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Abstract

This paper considers the problem of sensor scheduling for the purposes of detection and
of “smart” targets. Smart targets are targets that can detect when they are under surveilla
react in a manner that makes future surveillance more difficult. We take a reinforcement le
approach to adaptively schedule a multi-modality sensor so as to most quickly and effectively
the presence of smart targets and track them as they travel through a surveillance region. An
scheduling strategy, which would simultaneously address the issue of target detection and t
is very challenging computationally. To avoid this difficulty, we use a two stage approach
targets are first detected and then handed off to a tracking algorithm. We investigate algo
capable of choosing whether to use the active or passive mode of an agile sensor. The activ
is easily detected by the target, which makes the target prefer to move into hide mode. The
mode is nearly undetectable to the target. However, the active mode has substantially better d
and tracking capabilities then the passive mode. Using this setup, we characterize the ad
of a non-myopic policy with respect to myopic and random polices for multitarget detection
tracking.
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1. Introduction

The problem of sensor scheduling is to determine the best way to task a sensor o
of sensors when each sensor may have many modes and search patterns. Tasking
may include such choices as where to point, what mode to use, and what signal to
mit. In general, sensors must balance complex tradeoffs between competing mission
e.g., detection of new targets, tracking of existing targets, and identification of ex
targets.

An optimal sensor scheduling algorithm will depend on the posterior distributio
the system state conditioned on sensor measurements. In our application, the syst
describes probabilistically both the uncertainty in number of targets and locations
individual targets. In principle, one could derive an optimal scheduling algorithm th
multaneously treats detection of new targets and tracking of existing targets by de
an appropriate global reward. However, in practice, this is very difficult due to com
tional considerations. To combat this challenge, in this paper we take a modular ap
and treat the problem in two stages—target detection followed by target tracking
suboptimal algorithm can be viewed as an approximation to an optimal algorithm w
simultaneously considers detection and tracking.

Sensor scheduling is complicated substantially when targets under surveillance a
to detect and respond to sensing activities (so called “smart” targets). In this paper, w
sider such a scenario. Specifically, we investigate the situation where a sensor is c
with detecting and tracking a group of moving ground targets and the targets ha
ability to detect some of the surveillance actions and respond by concealing their w
abouts.

Operationally, we envision an adversarial target proceeding along some terrain am
to traveling. Upon detecting surveillance activity, the target will tend to move off the g
terrain to less hospitable areas (e.g., among the trees so as to be under foliage). T
is less desirable to the target than the good terrain as it may be more difficult to tr
or be more dangerous (e.g., due to the fact that the area is unsurveyed, it may
mud, ditches or other obstacles that immobilize the target). However, this less hos
area is beneficial as it obscures the target, combating future surveillance attemp
target tends to stay in the less hospitable area until it has high confidence that the
is no longer under surveillance and then moves back to the hospitable area to cont
journey.

The sensor must trade among several modalities to most quickly and effectively
and track the targets. We consider the case where the sensor has an active mod
passive mode. The active mode has good performance characteristics in terms of d
rate and false alarm probability, while the passive mode has reduced performance
teristics. The active mode, however, suffers from the fact that it is easily detectable
target (causing the target to go into hide mode) whereas the passive mode is nea
detectable. Therefore, the sensor scheduling algorithm is faced with the tradeoff be
using a high quality sensor, which may damage future sensing ability, versus using a
quality sensor which leaves future sensing ability intact.

Sensor scheduling strategies may be myopic or non-myopic. In the myopic case
ing actions are taken so as to maximize the immediate reward. Myopic methods
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the advantage that they are more computationally tractable than non-myopic me
Many researchers have investigated myopic methods of sensor management, in
Refs. [8,13,17,21].

On the other hand, a full non-myopic solution takes into account the future bene
cost) of current actions to maximize long term payoff. Non-myopic methods are
formulated with a Markov decision process (MDP) strategy. However, the long-term
myopic) scheduling solution suffers from combinatorial explosion when solving prac
problems of even moderate size. Researchers have worked at approximate solutio
niques. For example, Krishnamurthy [11,12] uses a multi-arm bandit formulation invo
hidden Markov models. In Ref. [12], an optimal algorithm is formulated to track mul
targets with an electronically scanned array that has a single steerable beam. Si
optimal approach has prohibitive computational complexity, several suboptimal ap
mate methods are given. Bertsekas and Castanon [5] formulate heuristics for the s
of a stochastic scheduling problem corresponding to sensor scheduling. They imple
rollout algorithm based on their heuristics to approximate the stochastic dynamic pro
ming algorithm.

Another approach to long term decision making is reinforcement learning (RL) [1
this approach, training examples of sensing actions, responses, and the observed
states are used to learn an optimal sensor scheduling policy.

