduling deci-
sions are accounted for in decision making. Since an exact
non-myopic solution is computationally prohibitive, we in-
vestigate two approximate approaches: Direct approxima-
tion of Bellman’s equation and reinforcement learning. We
show via simulation that both techniques provide substan-
tial gains over myopic scheduling.

1. INTRODUCTION

The term sensor scheduling refers to the problem of deter-
mining the best way to task an agile sensor to detect, track
and identify targets. Sensor tasking often includes choosing
pointing angle, waveform, and how to direct a platform.

In this paper, we consider a situation where an agile
sensor can choose from two waveforms and also decide in
which direction to point. The first waveform simulates an
X-band radar, which has good detection performance but is
susceptible to line of sight obstructions. The second wave-
form is a high frequency (HF) band radar, which has poorer
detection ability but is unaffected by line of sight obstruc-
tions. Furthermore, due to sensor and target motion, target
visibility changes over time.

Some researchers have used information measures as
a means of sensor scheduling [1][2][3]. In the context of
Bayesian estimation, a good measure of the quality of an
action is the reduction in entropy expected to be induced by

This work was supported by the USAF Contract No. F33615-02-C-
1199, AFRL contract SPO900-96-D-0080, and ARO-DARPA MURI Grant
DAAD19-02-1-0262. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Air Force.

the measurement. Using expected information gain for sen-
sor scheduling has the desirable property that the different
goals of identification, tracking, and detection can be simul-
taneously optimized through a single metric. Therefore, a
sensor with multiple action types, some of which contribute
to identification, others to detection and others to tracking,
can be tasked by evaluating a single global metric.

Scheduling strategies may be myopic or non-myopic. In
the myopic case, sensing actions are taken so as to maxi-
mize immediate reward. Myopic methods have the advan-
tage that they are more computationally tractable than non-
myopic methods. However, they do not account for the long
term ramifications of current actions. Non-myopic methods,
on the other hand, explicitly account for the long-term ef-
fects when making current scheduling decisions. However,
an exact non-myopic solution is computationally intractable
in all but the simplest of problems.

In this paper, we investigate two approximate methods
for tractable non-myopic scheduling. Both methods rely
on information as a measure of utility. The first method,
presented in Section 3, is an approximation which replaces
the value-to-go term in Bellman’s equation with an easily
computed function of current and future information gain-
ing ability. The second method, presented in Section 4, is a
reinforcement learning strategy where a non-myopic policy
is learned from example episodes. We give a simulation re-
sult showing the merit of the two methods in Section 5 and
discuss the performance in Section 6.

2. INFORMATION THEORY FOR SCHEDULING

In this section, we describe how information theory is used
for myopic sensor scheduling. We extend the framework to
non-myopic scheduling in Sections 3 and 4.

Information theory for sensor scheduling requires a prob-
ability density which captures uncertainty in the current state
estimate. In our situation, uncertainty arises in the number
of targets, their kinematic states and identification. The rel-
evant density is known as the joint multitarget probability
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density (JMPD) [1] and is defined as

p(x1
t ,x

2
t , ...x

T−1
t ,xT

t , Tt|Zt) , (1)

which is the probability for T targets with states x1, · · · ,xT

at time t based on the observations Zt. Each xi in the JMPD
is a vector quantity and may (for example) be of the form
[x, ẋ, y, ẏ, id]′. For convenience, the density will be written
compactly as p(Xt, Tt|Zt). The JMPD is estimated using a
sophisticated multitarget particle filtering scheme [4].

Uncertainty in the JMPD drives sensor scheduling de-
cisions. To schedule a sensor, we enumerate all possible
sensing actions (e.g. sensor modes and sensor pointing di-
rections) and calculate the expected gain in information as-
sociated with each possible action. The calculation of infor-
mation gain between two densities f1 and f0 is done using
the Rényi information divergence [5],

Dα(f1||f0) =
1

α − 1
ln

∫
fα
1 (x)f1−α

0 (x)dx . (2)

In this work, we use α = 0.5. We are interested in com-
puting the divergence between the predicted density and the
updated density [6]. A particle filter approximation of the
densities with particles Xp and weights wp, p = 1 · · ·n,
simplifies (2) to

Dα (p(·|Zt+1)||p(·|Zt)) ∝ ln
−1

p(z)α

n∑
p=1

wpp(z|Xp)α (3)

