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Abstract— This paper develops two efficient methods of
long-term sensor management and investigates the benefit in
the setting of multitarget tracking. The underlying tracking
methodology is based on recursive estimation of a Joint
Multitarget Probability Density (JMPD), implemented via
particle filtering methods. The myopic sensor management
scheme is based on maximizing the expected Rényi Divergence
between the JMPD and the JMPD after a new measurement
is made. Since a full non-myopic solution is computationally
intractable when looking more than a small number of time
steps ahead, two approximate strategies are investigated. First,
we develop an information-directed search which focusses
Monte Carlo evaluations on action sequences that are most
informative. Second, we give an approximate method of solving
Bellman’s equation which replaces the value-to-go with an
easily computed function that approximates the long term
value of the action. The performance of these methods is com-
pared in terms of tracking performance and computational
requirements.

I. INTRODUCTION

The problem of sensor management is to determine
the best way to task a sensor or group of sensors when
each sensor may have many modes and search patterns.
Typically, sensors are used to gain information about the
kinematic state (e.g. position and velocity) and identification
of a group of targets. Applications of sensor management
are often military in nature [11], but also include things such
as robot path planning [9]. There are many objectives that
the sensor manager may be tuned to meet, e.g. probability of
target detection, minimization of track error/covariance, and
identification accuracy. Each of these different objectives
taken alone may lead to a different allocation strategy [11].

Sensor management schemes may be myopic (short term)
or non-myopic (long-term). Long-term sensor scheduling
will out perform short-term methods in situations where
the dynamics of the scenario are predictably changing
and where there are large gaps in sensor coverage. For
example, when targets and/or sensor platforms are moving
the visibility of a target from a sensor changes with time
which may make long-term planning advantageous.

In this paper, we detail a multi-target tracking situation in
which non-myopic scheduling outperforms myopic schedul-
ing. This scenario involves a moving sensor which, due to
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terrain elevation, results in part of the surveillance region
being obscured at each time step. We contrast the sensor
scheduling decisions made by a myopic scheduler with that
of a non-myopic scheduler in terms of resulting track error.
As the full non-myopic solution requires computational time
exponential in the number of time steps forward that the
algorithm plans, we present two alternative schemes. First,
we give an information-directed path searching scheme
which reduces the complexity of the full Monte Carlo (MC)
search and yields similar results. Second, we present an
approximate method which replaces the value-to-go by a
function which captures the long-term benefit of an action
in terms of an “opportunity cost” or “regret”.

The paper proceeds as follows. First, Section II is an
overview of Bayesian multiple target tracking and our par-
ticle filter implementation. Second Section III gives details
of our information-based method of myopic sensor man-
agement. Third, Section IV provides a motivating example
of a scenario in which non-myopic sensor management
provides benefit. Fourth, in Section V, we detail the full
MC approach to non-myopic sensor management, and note
the intractability for long time-scale problems. We develop
therein two approximate methods of long term scheduling,
including a technique which replaces the value-to-go with a
function that approximates the long-term value of an action.
Finally, in Section VI we provide simulation results compar-
ing the myopic, non-myopic, and approximate techniques in
terms of track error and computational burden.

II. BAYESIAN MULTI-TARGET TRACKING

Estimating the joint multitarget probability density
(JMPD) [8] provides a means for tracking an unknown
number of targets in a Bayesian setting. The statistical
model uses the joint multitarget conditional probability
density p(xk

1 ,xk
2 , ...xk

T−1,x
k
T |Zk) as the probability density

for exactly T targets with state vectors x1,x2, ...xT−1,xT

at time k based on a set of observations Zk. The number
of targets T is a variable to be estimated simultaneously
with the states. The observation set Zk refers to the col-
lection of measurements up to and including time k, i.e.
Zk = {z1, z2, ...zk}, where each of the zi may be a
single measurement or a vector of measurements made at
time i. We denote the multitarget state vector by X, i.e.
X = [x1, x2, ..., xT ], where X is defined for T = 1...∞.