Sensor scheduling to detect and track smart targets is an application that strong
efits from non-myopic decision making. In the target tracking setting, a myopic str
would choose to always use the active mode. A non-myopic strategy might choose
the passive mode for some time and then switch to the active mode after establis
certain level of confidence about the target. In this paper, we investigate a RL app
to the sensor scheduling problem. Although at first it may seem that a RL approac
be difficult to implement in practice, as training examples are not usually available,
are good reasons for its investigation. First, if models and simulations of the battl
environment exist, the RL algorithm can be trained to provide a good policy in the la
tory. When deployed it may be possible to continually update policies based on rea
thereby continually improving on the policy. Also, the RL strategy is a useful way to
tablish a bound on the best possible performance in complicated situations such as
we investigate here. This bound can be used to judge the quality of approximate str
in terms of their closeness to optimal.

We use RL to detect and track targets in a two step approach. First, we use a
tion algorithm trained to most quickly decide on the presence or absence of smart
in a portion of the surveillance region. During training, the correct-decision reward i
creased over time to encourage quickest detection. Once a target is detected, the
algorithm is initiated and tipped off to the presence of targets. The tracking algorithm
the responsibility to finely geolocate and track the targets as they move through the
The tracking algorithm is based on a combination of RL techniques with an inform
theoretic reward function. We show in the smart target problem this two stage app
provides an effective method of deciding what sequence of sensor modes to deploy

The paper proceeds as follows. Section 2 outlines our two stage detection and
ing algorithm. Second, Section 3 gives an overview of RL methods and specifi
Q-learning. Third, in Section 4, we describe the application of RL to the two stag
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tection and tracking algorithm. Fourth, in Section 5, we provide simulation results o
algorithm for two smart targets. The method is compared to random and myopic
gies and shown to provide good performance. Finally, in Section 6 we conclude with
summarizing remarks.

2. Overview of the approach

We decouple the scheduling problem into two disjoint optimization problems, as
trated by Fig. 1. This factorization approach is suboptimal, but allows for developmen
more computationally tractable algorithm than solving the detection and tracking pro
jointly.

The first stage of the algorithm is a quickest detection problem, which attempts
termine the presence or absence of targets in the surveillance region. The detectio
proceeds by dividing the surveillance region into a set of coarse detection regions. Fo

Fig. 1. An illustration of the two stage approach to smart target detection and tracking. The detectio
performs sensor scheduling to most quickly decide upon the presence or absence of targets in a detectio
Upon determining that a target is present, the tracking algorithm is responsible for scheduling sensors
locate and track the moving targets. Both stages of the algorithm rely on reinforcement learning (RL) wh
best sensor scheduling strategy is learned. Here the information spacept is the posterior distribution of targe
states at timet andΠ∗ denotes the optimal policy (mapping frompt to sensing actionsat+1).
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of these detection regions, sensing actions are performed so as to most quickly de
the state of the region.

When a target (or targets) are detected, the tracking algorithm is initiated. The tra
algorithm uses the coarse prior information provided by the detection stage to initiali
tracker. Sensing actions are then performed to finely geolocate and track the targets

3. Reinforcement learning for optimal solution of a MDP

In this section, we give an overview of the mathematics used to address the prob
smart target detection and tracking. We use an infinite horizon Markov decision pr
(MDP) [15] to mathematically characterize the problem. The main challenge one
in finding MDP solutions is that the complexity of finding optimal policies grows
ponentially with the state and action spaces [4]. Since the sensor scheduling prob
characterized by extremely large state and action spaces, it is necessary to deve
proximate solutions using dimension reduction. We advocate methods from reinforc
learning (RL) coupled with function approximation to find approximately optimal poli
for the two stages.

3.1. Infinite-horizon MDP

A discounted-reward infinite-horizon MDP is defined by a sequence of states{St }t�0
taking values in a state spaceS , a sequence of actions{At }t�0 taking values in an actio
spaceA, and a (possibly random) reward functionr(St ,At ) that assigns the cost incurre
(when negative) or the reward gained (when positive) to the event of being at stateSt and
taking actionAt . In our context, the state space characterizes the battlefield. It contain
information such as the number of targets present, their location, their type, and w
they are stationary or moving. The action space contains all the possible actions
action specifies which sensor to use, the mode of operation, and where to point the
The reward system reflects the tradeoffs between costs of deploying a certain senso
and the gain earned from the measurement it collects.

The MDP is initiated with stateS0 followed by actionA0 chosen by the controller an
continues with the state-action sequenceS1,A1, S2,A2, . . . . Under the Markovian mode
given St andAt , St+1 is independent of all past states and actions. The state trans
are governed by a stationary probabilistic law, denoted byp(St+1|St ,At ), that specifies
the distribution ofSt+1 over S , given St and At . p(St+1|St ,At ) is either a probability
density function when the state space is continuous or a probability mass function w
is discrete.