We’d like to choose the action that maximizes divergence
between the current density and the density after a new mea-
surement. However, we do not know the outcome until after
the action is taken. Therefore, we instead use the condi-
tional mean estimate of divergence, i.e. choose to take the
action m that maximizes the expected gain in information:

∫
z

dzp(z|Zt,m)Dα (p(·|Zt+1)||p(·|Zt)) . (4)

3. APPROXIMATION TO BELLMAN’S EQUATION

The optimal non-myopic method for scheduling a sensor is
given by Bellman’s equation, which recursively gives the
value of being in state s at time k (the value function),

Vk(s) = max
m

{E[c(s, m)] + γEs′ [Vk+1(s′)|s,m]} . (5)

The state is denoted s and the reward for taking action
m in s is c(s,m). γ is a weight factor used to emphasize
future rewards less than current rewards, and Es′ indicates
the expectation is taken with respect to the future state s′.
The state is described by the JMPD, the models of target
and sensor kinematics and any ancillary information (e.g.

visibility maps or terrain elevation maps). The immediate
reward is given by the gain in information as measured by
the Rényi Divergence. This leads to a policy that chooses

m̂ = arg max
m

{E[c(s,m)] + γEs′ [Vk+1(s′)|s,m]} . (6)

Solving (6) is intractable for all but the simplest prob-
lems. We therefore advocate a method which approximates
the value-to-go term, Es′ [Vk+1(s′)], by a function N(s,m)
which captures the long term value of an action and is easily
computable. Specifically, we use a policy that selects

m̂ = arg max
m

{E[c(s, m)] + γN(s,m)} . (7)

In this work, use as N(s,m) the “gain in information
for waiting”. This approximation to the long term value
function is based on the information theoretic framework of
Section 2, and provides a method using long-term effects to
influence the selection of current actions.

Specifically, let ḡk
m denote the expected myopic gain

when taking action m at time k. Furthermore, let pk
m(·)

denote the distribution of myopic gains when taking action
m at time k. Then we approximate the long-term value of
taking action m by the gain (loss) in information received
by waiting until a future time step to take the action,

N(s,m) ≈
J∑

j=1

γjsgn
(
ḡk

m − ḡk+j
m

)
Dα

(
pk

m(·)||pk+j
m (·)) (8)

where J is the horizon length.
Each term in the summand has two components. First,

sgn
(
ḡk

m − ḡk+m
m

)
signifies if the expected information gain

in the future is more or less than the present. A negative
value implies that the future is better and that the action
ought to be discouraged at present. A positive value im-
plies that the future is worse and that the action ought to be
encouraged. The second term, Dα

(
pk

m(·)||pk+j
m (·)), mea-

sures the Rényi divergence between the density on current
myopic gains and future myopic gains. A small number im-
plies the two are very similar and therefore the non-myopic
term will have little impact on the decision making.

In the situation where sensor to target visibility changes
with time, this approximation encourages the sensor to pref-
erentially look at areas of the surveillance region that will
become obscured in the near future.

To completely specify the technique advocated here, we
introduce a weighting w which gives relative precedence to
the non-myopic and myopic terms in the approximation to
Bellman’s equation, i.e. we schedule a sensor by choosing

m̂ =c(s, m)+

w

J∑
j=1

γjsgn
(
ḡk

m − ḡk+j
m

)
Dα

(
pk

m(·)||pk+j
m (·)) (9)
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As w → 0 the technique schedules myopically, and as
w → ∞ the technique considers only the future. An appro-
priate choice for w balances the present and the future.

4. REINFORCEMENT LEARNING

An alternate approach to solving (5) is a technique known
as reinforcement learning (RL). Rather than attempting to
explicitly evaluate the value function (either by direct com-
putation or approximation as in Section 3), the RL approach
learns the value function through a large set training episodes.
Specifically, we define the Q-function as

Q(s,m) = E[c(s,m)] + E[γV (s′)|s,m] . (10)

Given the Q-function, optimal actions can be computed
according to m̂ = arg maxm Q(s,m).

