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ABSTRACT

This paper addresses the problem of sensor management
for simultaneous multitarget tracking and identification.
In this context, sensor management refers to the process
wherein an agile sensor is tasked, for example by choosing
which mode the sensor should use and where the sensor
should point. Simultaneous tracking and identification is
a challenging sensor management problem because there
are two criteria for optimization that must be simultane-
ously addressed.

The approach advocated here is based on information
theory, where the value of a particular action is measured
by the amount of information that is expected to be gained
by its execution. Using information theory as a metric has
the desirable property that the tracking and identification
missions can be simultaneously addressed through a sin-
gle metric without making any ad-hoc assumptions on the
relative utility of the missions.

As the sensor management strategy is based on tak-
ing actions that maximize information gain, we require
the probability density which describes the current uncer-
tainty about the situation. In our application, the system
state is characterized by the number of targets and the
states (positions and velocities) of each. We address es-
timation of the density via particle filtering, which is a
method of approximating the posterior by sampling the
multitarget state space at discrete points (“particles”). Be-
cause particles represent a discrete sampling of the entire
state space, they implicitly contain estimates of both the
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number of targets and their individual states. By concen-
trating samples near likely multitarget states, the tracker
provides a tractable Bayesian solution to the state estima-
tion problem.

We illustrate the method in a scenario involving a sim-
ulated sensor with agility in pointing direction and mode,
and real target trajectories collected as part of a train-
ing exercise at NTC. The performance of the information-
based scheduling algorithm is compared to two other (non-
information based) scheduling algorithms and a random
strategy. The information-based approach is shown em-
pirically to provide superior performance.

1. INTRODUCTION

In this paper, we address the problem of scheduling the re-
sources of an agile sensor. This may include choosing the
pointing angle and the mode of the sensor, or even choosing
the emitted waveform. We advocate an information-based
approach, where sensor tasking decisions are made based on
the principle that actions should be chosen to maximize the
information expected to be extracted from the scene. This
approach provides a single metric able to automatically cap-
ture the complex tradeoffs involved when choosing between
possible sensor allocations.

We apply this principle to the problem of tracking and
identifying multiple moving ground targets from an airborne
sensor. The aim is to task the sensor to most efficiently esti-
mate both the number of targets and the state of each target
simultaneously. The state of a target includes the kinematic
quantities of position and velocity and also target class. This
is a challenging sensor management problem as there are
multiple criteria (estimation of target location and target
class) that must be simultaneously addressed. The exper-



iments presented herein use high fidelity models of sensors
and real collected target motion data.

The information-based approach to sensor management
involves the development of two interrelated elements.

First, we form the joint multitarget probability density
(JMPD), which is the fundamental entity capturing knowl-
edge about the number of targets and the states of the indi-
vidual targets. Unlike traditional methods, the JMPD does
not assume any independence, but instead explicitly mod-
els coupling in uncertainty between target states, between
targets, and between target state and the number of targets.
Furthermore, the JMPD is not assumed to be of some para-
metric form (e.g., Gaussian). Because of this generality,
the JMPD must be estimated using sophisticated numerical
techniques. Our representation of the JMPD is via a novel
multitarget particle filter with an adaptive sampling scheme.

Second, we use the estimate of the JMPD to perform
(myopic) sensor resource allocation. The philosophy is to
choose actions that are expected to maximize information
extracted from the scene. This metric trades automatically
between allocations that provide different types of informa-
tion (e.g., actions that provide information about position
versus actions that provide information about target class)
without adhoc assumptions as to the relative utility of each.
We employ a particular type of information measure, known
as the Ŕenyi (alpha) Divergence which is related asymptoti-
cally to the more widely used Kullback-Leibler Divergence.

The paper proceeds as follows. First, in Section 2, we
describe how the JMPD captures the uncertainty in the mul-
titarget tracking problem and is used in a recursive Bayes
filtering scheme to track multiple targets. Second, in Sec-
tion 3, we give a multitarget particle filter implementation of
the JMPD. Third, in Section 4 we show uncertainty reduc-
tion in the JMPD is used to drive the sensor management
algorithm. Next, in Section 5 we show simulation results
involving a set of real targets and a simulated sensor that
shows the benefit of the information-based strategy. We fin-
ish with a summary and some conclusions in Section 6.