A stationary policyΠ is a map fromS toA that specifies the action taken at each st
Denote the class of all policies byP . The value function associated with policyΠ , denoted
by V Π(s) is the expected total discounted reward when in stateSt = s and following policy
Π , that is

V Π(s) = E

{ ∞∑
βτ−t r

(
Sτ ,Π(Sτ )

)∣∣St = s

}
, ∀s ∈ S, (1)
τ=t
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whereβ ∈ (0,1) is a discount factor, which is included to reduce the value of future rew
as compared with immediate rewards. The conditional expectation is taken with res
the joint distribution of all the targets, which, in the context of smart targets, is h
dependent on the action sequence. Therefore, a direct calculation of this expres
computationally intractable. An optimal policy is a policy that satisfies

Π∗(s) = arg max
Π∈P

V Π(S), ∀s ∈ S. (2)

It is well known that the optimal policy is the unique solution to Bellman’s equatio

V (s) = max
a

E
{
r(St , a) + βV (St+1)|St = s, At = a

}
, (3)

and can be found using Bellman’s iterations [15]: given an arbitrary value functionV1(s),
the sequence generated by

Vk+1(s) = max
a

E
{
r(St , a) + βVk(St+1)|St = s, At = a

}
(4)

converges toV ∗(s), that is, limk→∞ Vk(s) = V ∗(s). GivenV ∗(s), the optimal actions in
Π∗ are computed by

arg max
a

E
{
r(St , a) + βV ∗(St+1)|St = s, At = a

}
. (5)

Unfortunately, when the state and action spaces are large and the state transition
is either computationally complicated or not explicitly available, this method is intrac
and one must use approximate methods such asQ-learning [4].

3.2. Q-Learning

The optimal scheduling policy for the two stages is found usingQ-learning coupled
with function approximation [18–20]. The learning part relaxes the requirement for ex
knowledge of the transition density, and function approximation is used to further re
the dimensionality of the state and action spaces.

Given the value functionV ∗, theQ-function is defined by

Q(s, a) = E
{
r(s, a) + βV ∗(St+1)|St = s, At = a

}
, (6)

i.e., the expected reward when taking actiona at states and then acting optimally for a
future actions. TheQ-function satisfies the equation

Q(s, a) = E
{
r(s, a) + β max

α∈A
Q(St+1, α)|St = s, At = a

}
. (7)

Given theQ-function, actions are computed as

arg max
a∈A

Q(St , a). (8)

In Q-learning, theQ-function is estimated from multiple realizations of the state-ac
sequence. Specifically, the training process involves generation of {state, action, next state
immediate reward} 4-tuples over a large number of training episodes. In our approach
set of training episodes is used in batch to determine theQ-function for a particular state
action pair. Specifically, assume that bothS andA are finite. Then, there exists a looku
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table representation ofQ(s, a). In this case, given an arbitrary initial value ofQ(s, a),
the one-stepQ-learning algorithm [18] is given by the repeated application of the up
equation

Qk(s, a) = (1− γ )Qk−1(s, a) + γ
(
r + β max

α∈A
Qk−1(s

′, α)
)
, (9)

where each of the 4-tuples{St = s,At = a,St+1 = s′,Rt = r} are incurred during the
progress of the MDP, andγ ∈ (0,1) decreases witht . This algorithm can be seen as t
Robbins–Monro stochastic approximation method for solving (Eq. (7)). Therefore, whγ

decreases to zero asa/(b+ t) for some positive constantsa andb, this algorithm converge
to the trueQ-function with probability 1 regardless of the actual policy used in genera
the trajectories as long as the state action pairs are visited infinitely often [4,18].

Unfortunately, in most realistic problems (the problems discussed herein includ
is infeasible to represent theQ-function in a lookup table, either because the numbe
states is too large or simply because the state space is continuous. Therefore, we
a function approximation technique to represent theQ-function. Less is known abou
the convergence properties ofQ-learning with function approximation, and in practi
its properties depend on the policy used to generate the trajectories and the funct
proximation class (see the discussion in Ref. [4]). The standard and simplest cl
Q-function approximators are linear combinations of basis functions (also called fea
i.e.,

Q(s, a) = θT φ(s, a), (10)

where φ(s, a): S × A → R
L is a feature vector associated with states and action

a and the coefficients ofθ ∈ R
L are to be estimated bŷθ , i.e., the training data

is used to learn the best approximation toQ(s, a) among all linear combinations o
the features. Choosing a feature vectorφ(s, a) to represent the state is a challen
ing problem that will be addressed separately for each of the two stages of the
rithm.

We use a gradient descent method [18] for updating theQ-function with new data. Un
der the function approximation (Eq. (10)) forQ, this amounts to estimating the parame
vector θ using the received training data which consists of an observed state, a c
action, an observed reward and an observed next state,{s, a, r, s′}:

θ̂ ← θ̂ + γ
(
r + β max

a′ Q(s′, a′) − Q(s, a)
)∇θQ(s, a)

= θ̂ + γ
(
r + β max

a′ θ̂ T φ(s′, a′) − θ̂ T φ(s, a)
)
φ(s, a),

whereγ ∈ (0,1) decreases witht . Hence, at every iteration,̂θ is updated in the directio
that minimizes the empirical error in Eq. (7). When a lookup table is used in Eq. (10
algorithm reduces to Eq. (9). Once the learning of the vectorθ is completed, actions ar
computed according to

arg max
a∈A

θ̂ T φ(St , a). (11)
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3.3. Partially observable Markov decision processes

In some situations the true state of the system is unknown to the controller. In
only noisy measurements of the system’s state are available. In this case, even if th
transition probability law is Markovian, the noisy measurements are no longer Marko
To overcome is difficulty, the process is reformulated in terms of the information stat
This formalization leads to a partially observable Markov decision process (POMDP
can be handled using the framework described above, because with the concept o
formation state all POMDP’s can be recast into the MDP framework.