Simulations in this paper treat the case where the number
of targets is known and fixed, and target states are one-
dimensional. More general situations are considered in [8].
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The temporal update proceeds according to the usual
rules of Bayesian filtering. Given a kinematic model
p(Xk+1|Xk), the prediction density is

p(Xk+1|Zk) =
∫

dXkp(Xk+1|Xk)p(Xk|Zk) . (1)

Given a sensor model, p(zk|Xk), Bayes’ rule is used as
new measurements zk+1 arrive yielding

p(Xk+1|Zk+1) =
p(zk+1|Xk+1)p(Xk+1|Zk)

p(z|Zk)
(2)

X has a very large sample space. It contains all configura-
tions of state vectors for all values of T . Discretization on a
grid has computational burden exponential in the number of
targets and grid cells allotted to each state. A particle filter
(PF) implementation allows for computational tractability
[8]. To implement JMPD via a PF, we approximate the
joint multitarget probability density by a set of Np weighted
samples (particles), i.e. p(X|Z) ≈ ∑Np

p=1 wpδ(X − Xp).

III. INFORMATION BASED MYOPIC SENSOR

MANAGEMENT

In this section, we detail our information-based myopic
sensor management algorithm. This lays the foundation for
extensions for non-myopic sensor management techniques
discussed later. At each instance when a sensor is available,
we use an information-based method to compute the best
sensing action to take. This is done by first enumerating
all possible sensing actions. A sensing action may consist
of choosing a particular mode (e.g. SAR mode or GMTI
mode), a particular dwell point/pointing angle, or a com-
bination of the two. Next, the expected information gain
is calculated for each possible action, and the action that
yields the maximum expected information gain is taken.

Calculation of information gain between two densities f1

and f0 is via the Rényi information divergence [12][5]:

Dα(f1||f0) =
1

α − 1
ln

∫
fα
1 (x)f1−α

0 (x)dx (3)

We compute the divergence between the predicted and
the updated density after a measurement is made. Our PF
approximation of the density simplifies eq. (3) to

Dα

(
p(·|Zk+1)||p(·|Zk)

) ∝ ln
1

p(z)α

Np∑
p=1

wpp(z|Xp)α

(4)
The sensor model p(z|Xp) incorporates everything about

the sensor, including signal to noise ratio, detection proba-
bilities, and whether the locations are visible.

We wish to perform the measurement that makes the
divergence between the current density and the density after
a new measurement largest. This indicates the action has
maximally increased information content of the measure-
ment updated density with respect to the density before

a measurement was made. To this end, we calculate the
expected value of eq. (4) for each of the N possible sensing
actions and choose the action that maximizes the expecta-
tion. Let ai, i = 1...N to refer to the possible sensing
actions under consideration, including but not limited to
sensor mode selection and sensor beam positioning.

The expected value of eq. (4) is an integral over all
possible outcomes zai when performing action ai:

||Dα||ai
=

∫
dzai

p(zai
|Zk)Dα

(
p(·|Zk, zai

)||p(·|Zk)
)
(5)

In the special case of thresholded measurements, we have

||Dα||ai ∝
1∑

zai
=0

p(zai)ln
1

p(zai
)α

Np∑
p=1

wpp(zai |Xp)α (6)

IV. NON-MYOPIC SENSOR MANAGEMENT :
MOTIVATING EXAMPLE

In many situations, a non-myopic management strategy
will provide better decisions than the myopic strategy. In
this section, we consider the problem where at each time
step an airborne sensor is able to image a portion of a
ground surveillance area to determine the location of a set
of moving ground targets.

At each time step, the sensor position causes portions of
the ground to be unobservable due to terrain elevation be-
tween the sensor and the ground. Given the sensor position
and the terrain elevation, we can compute a visibility mask
which determines how well a particular spot on the ground
can be seen by the sensor. As an example, in Fig. IV, we
give the visibility masks that are computed from a sensor
positioned below and to the left of the surveillance area.

Visibility constraints enter into the sensor management
formulation through p(z). The (myopic) sensor manager
will calculate small expected gain for a cell that is obscured
(if completely obscured, 0 expected gain). Hence, the sensor
will not be used to interrogate obscured areas.