2. THE JOINT MULTITARGET PROBABILITY
DENSITY (JMPD)

Estimating the joint multitarget probability density (JMPD)
provides a means for tracking an unknown number of targets
in a Bayesian setting. Many others have studied Bayesian
methods for tracking multiple targets, e.g., [1][2][3][4].

The statistical model uses the joint multitarget condi-
tional probability density

p(xk
1 ,xk

2 , ...xk
T−1,x

k
T , T k|Zk) = (1)

p(xk
1 ,xk

2 , ...xk
T−1,x

k
T |T k,Zk)p(T k|Zk)

as the probability density for exactlyT targets with state
vectorsx1,x2, ...xT−1,xT at timek based on a set of ob-
servationsZk. In this paper, the state vectorx is to taken
to include position, velocity and identification components,
i.e.,x = [x ẋ y ẏ c]′.

The number of targetsT is a variable to be estimated
simultaneously with the states, although for simplicity the
simulations presented in this paper treat the special case
where the number of targets is known and fixed. More gen-
eral discussion and related simulations are considered in [5].

The observation setZk is the collection of measure-
ments up to and including timek, i.e. Zk = {z1, z2, ...zk},
where each of thezi may be a single measurement or a vec-
tor of measurements made at timei.

For convenience, we will denote the multitarget state
vector byX, i.e. X = [x1, x2, ..., xT ], whereX is de-
fined forT = 1...∞. Therefore, the JMPD at timek will be
written in shorthand notation asp(Xk, T k|Zk).

The likelihoodp(z|X, T ) and the joint multitarget prob-
ability densityp(X, T |Z) are conventional Bayesian objects
manipulated by the usual rules of probability and statistics.
Thus, a multitarget system has stateX = (x1, · · · ,xT )
with probability distributionp(x1, · · · ,xT , T |Z). This can
be viewed as a hybrid stochastic system where the discrete
random variableT governs the dimensionality ofX. There-
fore the normalization condition that the JMPD must satisfy
is

∞∑

T=0

∫
dx1 · · · dxT p(x1, · · · ,xT , T |Z) = 1 . (2)

where the single integral sign is used to denote theT inte-
grations required.

The temporal update of the posterior likelihood proceeds
according to the usual rules of Bayesian filtering. Time evo-
lution of the JMPD is modeled byp(Xk, T k|Xk−1, T k−1)
which will be referred to as the model of multitarget kine-
matics. This transition density includes models of how in-
dividual targets move, models of target birth and death, and
any additional prior information that may exist such as ter-
rain and roadway maps. Different kinematic models may be
used for different target types.

Filtering proceeds in a manner completely analogous
manner to the well known two step prediction-correction
Kalman Filter recursions. However, since the JMPD is a
non-linear filter, the framework is more general admitting
arbitrary (e.g., non-Gaussian) densities, arbitrary (e.g., non-
linear) models of temporal evolution and arbitrary (e.g., non-
Gaussian) noise processes.

First, the posterior at timek − 1, p(Xk−1, T k−1|Zk−1)
is time-updated (predicted) using the model of multitarget



kinematics to form the prior at timek, p(Xk, T k|Zk−1).

p(Xk, T k|Zk−1) =
∞∑

T k−1=0

∫

Xk−1

dXk−1× (3)

p(Xk, T k|Xk−1, T k−1)p(Xk−1, T k−1|Zk−1) .