The information state is defined as the posterior distribution of states given all pas
surements,p(s|Zt ), whereZt denotes all past measurements up to and including timt ,
i.e., Zt = {z1, z2, . . . , zt }, wherezt is the measurement collected at timet . Note that the
term information state is unrelated to the information theoretic measures used in the
described later. The information state is a sufficient statistic for the problem in the
that the expected reward depends on the data only through the information state.
by p0(s) the prior distribution of the states which constitutes the initial information s
In our setting, this information corresponds to prior intelligence on the surveillance re
In the absence of such information, a uniform distribution or other non-informative d
bution over the state space can be used. At every stage of the process, given the
information statept(s) and a new measurementzt+1 the next information statept+1(s) is
computed by Bayes rule

pt+1(s)
	= p(s|Zt+1) = p(s|Zt , zt+1) = pt(s)f (zt+1|s)∑

S pt(s)f (zt+1|s) , ∀s ∈ S, (12)

wheref (zt+1|s) denotes the conditional density of the measurementzt given the true state
of the system iss, and we assume that given the true system state the measurements
dependent. Hence, a new information state depends on the past measurements onl
the previous information state. This formalization leads to a POMDP with a contin
state space, which is the space of all probability vectors over the unknown system s

The methods available in the literature for finding optimal policies in the POMDP
ting focus on the case of finite observation and action spaces and finite horizon pro
[1,14]. The quickest detection problem with continuous observation space discuss
low does not fall into this class of problems. Therefore,Q-learning coupled with function
approximation can be used to approximate the optimal policy.

4. Application of RL to detection and tracking of smart targets

In this section we present the details of the application ofQ-learning to the two stage
of the multitarget detection and tracking algorithm.

4.1. Detecting smart targets

The target detection stage is formulated as a Bayesian hypothesis testing prob
which one is trying to decide betweenM � 2 hypotheses: H1, . . . ,HM . The observed sys
tem is modelled as a MDP with a finite state spaceS with cardinalityN . Each hypothesi
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corresponds to a different subset of the states and it is assumed there are no transit
tween states that are associated with different hypotheses. For example, H1 can correspond
to the hypothesis that a target is not present and H2 to the hypothesis that a target is prese
Under H1 the system has only one state, and under H2 the target can be at one of seve
states that determine if the target is hidden or exposed. The target can have state tra
under H2 but cannot switch between H1 and H2.

At each time instantt , one ofK sensor modes denoted by�1, . . . ,�K is used to collec
a measurementzt , or alternatively a final decision is made. Therefore, the possible ac
available at each time epoch areA = {�1, . . . ,�K,D}, whereD stands for the action o
making the final decision. After actionD the detection process ends and a reward is gra
for a correct decision.

Denote byfk(z|s) the conditional density of a measurement collected by sensor m
k given the system is at states. The state transition probabilities of the Markov proc
p(St+1|St ,At ) depend on the deployed sensor mode. The possible states inS are enu-
merated from 1 toN and the transition probabilities are summarized in the matricesAk ,
k = 1, . . . ,K , where

[Ak]nl = p(St+1 = n|St = l,�k), n, l = 1, . . . ,N (13)

is the probability that the system moves from statel to staten when sensor modek is used.
The dependency on the deployed sensor mode is applicable when a target ca

it is being observed and may react accordingly, e.g., hide. If modek is deployed, cos
ck is incurred, i.e.,r(s,�k) = −ck for all s. If a correct decision is made, rewardR
is received. If an erroneous final decision is made, no reward is received, i.e., fors,
r(s,D) = R when the decision is correct andr(s,D) = 0 otherwise. As described in Se
tion 3.3, Zt denotes the information available to the system at timet , which includes
measurements collected up to timet . Since the number of states is finite and know
we use the vector notationpt to denote the posterior probability vector of target sta
givenZt . Using this notation, if sensork is deployed andzt+1 is collected, Eq. (12) take
the form

pt+1 = Ak diag([fk(zt+1|1), . . . , fk(zt+1|N)])pt

sum(Ak diag([fk(zt+1|1), . . . , fk(zt+1|N)])pt )
, (14)

wherefk(zt+1|n) denotes the conditional density of a measurement that was collect
sensork given that the system is in staten, and for any vectorv, diag(v) is a diagonal matrix
with the elements ofv on its diagonal, and sum(v) is the sum of its elements. Therefore
policy Π ∈P can be defined as a map fromSN , the simplex ofN -dimensional probability
vectors, toA. The expected total reward at information statept associated with a polic
becomes

V Π(pt ) = E

{ ∞∑
τ=t

βτ−t r
(
pτ ,Π(pτ )

)}
, (15)

and the optimal policy is

Π∗ = arg maxV Π(p), ∀p ∈ SN. (16)

Π∈P
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TheQ-function is defined over theN -dimensional simplexSN and for any actiona ∈A
by

Q(pt , a) = E
{
r(pt , a) + βV ∗(pt+1)

}
, (17)

which is the expected reward when taking actiona at information statept and then acting
optimally thereafter. The dimensionality of the information state space is reduced
linear parametrization (Eq. (10)), andQ-learning is used to approximate theQ-function.
GivenQ, one finds the optimal policy by taking the action that maximizes it at any g
information state.

