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ABSTRACT

This paper addresses the problem of tracking multiple mov-
ing targets by recursively estimating the joint multitarget
probability density (JMPD). Estimation of the JMPD is
done in a Bayesian framework, providing a method of track-
ing multiple targets which allows nonlinear target motion,
nonlinear measurement to state coupling, and non-Gaussian
target state densities. We utilize a particle filter implemen-
tation which has been detailed elsewhere [1].

Real targets are poorly described by a single kinematic
model. Target behavior may change dramatically – e.g.
targets stop moving or begin rapid acceleration. In the lit-
erature, the Interacting Multiple Model (IMM) algorithm
[4] is used to address this. The IMM uses multiple mod-
els for target behavior and adaptively determines which
model(s) are the most appropriate at each time step.

We demonstrate the IMM in the context of our PF
based multitarget tracker in two settings. First, we con-
sider application to targets that switch between kinematic
modes. The target motion used is field data recorded dur-
ing a military battle simulation and includes multiple modes
of target behavior. Second, we present a nontraditional
application of IMM as multiple models on the state of the
filter. In the context of PF based target tracking, this tech-
nique may be viewed as a (biased) sampling scheme for
particle proposal. This strategy adds robustness to the
tracker as it is able to automatically detect model viola-
tions and compensate by altering the filter model.

This work was supported under the USAF contract F33615-02-C-
1199, AFRL contract SPO900-96-D-0080 and by ARO-DARPA MURI
Grant DAAD19-02-1-0262. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the United States Air Force.

1. INTRODUCTION

The goal of target tracking is to estimate the state of a target
using a model of target kinematics, a probabilistic model
of a sensor, and a set of noisy measurements. Since real
targets are poorly described by a single kinematic model,
researchers have developed the Interacting Multiple Model
(IMM) target tracker [4] and variants such as VS-IMM [6].

The IMM characterizes a target as behaving according
to one ofM modes (e.g. stopped, moving with constant ve-
locity, or accelerating). Each mode has an associated prob-
ability. Transition rates between modes (e.g the probability
that a moving target stops) are defineda priori. As new
data comes in, mode probabilities adjust based on agree-
ment with measurements. The goal is to correctly estimate
mode probabilities to minimize tracking error.

This paper contains two contributions. First, we investi-
gate the IMM in a multi-target tracking environment where
target motion is taken from real recorded data. Using a mul-
titarget particle filter with IMM, we investigate the tradeoff
between adaptation time and steady state error. Second, we
investigate a new application of the IMM, where thestate of
the filter is modeled rather than the state of the target. In the
context of particle filter based target tracking, this can be
interpreted as having multiple (biased) proposal schemes as
the models. We show via simulation that this strategy adds
robustness to the filter, keeping targets in track more often
than otherwise.

The paper proceeds as follows. In Section 2, we briefly
review Bayesian multitarget tracking and the standard parti-
cle filter based implementation. In Section 3, we outline the
IMM strategy. In section 4, we give an example of the IMM-
particle filter (IMMPF) applied to the problem of tracking
two targets that can each be modeled as behaving according
to one of 2 modes – stopped and moving. This is the regime
in which the IMM is typically applied, although most of
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Figure 1: A top-level view of the two interpretations of the Interacting Multiple Model strategy considered here.

the literature uses the IMM algorithm in conjunction with
a Kalman filter tracker. In Section 5, we give a new appli-
cation where the modes are associated with the filter rather
than the target. In this application, the IMM estimates the
state of the filter rather than the target.

2. BAYESIAN MULTITARGET TRACKING AND
PARTICLE FILTERING

We track a collection of moving targets by recursively es-
timating the Joint Multitarget Probability Density (JMPD).
We restrict ourselves to the case where the number of targets
is known and fixed although the framework is general.

The statistical model uses the joint multitarget condi-
tional probability densityp(xk

1 ,xk
2 , ...xk

T−1,x
k
T |Zk) as the

probability forT targets with statesxk
1 ,xk

2 , ...xk
T−1,x

k
T at

time k based on a set of observationsZk. Zk refers to the
collection of measurements up to and including timek, i.e.
Zk = {z1, z2, ...zk}, where each of thezi may be a single
measurement or a vector of measurements made at timei.
Each of the state vectorsxi is a vector quantity and may (for
example) be of the form[x, ẋ, y, ẏ]′. For convenience, the
density will be written more compactly asp(Xk|Zk), where
X = [xk

1 ,xk
2 , ...xk

T−1,x
k
T ].