Second, the most recent measurements are used to mea-
surement update (correct) the the prior. The prior at time
k, p(Xk, T k|Zk−1) is used along with Bayes’ rule and the
most recent measurementzk to form the posterior at timek,
p(Xk, T k|Zk).

p(Xk, T k|Zk) =
p(zk|Xk, T k)p(Xk, T k|Zk−1)

p(zk|Zk−1)
. (4)

This formulation allows JMPD to avoid altogether the
problem of measurement-to-track association which is the
fundamental computational issue in conventional multitar-
get tracking algorithms such as MHT and JPDA. There is no
need to identify which target is associated with which mea-
surement because the Bayesian framework keeps track of
the entire joint multitarget density. This property, of course,
introduces a different but related computational challenge
which will be addressed later. Furthermore, there is no need
for thresholded measurements (detections). A tractable sen-
sor model merely requires the ability to compute the like-
lihood p(z|X, T ) for each measurementz received. This
property allows the JMPD technique to generalize and out-
perform other multitarget tracking algorithms particularly in
low SNR environments.

3. THE PARTICLE FILTER REPRESENTATION OF
THE JMPD

The sample space ofX is very large. It includes all config-
urations of state vectors for all values ofT . Discretization
on a grid has computational burden exponential in the num-
ber of targets and grid cells allotted to each state. A particle
filter based implementation with carefully designed impor-
tance density allows for computational tractability [6].

To implement JMPD recursions via a particle filter, we
approximatep(X, T |Z) by a set ofNpart weighted sam-
ples (particles). Let the multitarget state vector be written
asX = [x1, x2, ..., xT−1, xT ] and be defined for all
T , T = 0...∞. Next, let the particle state vector be written
Xp = [xp,1, xp,2, . . . xp,Tp ] whereTp is the estimate
particlep has for the number of targets in the region. Let-
ting δD denote the Dirac delta where it is understood that it
is defined on the domain of its argument (i.e. finite dimen-
sional real or complex vector), we define

δ(X−Xp) =
{

0 T 6= Tp

δD(X−Xp) otherwise
(5)

Then the particle filter approximation to the JMPD is given
by

p(X, T |Z) ≈
Npart∑
p=1

wpδ(X−Xp) (6)

Different particles in the approximation may have differ-
ent estimates target number,Tp. In practice, the maximum
number of targets a particle may track is truncated at some
large finite numberTmax.

Particle filtering is a method of approximately solving
the prediction and update equations by simulation [7]. Sam-
ples are used to represent the density and to propagate it
through time. The prediction equation (eq. 3) is imple-
mented by proposing new particles from the existing set
of particles using a model of state dynamics and the mea-
surements. The update equation (eq. 4) is implemented by
assigning a weight to each of the particles that have been
proposed using the measurements and the model of state
dynamics.

This method differs from other PF algorithms where a
single particle corresponds to a single target, as it explicitly
enforces the multitarget nature of the problem by encoding
in each particle an estimate of the number of targets and the
states of those targets. Representing the full joint density
rather than merely a factorized version provides the advan-
tage that correlations between targets are explicitly mod-
elled. However, due to the dramatic increase in dimension-
ality, a simplistic implementation leads to greatly increased
computational burden. The key to tractability of the parti-
cle filter algorithm presented here is an adaptive sampling
scheme for particle proposal that automatically factorizes
the JMPD when targets or groups of targets are acting in-
dependently from the others (i.e. when there is no measure-
ment to target association ambiguity), while maintaining the
couplings when necessary. The importance density design
is described in detail in [6].

4. INFORMATION BASED SENSOR
MANAGEMENT

In this section, we detail our information-based myopic sen-
sor management algorithm. At each instance when a sensor
is available, we use an information-based method to com-
pute the best sensing action to take. This is done by first
enumerating all possible sensing actions. A sensing action
may consist of choosing a particular mode (e.g., HRR mode
or GMTI mode), a particular dwell point/pointing angle, or
a combination of the two. Next, theexpectedinformation
gain is calculated for each possible action, and the action
that yields the maximum expected information gain is taken.
The received measurement is then used to update the JMPD,
which then drives the choice of the next sensing action.