4.2. Tracking smart targets

Tip-offs from the detection algorithm are used to initialize a tracking algorithm w
finely geolocates and tracks moving targets. Targets are tracked by recursively estim
conditional probability density known as the joint multitarget probability density (JM
[9,10].

4.2.1. The JMPD and particle filter approximation
In the tracking stage, the states of the system (see Section 4) is given by the jo

multitarget probability density. In this subsection, we show how the state is derive
how states are combined with measurements to determine the next state.

We define the joint multitarget conditional probability densityp(x1
t ,x2

t , . . . ,xT −1
t ,

xT
t |Zt , Tt ) as the probability forT targets with statesx1,x2, . . . ,xT −1,xT at timet based

on observationsZt . Each of the state vectorsxi in the JMPD is a vector quantity and ma
(for example) be of the form[x, ẋ, y, ẏ]′. For convenience, the density will be writte
compactly as

p(Xt , Tt |Zt ) = p
(
x1
t ,x2

t , . . . ,xT −1
t ,xT

t |Zt

)
, (18)

whereXt = [x1
t ,x2

t , . . . ,xT −1
t ,xT

t ].
The temporal update of the posterior likelihood on this density proceeds accord

the usual rules of Bayesian filtering. Given a kinematic model of how the JMPD ev
over time,p(Xt+1, Tt+1|Xt , Tt ), we compute the time-updated prediction density via m
ginalization of a conditional density:

p(Xt+1, Tt+1|Zt ) =
∞∑

Tt=0

∫
dXtp(Xt+1, Tt+1|Xt , Tt )p(Xt , Tt |Zt ). (19)

p(Xt+1, Tt+1|Zt ) is referred to as the prior or prediction density at timet + 1, as it is the
density at timet + 1 conditioned on measurements up to and including timet .

Given a sensor model,p(z|Xt ), Bayes’ rule is used to update the posterior density
new measurement vectorz arrives at timet + 1 via

p(Xt+1, Tt+1|Zt+1) = p(z|Xt+1)p(Xt+1, Tt+1|Zt )

p(z|Zt )
. (20)

p(Xt+1, Tt+1|Zt+1) is referred to as the posterior or the updated density at timet + 1
as it is the density at timet + 1 conditioned on all measurements up to and includ
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time t +1. Note that, in contrast to the detection framework, here we must estimate a
dimensional joint probability density. This density allows us to describe the uncer
about the precise location of the target (rather than simply a region) and to repres
correlations that occur due to measurement ambiguity for multiple targets.

The sample space ofX is very large. It contains all possible configurations of s
vectorsxi . We find that a particle filter based representation of the JMPD allows trac
implementation [9]. The particle filter approximation represents the JMPD by a colle
of weighted Dirac samples, i.e.,

p(X, T |Z) ≈
Npart∑
p=1

wpδ(X − Xp). (21)

Particle filtering is a method of approximately solving the prediction and update e
tions (19) and (20) by simulation [6]. Samples are used to represent the density
propagate it through time. The prediction equation (19) is implemented by proposin
particles from the existing particles using a model of state dynamics and the measure
The update equation (20) is implemented by assigning a weight to each of the partic
have been proposed using the measurements and the model of state dynamics.

We use an adaptive method of particle proposal [9] that automatically factorize
JMPD when permissible. This adaptive sampling method automatically determin
most efficient particle proposal method allowing tractable implementation for tens o
gets.

4.2.2. Information based myopic sensor management
We use the JMPD to make sensor tasking decisions. As others have realized [8,1

good measure of the quality of a sensing action is the reduction in entropy of the po
distribution induced by the measurement. Therefore, the reward of an action (Sec
will be given by the information gained by taking that action. To schedule a senso
enumerate all possible sensing actions (e.g., sensor modes and sensor pointing dir
and calculate theexpectedgain in information associated with each possible action.

The calculation of information gain between two densitiesf1 andf0 is done using the
Rényi information divergence [7,16], also known as theα-divergence:

Dα(f1||f0) = 1

α − 1
ln

∫
f α

1 (x)f 1−α
0 (x) dx. (22)

Theα-divergence includes the Kullback–Leibler divergence (asα → 1) and is related
to the Hellinger distance atα = 0.5 [7]. There is both theoretical and empirical eviden
suggesting thatα = 0.5 is appropriate for the tracking problem [7,10], and it is used in
simulations reported in this paper.