The temporal update of the posterior likelihood on this
density proceeds according to the usual rules of Bayesian
filtering. Given a model of how the JMPD evolves over time
p(Xk+1|Xk), we compute the time-updated or prediction
density via marginalization of a conditional density:

p(Xk+1|Zk) =
∫

dXkp(Xk+1|Xk)p(Xk|Zk) (1)

p(Xk+1|Zk) is referred to as the prior or prediction density
at timek + 1, as it is the density at timek + 1 conditioned
on measurements up to and including timek.

Given a model of the sensor,p(z|Xk), Bayes’ rule is
used to update the posterior density as a new measurement
vectorz arrives at timek + 1 via

p(Xk+1|Zk+1) =
p(z|Xk+1)p(Xk+1|Zk)

p(z|Zk)
(2)

p(Xk+1|Zk+1) is referred to as the posterior or the updated
density at timek +1 as it is the density at timek + 1 condi-
tioned on all measurements up to and including timek + 1.

The sample space ofX is very large. It contains all pos-
sible configurations of state vectorsxi. We find that a parti-
cle filter based representation of the JMPD allows tractable
implementation [1]. The particle filter approximation repre-
sents the JMPD by a collection of weighted samples, i.e.

p(X|Z) ≈
Npart∑
p=1

wpδ(X−Xp) (3)

Particle filtering is a method of approximately solving
the prediction and update equations (1) and (2) by simula-
tion [5]. Samples are used to represent the density and to
propagate it through time. The prediction equation (1) is
implemented by proposing new particles from the existing
particles using a model of state dynamics and the measure-
ments. The update equation (2) is implemented by assign-
ing a weight to each of the particles that have been proposed
using the measurements and the model of state dynamics.

Of particular interest in this work is the best way to
propagate samples through time (simulate (1)). As real tar-
gets have time varying kinematic modes, the traditional IMM
seeks to estimate which of the modes the target is following
and use this to time evolve (predict) the density. Here we
extend this to allow additional methods of time evolution
which are related to the state of the filter rather than the
state of the target. This allows the filter to detect model vio-



lations when measurements are inconsistent with the current
method of time evolution and compensate.

3. MULTIPLE MODEL TARGET TRACKING

In this section, we outline the IMM algorithm [6]. For sim-
plicity, we give details for a single target. Extension to mul-
tiple targets is straightforward.

Real targets rarely obey a single kinematic model. The
IMM algorithm estimates on-line the target mode, and uses
it for filtering. The designer selects a set ofM models or
modesm = 1 · · ·M that represent all possible priors on
motion of the target (e.g. stopped, accelerating, perform-
ing a coordinated turn). Associated with each modelm is
the mode probability (probability the target is following this
mode at the current time). At initialization, mode probabil-
ities are given based on prior knowledge. While the filter
tracks the target, mode probabilities are continuously re-
estimated online.

The target mode is assumed to evolve in a Markov fash-
ion, specifieda priori by transition probabilitiesπij be-
tween target modei and j. Sensor measurements allow
the filter to update the estimate of the mode probabilities
at each time step. A sub-filter is associated with each of the
M modes. The sub-filters estimate the statex conditioned
on both the measurementsZ and the modei, i.e. theith

sub-filter estimatespi(x|Z).
When a particle filter is used as the target tracker, the

IMM algorithm is especially simple. Each particle is ex-
panded to contain a mode estimate for each target. The par-
ticle is propagated forward in time according to the dynam-
ics implied by the modes of the targets. Transitions between
modes happen for each target according toπ. The weighting
and resampling process work to reinforce modes that are in
agreement with measurements at the expense of those that
are not. Specifically, for each particle at timek (which con-
tains an estimate of the modemk and statexk) we propose
a particle at timek + 1 according to Table 1.

Table 1: Generic IMM Particle Filter Propogation

Time Update

• Select the mode :mk+1 ∼ πmk,mk+1

• Propose target state :xk+1 ∼ qmk+1(xk+1|xk, z)

Measurement Update

• Update weight :wk+1 = wk p(z|xk+1)p(xk+1|xk)
q(xk+1|xk,z)

The important issue for efficient particle filtering is the

choice of importance densityq. It is known that the op-
timal importance density is typically intractable to use for
particle proposal [5]. We study here two methods of parti-
cle proposal, both of which use the IMM as control logic.
In the first method (Section 4) proposals are always made
using target kinematics (as is commonly done in the liter-
ature) and the IMM is used to estimate which of the kine-
matic models the target is following at each time step. In
the second method (Section 5) proposals are made in a more
generic way, allowing arbitrary forms ofq, again controlled
by the IMM.