Calculation of information gain between two densities
f1 andf0 is done via the Ŕenyi information divergence [8][9]:

Dα(f1||f0) =
1

α− 1
ln

∫
fα
1 (x)f1−α

0 (x)dx (7)

We compute the divergence between the predicted and
the updated density after a measurement is made. The PF
approximation of the density simplifies eq. (7) to

Dα

(
p(·|Zk+1)||p(·|Zk)

) ∝ ln
1

p(z)α

Np∑
p=1

wpp(z|Xp)α

(8)
The sensor modelp(z|Xp) incorporates everything about

the sensor, including signal to noise ratio, detection proba-
bilities, and whether the locations are visible.

We wish to perform the measurement that makes the di-
vergence between the current density and the density after
a new measurement largest. This indicates the action has
maximally increased information content of the measure-
ment updated density with respect to the density before a
measurement was made. To this end, we calculate the ex-
pected value of eq. (8) for each of theN possible sensing
actions and choose the action that maximizes the expecta-
tion. Let ai, i = 1...N to refer to the possible sensing ac-
tions under consideration, including but not limited to sen-
sor mode selection and sensor beam positioning.

The expected value of eq. (8) is an integral over all pos-
sible outcomeszai when performing actionai:

||Dα||ai =
∫

dzaip(zai |Zk)Dα

(
p(·|Zk, zai)||p(·|Zk)

)

(9)
In the special case of thresholded measurements (e.g.,

detections or non-detections), we have

||Dα||ai ∝
1∑

zai
=0

p(zai)ln
1

p(zai)α

Np∑
p=1

wpp(zai |Xp)α

(10)

5. SIMULATION RESULTS

One of the principal benefits of the information based sen-
sor management approach is that the complex tradeoffs be-
tween different sensing actions are automatically taken into
account. The tradeoffs become even more complex in the
case of a sensor that is able to decide between several modes
of operation. In this section, we investigate via simulation
studies a situation involving a sensor that has three modes
available for use:

• A moving target indicator (MTI), which is a mode
that able to detect the position of targets only when
they are moving,

• A fixed target indicator (FTI), which is a mode that is
able to detect the position of targets only when they
are stopped, and

• An identification (ID) sensor, which is able to deter-
mine the type (e.g., jeep or tank) of a target

To choose the action, we compute the gain in infor-
mation for each of the possible sensing actions. This in-
cludes each possible measurement when using the MTI sen-
sor, each possible measurement when using the FTI sensor,
and each possible measurement when using the ID sensor.

The MTI and FTI sensor modes model a GMTI and a
SAR processing chain, respectively. When measuring a cell,
the imager returns either a0 (no detection) or a1 (detection)
which is governed by a probability of detection (Pd) and a
per-cell false alarm rate (Pf ). When a target is moving, the
FTI sensor always returns the false alarm rate. Likewise,
when a target is stationary, the MTI sensor always returns
the false alarm rate. The signal to noise ratio (SNR) links
these values together. In this illustration, we takePd =
0.5, andPf = P

(1+SNR)
d , which is a standard model for

thresholded detection of Rayleigh returns. When there areT
targets in the same cell, the detection probability increases

according toPd(T )=P
1+SNR

1+T∗SNR

d . This model is known by
the filter and used to evaluate (4).

The ID sensor models a complete automatic target recog-
nition (ATR) system that involves a high range resolution
radar and a signal processing algorithm. There are3 pos-
sible target types in this simulation. We model the perfor-
mance by a confusion matrix, which describes the probabil-
ity that algorithm will return a particular classification when
it is pointed at a particular target type. The model is given in
Table 1 and says that when a single target occupies a detec-
tion cell, the probability of correctly identifying the target
is 0.6, with the misclassifications spread evenly about the
other two classes. Also, when multiple targets occupy the
same cell or no targets are in the cell, the ATR algorithm
returns a random classification. This model is reasonable
for common ATR systems, which rely on the geometry of
scattering centers for targets to provide classification calls.
When multiple targets are contributing to an energy return,
this geometry is corrupted and ATR performs very poorly.