A situation where non-myopic management aids tracking
is when a target becomes invisible to the sensor for a brief
amount of time and then reemerges. Extra sensor dwells
immediately before obscuration (at the expense of not in-
terrogating other targets) will sharpen the estimate of target
location. This sharpened estimate will allow prediction of
where the target will emerge. We illustrate this graphically
with a six time-step vignette in Fig. 2.

V. NON-MYOPIC SENSOR MANAGEMENT :
COMPUTATIONAL METHODS

In this section, we present three information-based meth-
ods of non-myopic sensor management.

The first method is a Monte Carlo (MC) technique that
considers all two step sequences (ak

i , ak+1
j ) and computes

the expected information gain by repeatedly simulating its
application and computing the average gain. While simple

723



x (km)

y 
(k

m
)

0 3 6 9 12 15
0

3

6

9

12

15

(a) Visibility mask, sensor below region
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(c) Visibility mask, sensor left of the region

Fig. 1. Visibility masks for a sensor positioned below and left of the surveillance region. We show binary visibility masks (non-visible areas are black
and visible areas are white). In general, visibility may be between 0 and 1 indicating areas of reduced visibility, e.g. partially obscured by foliage.

km

km

Time = 1

km

km

Time = 2

km

km

Time = 3

km

km

Time = 4

km

km

Time = 5

km

km

Time = 6

Fig. 2. A six time step vignette where the target moves through an
obscured area. The target is depicted by an asterisk. Obscured areas are
black and visible areas are white. Extra dwells just before becoming
obscured (time = 1) aid in localization after the target emerges (time = 6).

to describe, this method has computational burden O(Np ∗
NH), where N is the number of actions at each time and
H is the number of time steps the algorithm looks ahead.

The second method is a MC technique that adaptively
decides which paths through action space to investigate.
Given a compute budget, we use an information-directed
algorithm to decide which paths deserve attention. This
uses available computations in the best way minimizing the
effect of the computational budget on solution quality.

The third method is a technique that approximates the
long-term value of an action by the change in information
gaining ability over time. This function makes actions that
are rewarding due to future considerations more desirable
to choose at the current time step, thus approximating the
non-myopic decision. The algorithm is O(Np ∗ N ∗ H).

A. Notation and Preliminaries

Denote the value of state s at time k by Vk(s). We
will use c(s, a) as shorthand for the myopic expected gain

associated with an action a in state s, that is

c(s, a) .= ||Dα

(
p(·|Zk+1)||p(·|Zk)

) ||a (7)

where s is used as a surrogate for p(Xk+1|Zk).
Bellman’s equation in the discounted reward scenario is

Vk(s) = max
a

{c(s, a) + γEs′ [Vk+1(s′)]} (8)

where Es′ [Vk+1(s′)] =
∑

j∈S p(j|s, a)Vk+1(j).

The optimal non-myopic action â is then given by

â = arg max
a

{c(s, a) + γEs′ [Vk+1(s′)]} (9)

B. Monte Carlo Trials for Non-myopic Sensor Management

A straightforward but intractable way of solving eq. (8)
is via Monte Carlo (MC) rollout techniques, i.e. repeatedly
playing out a given position in order to calculate the
expected reward from that position. The two-step rollout
procedure is shown in Fig. 3. We first predict the target
density at time (k + 1) by performing model update. The
prediction density, p(Xk+1|Zk) is used to determine all
possible actions at time k + 1, ak+1

1 · · · ak+1
N .

For each action at time k + 1, we perform the following
two steps repeatedly to generate a MC average of the
information gain. First, the action is simulated resulting in
a measurement ẑk+1. The density of ẑk+1 is formed from
p(Xk+1|Zk). The simulated measurement is used to update
the density forming p(Xk+1|Zk, ẑk+1). The realized gain
in information from this measurement is calculated between
p(Xk+1|Zk) and p(Xk+1|Zk, ẑk+1) using eq. (3).