4. MULTIPLE MODELS ON THE TARGET STATE

Here we consider the traditional application of the IMM,
tracking a target that switches between kinematic modes.
We specialize to the case where the filter hasM = 2 mod-
els: target stopped and target moving. The filter estimates
the probability the target is stopped and the probability the
target is moving for each target.

Particles are always proposed using the target kinemat-
ics. Different particles may have different estimates of tar-
get mode and hence different kinematic priors. This gives
q(xk+1|xk, z) = p(xk+1|xk) in Table 1, leading to a simple
form for the weight update,wk+1 = wkp(z|xk+1).

4.1. Description of Simulation

Two targets move in a surveillance area. At each time step,
measurements of the entire region are made from two sen-
sors. Sensor A measures the area with a moving target indi-
cator, characterized by detection probabilityPMTI

d (O) and
false alarm probabilityPMTI

f (O). O indicates occupation
of a cell, i.e. the number of targets in the cell. Sensor B
measures the area with a fixed (stopped) target indicator and
is characterized byPFTI

d (O) andPFTI
f (O). Both sensors

make thresholded measurements on a fixed grid. Target mo-
tions in the simulation are taken from real recorded data.
The filter in the simulation is the IMMPF with two modes:
target stopped and target moving with constant velocity.

The modes are distinguished by their kinematic (model)
updates. The target moving mode has a model given by
p(xk+1|xk) ∼ N(Fxk,Q), i.e. normally distributed with
vector meanFxk and covarianceQ. F performs the deter-
ministic update andQ models uncertainty that accumulates
during the discrete time interval.F andQ were fit to the tar-
get motion using a training set of targets. The target stopped
mode usesp(xk+1|xk) ∼ δ(xk+1−xk). These modes con-
stituteq1 andq2 in Table 1.

We study the trade between adaption time and steady
state error. The parameters that control this trade are inπ,
whereπ =

(pmoving to moving
pstopped to moving

pmoving to stopped
pstopped to stopped

)
. If π allows

probability to flow from one mode to another rapidly (i.e.
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Figure 2: Left two plots: Performance of the IMM particle filter for different values of the adaption parameter,δ. True target
mode is indicated by the dark line. Both targets change modes (i.e. stop or start moving) during the simulation. The filter
estimates on-line mode probabilities, and the estimate is plotted. For large values of adaption parameter (e.g.δ = .2) reaction
time is fast, but steady state error is large. Conversely, for small values (e.g.δ = .002) reaction time is slow, but steady state
error is small. Rightmost curve: A plot of steady state error versus time constant parameterized byδ for Target 2.

off-diagonal elements are large), the filter adapts quickly but
has poor steady state behavior. Conversely, slow adaptation
corresponds to good steady state behavior. In this experi-
ment we considerπ of the formπ =

(
1−δ

δ
δ

1−δ

)
. δ plays

the role of an adaption speed parameter.

4.2. Simulation Results

We show the performance of the IMM at estimating target
modes for targets 1 and 2 as a function of adaptation param-
eterδ in Figure 2. Target 1 starts out moving and then stops
at time step 58. Target 2 starts out stopped and then starts
moving at time step 48.

The results show a tradeoff between steady state error
and adaption time. For example, consider the curves (cor-
responding to different values ofδ) for Target 2. We see
that for smallδ (e.g. δ = .0002), the filter is very slow to
adapt but has very low steady state error. Conversely, for
largerδ (e.g. δ = .2), the filter is very quick to adapt but
has large steady state error. We summarize this trade in Fig-
ure 2, which shows a plot of steady state error versus time
constant parameterized by the adaption parameterδ. The
actual transition rate from studying the true target trajectory
(which is not available to the filter) isδ ≈ .02.

5. MULTIPLE MODELS ON THE FILTER STATE

An alternate application of the IMM strategy is multiple
models on the state of the filter. Here we model transitions
in tracking error rather than in kinematic behavior of the tar-
get. It is straightforward to combine models relating to the
filter and models relating to the target but we do not pursue
that here. We find that this approach adds robustness to the
filter as it allows the filter to automatically detect a model
violation and compensate by adjusting the filter.

In the context of a particle filter tracker, using the IMM
to model the filter state may be interpreted as a biased sam-
pling scheme for particle proposal. Specifically, targets are
proposed from a mixture importance density,q:

q(xk+1|xk, zk) =
{

q1(xk+1|xk) with prob.β
q2(xk+1|xk) with prob 1-β

(4)

i.e. samples are drawn fromq1 with probability β andq2

with probability1− β. This biassed sampling is accounted
for in the weight update of the particles [5]

wk+1
p ∝ p(z|xk+1

p )p(xk+1
p |xk

p)

βq1(xk+1
p |xk

p, z) + (1− β)q2(xk+1
p |xk

p, z)
(5)

One should not get the impression that this interpreta-
tion is wedded to a particle filter implementation. It is as
implementation independent as the traditional IMM (recall
most of the research on the traditional IMM has been done
in the context of Kalman Filter tracking). One can envision
an IMM Kalman Filter tracker where one models the filter
rather than the target in exactly the manner discussed here.