The expected myopic gain in information from using the
ID sensor follows directly from (9), where the number of
possible outcomes is now 3:

< Dα >m=
1

α− 1

3∑
z=1

p(z)ln
1

p(z)α

Npart∑
p=1

wpp(z|Xp)α

(11)



Actual Cell Status
Empty or

Classification Multiply
Probability Type 1 Type 2 Type 3 Occupied

Type 1 0.60 0.20 0.20 0.33
Type 2 0.20 0.60 0.20 0.33
Type 3 0.20 0.20 0.60 0.33

Table 1: The identification sensor is modeled using a con-
fusion matrix. The confusion matrix given here, used for
the simulations presented in this section, says each mea-
surement of a single target is independent and provides the
correct identification 60% of the time. Measurements of
empty cells or cells containing multiple targets return a ran-
dom classification call.

The goal is to use the sensor to simultaneously deter-
mine the position and target types of a group of maneuver-
ing targets. The target motion is taken from real targets that
are performing combat maneuvers. At each time step, the
sensor must choose from amongM different sensing ac-
tions (choosing both mode and pointing angle). Initially,
the positions of the targets are known (with some covari-
ance) and the identification is unknown.

We present in Figure 1 a comparison between the perfor-
mance of the algorithm using the information based method,
periodic scan, and two other non-divergence based meth-
ods. We compare the performance of the various managed
strategies and the periodic scheme by looking at RMS error
versus number of sensor dwells (”looks”) and the number
of targets correctly detected.

Sensor management algorithm “A” manages the sensor
by pointing it at or near the estimated location of the targets.
Specifically, algorithm “A” performs a gating procedure to
restrict the portion of the surveillance area that the sensor
will consider measuring. The particle filter approximation
of the time updated JMPD (3) is used to predict the location
of each of the targets at the current time. The set of cells
that the sensor manager considers is then restricted to those
cells containing targets plus the surrounding cells, for a total
of 9 cells in consideration per target. The dwells are then
allocated randomly among the gated cells.

Sensor management algorithm “B” tasks the sensor based
on the estimated number of targets in each sensor cell. Specif-
ically, the particle approximation of the time updated JMPD
is projected into sensor space to determine the filter’s esti-
mate of the number of targets in each sensor cell. The cell
to measure is then selected probabilistically, favoring cells
that are estimated to contain more targets. In the single tar-
get case, this method reduces to measuring the cell that is
most likely to contain the target.

Both algorithms “A” and “B” switch between the three
sensor modes sequentially. Notice that both methods “A”
and “B” introduce new assumptions that were not present
in the information-based algorithm. In particular, both give
value only to looking near where targets are predicted to
be. There seems to be no natural extension of this heuris-
tic to include detection of new targets. Furthermore, algo-
rithm “A” assumes equal weight to all areas predicted to
contain targets and algorithm “B” gives precedence to areas
predicted to contain multiple targets.
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Figure 1: A comparison of the information-based method
to periodic scan and two other methods for simultaneous
track and ID. The performance is measured in terms of the
(median) RMS error and the (average) number of targets
correctly identified and in track. Theα-divergence strategy
outperforms the other strategies for a fixed amount of sensor
resources.



6. CONCLUSION

This paper has illustrated a method of sensor management
based on choosing actions that are expected to gain the most
information. The compelling thing about information theo-
retic scheduling is that different mission goals such as de-
tection, tracking, and identification can be simultaneously
addressed with a single metric. Indeed, it can be shown [10]
that information gain can be interpreted as an approximation
to any task related measure such as minimizing tracking er-
ror or maximizing classification performance.

The main practical difficulty in applying information
theoretic approaches is that a good representation of the
posterior density is required. We have addressed this via a
multitarget particle filter, which provides a computationally
efficient and robust approach to implementing the nonlinear
filter.

The benefit of the information theoretic strategy was
shown on a model problem involving real data and a sen-
sor with a agility in mode and pointing angle. In particular,
the information-theoretic approach is shown to outperform
two other algorithms in terms of tracking error and identifi-
cation performance for a fixed number of sensor resources.
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