This predicted posterior is then model updated to form
the prediction density at time k +2, p(Xk+2|Zk, ẑk+1). At
this point, the expected one-step (myopic) gains for each
possible action at time k+2 is generated using eq. (6). The
value of action ak+1

i is then the actual realized gain from
time step k + 1 to time step k + 2 plus the mean of the
expected gain at time k + 2. We call this 2-step procedure
searching the path associated with the action ak+1

i .
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Fig. 3. The two-step non-myopic algorithm is rolled out for all possible
actions at time k +1. The value of an action is the realized gain from the
action plus the expected gain at the next step. This procedure is run many
times to generate a MC average of the two-step gain for each action.

The extension to looking more than two time steps into
the future is straightforward but computationally prohibitive
– the algorithm is O(NH). For example, a three-step
rollout would perform an additional simulation step using
p(Xk+2|Zk, ẑk+1) to simulate a measurement ẑk+2 at time
k + 2. This would generate a predicted posterior at time
k+2, p(Xk+2|Zk, ẑk+1, ẑk+2). A model update would form
p(Xk+3|Zk, ẑk+1, ẑk+2), and the expected myopic gain at
time k + 3 would be calculated. This procedure would be
repeated for each action at time k+1 many times to generate
a MC average of the expected gain.

C. Adaptive Trajectory Selection for Improved MC Rollout

In this section, we describe a method of performing MC
rollout where we restrict ourselves to searching the tree a
small number of times. Given this computational budget,
we wish to determine the best trajectories to investigate.

At time k + 1, there are N possible actions. Each action
corresponds to the first step in a trajectory down the tree.
Associated with each action is an expected (long-term) gain
in information for executing that action, and we wish to
determine this as precisely as possible. In section V-B we
determined this gain by simply searching down each path
many times and using the empirical average of information
gain as a surrogate for the expected information gain. Here
we wish to select the paths to search to best estimate the
expected information gain with a fixed number of samples.
We propose to select the best trajectory by computing the
gain in information that making an additional simulation
will garner. This will provide an automatic method to prune
trajectories – i.e. decide which paths are not worth further
investigation and which paths deserve greater attention.

We define pai(g|Gai) to be a density on the expected
long-term gain in information g if we were to actually take
action ai, conditioned on the long-term information gains
simulated so far from searching down trajectories starting

with action ai, Gai . At beginning of each decision epoch,
we will have not searched any trajectories yet and so Gai =
∅. Our goal is to determine pai(g|Gai) for all actions ai as
accurately as possible using a fixed budget, so that when we
actually task the sensor we are tasking it to make the action
that maximizes the expected long-term gain in information.

At the onset, we have N actions and no idea which
action is best. We propose to construct the initial density
on the expected long-term information gain for actually
taking action ai by looking down the trajectory associated
with action ai a small number of times (M ) to generate
samples from the density pai(g|Gai). These samples from
pai

(g|Gai
) will be used to approximate pai

(g|Gai
) in a PF

like manner, e.g. pai(g|Gai) = 1
M

∑M
p=1 δ(g − gp).

We then simulate an additional K trajectories to improve
our estimate of the expected long term information gain
when taking action ai, pai(g|Gai). We use an information
directed method to select the trajectory to investigate for
each investigation. The method proceeds as follows. For
each action ai, we compute the expected gain in information
with respect to pai

(g|Gai
) that making one additional sim-

ulation of that action will garner. Then we investigate that
path that generates the largest expected gain in information.
We repeat this procedure for all K investigations.

Formally, we compute the expected gain in information
for investigating action ai as follows. Before investigating
a new path, we have a density pai(g|Gai). Assume that
we have decided to investigate a particular action and this
investigation has generated a new realization of the expected
long-term gain ĝ. The updated density becomes

pai(g|Gai , ĝ) =
pai

(ĝ|g)pai
(g|Gai

)
pai

(ĝ|Gai
)

(10)

Using the Alpha-Divergence metric (eq. 3), and a method
identical to that of section III, we can determine that
the expected gain in information between pai(g|Gai) and
pai(g|Gai , ĝ) for searching the trajectory starting with ac-
tion ai is proportional to the entropy of the distribution as-
sociated with that action,

∫
g
pai(g|Gai)ln (pai(g|Gai)) dg,

which is the intuitive result that the best trajectory to search
is the trajectory associated with the highest uncertainty.