The Q-function is estimated from multiple example tra-
jectories of the process. Assume first that both the number
of states and actions are finite. Then there is a lookup table
representation of Q(s, m). In this case, given an arbitrary
initial value of Q(s,m), the one-step Q-learning algorithm
is given by the repeated application of the update equation

Q(s,m) ← (1 − β)Q(s,m)

+ β
(
r + γ max

m′
Q(s′,m′)

)
(11)

where the 4-tuples {s,m, s′, r} are incurred during training,
and β is the learning rate. Under certain exploration condi-
tions, the algorithm converges to the optimal Q function [7].

Unfortunately, in most realistic problems it is infeasible
to represent the Q-function in a lookup table, because the
number of states is too large or because the state space is
continuous. Therefore, function approximation is required.
The simplest class of Q-function approximators are linear
combinations of basis functions (also called features), i.e.

Q(s,m) = θT
mφ(s) , (12)

where φ(s) is a feature vector associated with s and θm,m =
1 · · ·M is to be estimated, i.e., the training data is used to
learn the best approximation to Q(s,m) among all linear
combinations of the features. Gradient descent is used with
the training data to update the estimate of θm, i.e.

θm ← θm+β
(
r + β max

m′
Q(s′, m′) − Q(s, m)

)
∇Q(s,m)

where the gradient is given by ∇Q(s,m) = φ(s). Once
learning of θ is completed, optimal actions can be computed
according to m̂ = arg maxm θT

mφ(s).
The features that constitute φ are selected in accordance

with our information theoretic paradigm. The JMPD is used
along with kinematic and measurement models to compute
the expected gain in information for each possible sensing
action. This fixed dimension feature vector is then used to
characterize the state in the Q-learning algorithm.

5. SIMULATION RESULT

We consider a problem where we wish to detect and track a
ground target by choosing the best waveform and pointing
direction. The sensor has two possible waveforms. The first
corresponds to an X-band radar and provides good sensing
capabilities but is affected by line of sight obscuration. The
second is an HF radar and provides poorer capabilities but
is unaffected by visibility constraints. At each time step, the
sensor can measure exactly one cell with one waveform to
determine the presence or absence of a target. Each wave-
form choice is characterized by a Pd and Pf which give the
correct detection probability and the false alarm probability,
respectively. The simulation is illustrated in Figure 1.

Fig. 1. An illustration of the model problem. A moving
sensor is to best choose the waveform and pointing direction
to detect and track a ground target. Visibility between the
sensor and ground affects one waveform but not the other.

The sensor is moving, so line of sight between the sensor
and detection cells is time varying. Coupled with terrain
elevation, this makes the ability of the sensor to see a cell
change with time. Therefore, scheduling will benefit from
non-myopic decisions, specifically those that encourage the
sensor to measure cells that are about to become obscured.
A myopic strategy makes tasking decisions based only on
immediate reward. In particular, at the first time step all
visible cells are equally desirable. A non-myopic strategy
favors interrogating cells that will soon become obscured to
the sensor. In the present situation where sensor motion may
make portions of the region invisible for extended portions
of time, non-myopic scheduling becomes critical.

Figures 2 and 3 compare the performance of the value-
to-go approximation and the RL method with myopic and
random strategies. For each simulation, the target is placed
randomly in the surveillance area and the filter is initialized
with complete uncertainty in target position. The strategies
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select waveform and pointing direction for a 25s vignette to
best detect and track the target. Performance is measured in
terms of mean tracking error over the episodes.
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Fig. 2. Performance of the approximate policies in terms of
tracking error. Shown for the purposes of comparison is the
error for a purely random sensor allocation strategy and the
information based myopic strategy.

6. DISCUSSION AND CONCLUSION

The simulation result shows the approximate non-myopic
strategies outperform myopic and random policies. In par-
ticular, targets are localized significantly faster.

There are benefits and drawbacks to each strategy. RL
requires feature extraction which may not be obvious in
all settings. Afterwards, Q-learning is a turn-key solution
which often provides good results. Once the Q-function is
learned, scheduling is done nearly as fast as myopic schedul-
ing. However, learning the Q-function is a time consuming
process. Furthermore, policies learned off-line may not per-
form well in scenarios dissimilar to the training scenario.

The value-go-approximation requires design of approx-
imating function. The function given here is not applicable
to all scenarios but is valuable in a number of common situ-
ations. This method has complexity linear in horizon length,
and so it is nearly as tractable as the myopic scheme.
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