In our application, we are interested in computing the divergence between the pre
densityp(Xt+1|Zt ) and the updated density,p(Xt+1|Zt+1). Particle filter approximation
of the density simplifies Eq. (22) to

Dα

(
p(·|Zt+1)||p(·|Zt )

) = 1

α − 1
ln

1

p(z)α

Npart∑
wpp(z|Xp)α, (23)
p=1
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where

p(z) =
Npart∑
p=1

wpp(z|Xp). (24)

We wish to choose the sensing action that maximizes the divergence between the
density and the density after a new measurement is acquired. Since we do not kn
outcome of a sensing action until after the action is taken, we cannot determine the
gence until after the measurement is made. Therefore, we instead calculate the con
mean estimate of divergence and use this to schedule the sensors.

Specifically, we calculate the conditional expectation of Eq. (23) givenZt for each of
theN possible sensing actions and choose the action that maximizes this expected
Let m refer to the possible sensing action under consideration, including, but not li
to, sensor mode selection and sensor beam positioning.

The expected value of Eq. (23) may be written formally as an integral over all pos
outcomesz when performing sensing actionm, i.e.,

〈Dα〉m =
∫

dzp(z|Zt ,m)Dα

(
p(·|Zt , z)||p(·|Zt )

)
. (25)

4.2.3. Information based non-myopic sensor management
As discussed earlier, in many situations a non-myopic sensor management strate

vides sensor tasking decisions having better performance than the myopic strat
particular, in the setting considered here where targets are “smart” and react to s
actions, the regret of choosing a poor action persists over time. Therefore, a non-m
strategy will be far superior to a myopic strategy.

We use batchQ-learning with linear function approximation (see Eq. (10)) to le
a policy which behaves non-myopically and is capable of dynamically adjusting t
environment. In the training process, the immediate reward of an action is computed
the actual gain in information as measured by the Rényi divergence (see Eq. (23)).

5. Simulation results

We consider in this section a model problem in which an airborne platform is to d
and track a set of moving ground targets. The platform has available a multimode
able to use an active mode (e.g., radar) or a passive mode (e.g., EO/IR). The senso
to quickly steer an antenna so as to focus attention on specific regions of the surve
area. This is a simple model of a real platform like the USAF JSTARS, which has a
antenna installed on the underside, is able to scan electronically in azimuth and is
choose between several modes of operation including moving target indicator and sy
aperture radar.

In this simulation, targets are characterized by their position in one dimension. T
are “smart” as they sense when they are under surveillance by an active sensor and
make future surveillance more difficult. The number and location of the targets is unk
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Fig. 2. An illustration of the model problem. The surveillance region is broken into several coarse de
regions, shown as detection regions 1, 2, and 3 above. The detection algorithm schedules the senso
quickly determine the presence or absence of targets in each detection region. Upon detecting targets, th
algorithm is tipped-off with the regions in which targets exist. The tracking algorithm then determines
resource allocations that allows refinement of the initial location and tracking as the targets move thro
surveillance area.

initially and our task is to detect and track the targets by selecting the best sensor sch
policy.

We address the problem following the two step strategy outlined in Section 2. S
ically, we first segment the surveillance area into a set of detection regions whe
sensor scheduling strategy of Section 4.1 is used to most quickly determine the pr
or absence of a target in each region. Upon determining targets are present, the d
algorithm gives a tip-off to the tracking algorithm of Section 4.2 by providing the in
mation that a target exists and the region in which it exists. The tracking algorithm is
responsible for scheduling the sensor to refine the estimate of target location and tr
targets as they move through the surveillance area. The model problem considered
summarized in Fig. 2.

We proceed in this section to illustrate the two-step detection and tracking algo
developed using the reinforcement learning (RL) approach. We contrast the perfor
of this non-myopic strategy to random and myopic strategies.

5.1. Target detection

Each detection region is modelled as taking one of three states:s1 no target present,s2 an
exposed target is present, ands3 a camouflaged target is present. There are two hypoth
H1 (no target present) and H2 (a target is present, either exposed or camouflaged).
target can move from state 2 to state 3 if it senses it is being observed. However, it te
return from state 3 to state 2 if it no longer senses it is being observed, e.g., it may
effective in state 3.

Intelligence sources provide a prior on the initial state of the target, which const
the initial information state of the processp0. The platform has one of three sensor mo
to deploy. Sensor modei, deployed at timet provides an independent measurementzi(t).
For the simulation considered here, measurements are assumed conditionally G
with the following conditional distributions (N(µ,σ 2) denotes the Gaussian density w
meanµ and varianceσ 2):
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z1(t)|s1 ∼ N(0,0.45), z1(t)|s2 ∼ N(1,0.45), z1(t)|s3 ∼ N(0.4,0.45),
z2(t)|s1 ∼ N(0,1), z2(t)|s2 ∼ N(1,1), z2(t)|s3 ∼ N(0.4,1),

z3(t)|s1 ∼ N(0,0.7), z3(t)|s2 ∼ N(1,0.7), z3(t)|s3 ∼ N(0.4,0.7).