D. Approximating the Value-to-go

In this section, we detail another approximate method of
determining the long-term value associated with an action.
This method directly replaces the second term on the right
hand side of eq. (8) and (9), the long term value factor.
The strategy is predicated on the following observations.
First, if by waiting to perform an action until a later time
step, the ability to gain myopic information via an action
decreases, the action should have high priority to perform
now. Conversely, if the ability to gain myopic information
is greater in the future, the action should be delayed.

The approximation we advocate is an information based
method for computing the difference between the expected
myopic information gaining capability at the current time
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with the expected myopic information gaining capability
at a future time. Intuitively, this captures the “opportunity
cost” or “regret” for not taking an action at the current time.

For a concrete example, consider the case of time varying
visibility. If an area is predicted to be less visible in the
future, the desire to interrogate now should be enhanced.
Conversely, if an area is predicted to be more visible
in the future, the desire to interrogate it now should be
depressed. Of course, more than just visibility must be
accounted for. The expected future occupancy and expected
future uncertainty is relevant as well. The proposed method
accommodates all of these factors simultaneously.

The optimal method for choosing the action to make at
the current time, â is by evaluating eq. (8). We approximate
the value-to-go, Es′ [Vk+1(s′)], by a function N(s, a) which
captures the long term reward of action a in state s and is
easily computable. Specifically, we approximate eq. (8) by

â = arg max
a

{c(s, a) + γN(s, a)} (11)

We use as N(s, a) the “gain in information for waiting”.
Specifically, let ḡk

a denote the expected myopic gain when
taking action a at time k. Furthermore, let pk

a(·) denote the
distribution of myopic gains when taking action a at time k.
Then we approximate the long-term value of taking action
a by the gain (loss) in information received by waiting until
a future time step to take the action,

N(s, a) ≈
M∑

m=1

γmsgn
(
ḡk

a − ḡk+m
a

)
Dα

(
pk

a(·)||pk+m
a (·))

(12)
where M is the number of time steps in the future that
are considered. Each term in the summand has two com-
ponents. First, sgn

(
ḡk

a − ḡk+m
a

)
signifies if the expected

information gain in the future is more or less than the
present. A negative value implies that the future is better
and that the action ought to be discouraged at present. A
positive value implies that the future is worse and that
the action ought to be encouraged at present. The second
term, Dα

(
pk

a(·)||pk+m
a (·)) measures the Renyi divergence

between the density on myopic gains at the current time
step and at a future time step. What results is a magnitude
of the difference between the two densities. A small number
implies the two are very similar and therefore the non-
myopic term will have little impact on the decision making.

To completely specify the technique advocated here, we
introduce a weighting w which gives relative precedence to
the non-myopic and myopic terms in the approximation to
Bellman’s equation, i.e. we approximate eq. (8) with

â = arg maxa{c(s, a)+

w
M∑

m=1

γmsgn
(
ḡk

a − ḡk+m
a

)
Dα

(
pk

a(·)||pk+m
a (·))} (13)

As w → 0 the technique schedules myopically, and as w →
∞ the technique considers only the future. An appropriate
choice for w balances the present and the future.

This technique applies to a variety of other scenarios. For
example, consider the convoy-movement scenario. By using
kinematic prediction, one may be able to determine that two
targets are about to come close together (e.g. enter the same
sensor detection cell). This signals reduced ability to gain
information about those targets in the future and therefore
the targets should be interrogated at the current time step.

VI. SIMULATION RESULTS

We investigate the following model problem, inspired
by the scenario of Section IV. There are two targets each
described by a one-dimensional position. The sensor may
measure any one of 16 cells, each 1 unit wide. Cell locations
are fixed and centered at .5, 1.5, · · · , 15.5 units. The sensor
makes three (not necessarily distinct) dwells per time step,
receiving binary returns independent from dwell to dwell.
In occupied cells, a detection is received with probability
Pd (set here at 0.9). In cells that are unoccupied a detection
is received with probability Pf (set here at .01).