Sensor modes 1 and 3 represent active modes, which can be sensed by the
and sensor mode 2 represents a lower SNR passive mode which cannot be dete
the target. When the target is in hide mode, it has an incentive to return to the ex
state. To reflect these characteristics the following transition probability matrices
chosen:

A1 =
[1 0 0

0 0.2 0.1
0 0.8 0.9

]
, A2 =

[1 0 0
0 1 0.3
0 0 0.7

]
, A3 =

[1 0 0
0 0.1 0.05
0 0.9 0.95

]
.

Note that mode 3 is less favorable then sensor mode 1 regardless of system s
provides less information (lower SNR) on the target, and when it is used there is a
probability that the target will detect it. It was included in this study to show that
optimal learned policy will indeed never use it.

We assume zero cost for the sensor deployment and a unit reward for a correct de
Hence, the expected reward (15) becomesE{βT max{pT (1),pT (2) + pT (3)}}, whereT is
the (random) final decision time. The discount factorβ was chosen to be 0.99 to reflect
large emphasis on future actions.

Q-learning (Section 3.2) was used to approximate the optimal policy. There is a
herent bias-variance tradeoff (also known as estimation/approximation error trade
Q-learning. With a fixed training set size, as the number of parameters used to ap
mate theQ-function decrease, two phenomena occur simultaneously: (1) estimation
of the parameters decrease, i.e., the variance decreases, and (2) the approximat
becomes smaller and the distance between the trueQ-function and its best approxima
tion in the class increases, introducing larger bias. Finding a good approximation c
a problem dependent task which requires experimentation and expert knowledge [1
chose the basis functions to be indicator functions of disjoint regions ofS3 ×A that corre-
spond to quantization of the simplexS3 into 55 disjoint regions for each action inA. This
was found experimentally to give a reasonable tradeoff between the size of the appr
tion class and the number of training trajectories needed to achieve good estimation
parameterθ defined in Eq. (7).

TheQ-functions were approximated using 20,000 state-action trajectories in whic
initial information state was generated uniformly randomly overS3. Choosing the size o
the training set is one of the important open questions in RL. In practice, one inc
the number of samples in the training set until one no longer sees an improvemen
resulting algorithm performance. This procedure was adopted and takes about half a
using a Pentium M processor running MatLab 6.

The Q-functions associated with each sensor mode are depicted in Fig. 3. ThQ-
function associated with taking the final decision at statept is known to be max{pt (1),

pt (2) + pt (3)} and hence does not need not be estimated. SinceS3 is two-dimensional, al
functions are presented over the region{[p(1),p(2)]: p(1) � 0,p(2) � 0,p(1)+ p(2) � 1}
and set to zero outside of this region. Thex andy axes correspond top(1) andp(2), re-
spectively. Once theQ-functions were estimated the mapping fromS3 to A was found
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Fig. 3.Q-functions of the three sensor modes over the information space.

according to (11) and is presented in Fig. 4. As expected, sensor 3 is never deploye
using this policy. Furthermore, the policy dictates that the passive sensor is to b
whenever there is a high degree of uncertainty, to make the final decision when
pt (1) (decide no target is present) orpt (2) + pt (3) (decide target present) are close to o
and to use the active sensor only when the final decision is imminent.

As the reward is only collected at the final decision, a myopic strategy is to ma
immediate decision based on the prior without taking any measurements. Therefo
estimated optimal policy is compared to a randomized policy in which actions are c
uniformly. The improvement in terms of the difference in averaged value, estimated
2000 Monte Carlo simulations at each information state, is presented in Fig. 5. It is
that the major difference in value is obtained in the center of the information state s
i.e., when the uncertainty about the system state is maximal.

5.2. Target tracking

We assume for purposes of illustration that the target detection algorithm has co
detected targets in Regions 1 and 3 (Fig. 2) and passed this information to the targe



ARTICLE IN PRESS
S1051-2004(04)00120-4/FLA AID:545 Vol.•••(•••) [DTD5] P.16 (1-22)
YDSPR:m1a v 1.32 Prn:11/02/2005; 9:24 ydspr545 by:violeta p. 16

16 C. Kreucher et al. / Digital Signal Processing••• (••••) •••–•••

and the
he axis

ine the
e man-
d above.
l-

istrib-
tics are
n re-
y move

prob-

re
Fig. 4. Sensor allocation map: the dark gray area corresponds to passive mode, the light to active mode
third area to making the final decision. The points A, B, and C are marked for reference to Fig. 5, as t
orientation in the two figures is different.

ing algorithm. At each time step, the sensor is able to measure a single cell to determ
presence or absence of targets. Targets can move along a line in a strictly diffusiv
ner. The sensor can use the active (mode 1) or passive (mode 2) modes describe
Sensor modes are characterized by a detection probabilityPd and a false alarm probabi
ity Pf . These probabilities are linked together via SNR byPd = P

1/(1+SNR)

f . This model
of sensor returns corresponds to thresholding of target return signal in Rayleigh d
uted noise as is seen on GMTI radar systems [2]. Note that the sensor characteris
defined differently than in the detection portion of the algorithm. Unlike the detectio
gions considered earlier, a sensor cell is now a small area and targets can easil
between cells.