At the onset, positions of the targets are known only
probabilistically to the filter. The filter is initialized with the
probability of target 1 location uniformly distributed across
sensor cells {2 · · · 6} and the probability of target 2 location
uniformly distributed across sensor cells {11 · · · 15}.

Visibility of the sensor cells is as follows. At time 1,
all cells are visible to the sensor. At times 2, 3, 4, cells
{11 · · · 15} are invisible. At time 5 all cells are visible again.
This model problem closely emulates the situation where a
target is initially visible to the sensor, becomes obscured,
and then reemerges from the obscuration.

Fig. 4. The model problem. At the onset, the filter has estimates of target
1 and target 2 uniformly distributed across cells {2...6} and {11...15},
respectively. At time 1 all cells are visible. At time 2, 3, and 4 cells
{11...15} are obscured. This emulates the the situation where one target
is initially visible to the sensor, becomes obscured and then reemerges.

At time 1 the myopic strategy, having no information
about the future visibility, will choose cells uniformly from
the set {2...6}∪{11...15}. As a result, target 1 and target 2
will on the average be given equal attention. A non-myopic
strategy will preferentially choose cells from {11...15} as
they are to become invisible.

A. Results Using Information Directed Path Interrogation

Fig. 5 presents a comparison between uniform search-
ing (described in Section V-B) with information-directed
searching (Section V-C). Performance is compared in terms
of median error versus number of paths searched (which
measures algorithm complexity). As expected, uniform
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search requires more path interrogations to yield a desired
error since it wastes investigations on paths of little value.
The information directed method saves on the order of a
factor of 2 − 4 in compute time for a given error budget.
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Fig. 5. A comparison between uniform MC and information-directed
search. The top curve gives the results of searching each path equally
(uniform search). The bottom two curves are each seeded with uniform
search and followed by information-directed searches. A comparison is
made in terms of the total number of paths searched between the algo-
rithms, which is a measure of algorithm complexity. For a given number
of paths searched, information-directed search yields better performance.

B. Results Using Approximation of Value-to-go

We illustrate here the performance of the approximation
to Bellman’s equation given in Section V-D. Fig. 6 shows
the tracking performance in the model problem as a function
of the weighting of the value-to-go function, w. As men-
tioned earlier, at w = 0 the algorithm acts myopically so the
performance is that of the myopic scheduler of Section III.
At large w, the algorithm takes actions based only on long
term considerations (i.e. ignores the one-step value of an
action). The resulting errors are slightly worse than being
myopic. In between, the proper trade between short term
and long term considerations is made and the performance
nearly reaches that of the exact non-myopic scheduler.

Table I summarizes the performance of the algorithms in
terms of compute time and tracking performance.

TABLE I

PERFORMANCE OF THE NON-MYOPIC SCHEDULING ALGORITHMS.

Description CPU Time Median Error
Method (Section) (sec) (cells)
Myopic III 0.189 2.054

Monte Carloa V-B 10.24 1.473
Monte Carlo V-B 53.030 0.949
Monte Carlo V-B 157.32 0.925

Information-Directed V-C 8.458 1.249

Approximate (w = 0.05) V-D 0.258 0.932

aMC Non-myopic shown for 250, 2500, and 5000 searches/path
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Fig. 6. Performance of the approximate non-myopic scheduler of Section
V-D as a function of the weighting of the value-to-go approximation, w. w
weights the influence of the one-step value of an action with the long-term
value. When chose properly, the two considerations are balanced and the
performance equals that of the exact non-myopic scheduler.

VII. CONCLUSION

This paper has investigated the benefit of long-term sen-
sor scheduling. Since the non-myopic optimization problem
is computationally intractable, approximate techniques must
be developed. We have detailed two techniques that provide
a computational speedup to this optimization problem and
demonstrated the performance is equivalent to that of a full
non-myopic optimization in a model problem involving time
varying visibility due to sensor platform motion.
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