When the target is in visible mode, the active mode works with high detection
ability and low false alarm probability,Pd = 0.9 and Pf = 1e − 4 (corresponding to
SNR= 20 dB). The passive sensor mode works with detection probabilityPd = 0.5 and
false alarm probabilityPf = 1e − 4 (SNR= 10 dB). When in hide mode, both modes a
severely degraded and correspond to a target with SNR= 0 dB.
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Fig. 5. Improvement over the random allocation policy. Note the relative orientations of the state domai
parison to Fig. 4—the points A, B, and C are marked for reference.

Targets can sense when the active mode is used and move into hide mode to prev
ther interrogation. Additionally, targets that have moved into hide mode tend to move
into visible mode when the passive sensor mode is used. The parameters of inter
be summarized by the following transition probabilities when for each of the two se
modes:[

Pr (visible to visible) Pr (visible to hide)
Pr (hide to visible) Pr (hide to hide)

]
.

A myopic strategy of sensor management makes tasking decisions based only
expected immediate reward. Here the myopic strategy will advocate using the active
at all times as it has the largest expected gain in single step information gain. Depend
the transition probabilities, this may immediately force the targets into hide mode, m
them difficult to observe in future time steps. A non-myopic strategy, on the other
will take into account the effect of current actions on future information gain and be
prudent in using the active mode.

We illustrate the technique using two simulations with different transition probabil
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Simulation 1.

transition matrix active sensor mode=
[

0 1
0 1

]
,

transition matrix passive sensor mode=
[

1 0
0.2 0.8

]
.

Simulation 2.

transition matrix active sensor mode=
[

0.1 0.9
0 1

]
,

transition matrix passive sensor mode=
[

1 0
0.33 0.67

]
.

In simulation 1, the target always moves into hide when the active mode is use
moves from hide to visible with probability 0.2 when the active mode is used. In
ulation 2, the target has a 10% chance of remaining in visible mode even if the
mode is used, and is more likely to move back into visible mode when the passive m
used.

We trained aQ-function as discussed in Section 2. Episodes were generated wit
dom sensor allocations using the models of target behavior. The initial position o
targets and realization of the diffusive motion were chosen randomly for each tra
episode. TheQ-function was trained using a linear function approximation on 100
training episodes in batch fashion. Table 1 gives empirical results for how performa
the algorithm improves as the number of training episodes is increased, showing 1
is a good stopping point. The algorithm was tested on 1000 example episodes wh
initial position and realization of the diffusive motion of the targets was chosen rand
for each testing episode. TheQ-function learned during the training episode was use
schedule the sensor by selecting mode and pointing direction.

In Figs. 6–8, we present results ofQ-learning performance on the tracking stage.
compare performance to (a) a random strategy, (b) a myopic strategy, (c) a random s
that only uses the passive mode, and (d) a myopic strategy that only uses the passiv
The Q-learning strategy performs as well or better than the best of the four comp
strategies in both cases.

Table 1
Performance versus training examples

Training episodes Tracking error (m)

200 1.6975
1000 1.5996
5000 1.5603

10,000 1.5126
50,000 1.4758

100,000 1.4071
200,000 1.4103
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Fig. 6. Target tracking performance, in terms of average tracking error for simulation 1. Included are a r
strategy, a myopic strategy, a random strategy that uses only the passive mode, a myopic strategy that
the passive mode, and theQ-learning strategy.

Fig. 7. Target tracking performance, in terms of average tracking error for simulation 2. Included are a r
strategy, a myopic strategy, a random strategy that uses only the passive sensor, a myopic strategy that
the passive mode, and theQ-learning strategy.
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Fig. 8. Histograms showing relative frequency of magnitude tracking errors at time 5 for simulation 1
testing the five polices considered here. The mean performance of each policy is given by the dashed li
that the performance of the tracker is bimodal—either the tracker finds the target (error∼ 1 m or less) or it does
not (error> 1 m).

6. Conclusion

In this paper, we have investigated the problem of sensor scheduling for detectio
tracking of smart moving ground targets from an airborne sensor. Since the targets
terest are able to detect and respond to certain sensing actions, it is mandatory
long term ramifications be taken into account when choosing current sensing action
necessity for non-myopic sensor scheduling leads to a very computationally challe
problem.

We have addressed this numerical challenge with a two stage approach. The surv
area is first partitioned into a set of detection regions and a detection algorithm dete
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ium on
the presence or absence of a target in each region. Upon detection, a tracking algo
used to finely geolocate and track targets as they move through the region.

The sensor scheduling algorithm for both of the stages stages was developed with
forcement learning (RL) approach. Out method relies on a set of training data used in
to learn a good sensor management policy. We showed through a series of experime
the RL approach allows accommodation of the desire to perform quick detection an
forms as well or better than other simple strategies in the tracking problem. An alter
approach for future research is to learn a good policy on-line while another policy is
executed.
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