5.1. Description of Simulation I

We use two models of filter mode: “target in track” and “tar-
get lost”. The filter estimates on-line the probability that the
target is being successfully tracked (model obeyed) and the
probability that the target has been lost (model violation).

The first model (target in track) the kinematics of the tar-
get is used to update the filter,p(xk+1|xk) ∼ N(Fxk,Q).

Targets get lost by the filter in the following manner.
A series of missed detections or unlikely maneuvers cause
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Figure 3: Performance of the IMM preventing lost targets. Left: Percent of trials the target is successfully tracked for different
choices ofδ. δ = 0 corresponds to always using tracking mode andδ = 1 corresponds to always using searching mode. We
find thatδ = .5 performs best. Right: Percent of density in tracking mode and the number of boundary crossings that occur
at each time step. The sensor makes detection on a fixed grid, so when a target crosses a boundary, the chance of getting lost
is greatest. It is these occasions that the mode probabilities move to favor search mode over tracking mode.

particles (mass of the target state density) to become con-
centrated in an area where the target is not present. At that
point, the kinematic model is insufficient to allow the den-
sity to flow back to the proper area of state space. The target
is then lost forever. At the point where the target has just
been lost, it is critical to recapture or risk being out-of-track
for good. To address this situation, we include a second
model given byp(xk+1|xk) ∼ N(Fxk,Qsearching) which
has a large diffusive componentQsearching. In times of
model violation, this second model should be more heav-
ily used and the mass of the state density spread throughout
state space quickly. Practically speaking, particles should
be diffused more quickly from their nominal location. These
modes constituteq1 andq2 in Table 1.

We study a difficult scenario, consisting of lowSNR
measurements, a small number of particles, and a target that
moves erratically (i.e. has largeQ). Again, there is an
adaptivity parameterδ which controls how readily the fil-
ter switches modes. A critical distinction in this setting is
that the parameter no longer has a direct physical interpre-
tation with respect to the targets. The transition matrix is
π =

(ptracking to tracking
psearching to tracking

ptracking to searching
psearching to searching

)
. We choose to

use aπ of the formπ =
(
1−δ
1−δ

δ
δ

)
. δ will control how read-

ily switches out of tracking mode and into searching mode.

5.2. Results of Simulation I

We show in Figure 3 algorithm performance (percentage of
trials the target was in track) versus times for several differ-
ent choices of the adaptivity parameterδ. δ = 0 corresponds
to using the tracking model all of the time whileδ = 1 cor-
responds to using the searching model all of the time. We

see thatδ = .5 outperforms bothδ = 0 andδ = 1.
Unlike the earlier situation wherein the mode probabil-

ities eventually reached steady state of[1, 0] or [0, 1] cor-
responding to moving or stopped mode, we find a different
steady state behavior here. There is always some mass in
each of the searching and tracking modes. In Figure 3 we
also show the mode probabilities versus time and we plot the
number of boundary crossings at each time step. The sensor
is pixelated and makes detections on a grid. The most likely
place to lose targets is when the target moves from one sen-
sor cell to another. We see that the probabilities are adjusted
to give more mass to the searching mode at precisely these
occasions, stabilizing the filter.

5.3. Description of Simulation II

In this simulation we consider two filter modes: a mode
where the filter biasses proposals towards target kinemat-
ics and a mode where the filter biasses proposals towards
the measurements. The first mode should be used if the fil-
ter estimates that its model of target kinematics is good as
compared to the measurements it is receiving (e.g. the SNR
is low). The second model should be used if the filter esti-
mates it is in the opposite situation.

We make use of the mixing parameterβ (in (5), which
controls how readily the filter uses each of the two modes.
This parameter is analogous to the adaption parameter in
earlier simulations as it controls switching between modes.
We wish to determine how filter performance is effected
by choice ofβ. As β → 1, the filter uses the kinematics
exclusively when evolving the target state density through
time (i.e. ignores the measurements). Asβ → 0, the filter
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Figure 4: Tracking error as a function ofβ for low, medium and high SNR (SNR known to the filter). Asβ → 1, the filter uses
vehicle kinematics exclusively to time update the density. Conversely, asβ → 0, the filter uses measurements exclusively to
time update the density. As is seen in the figures, for low SNR measurementsβ ≈ 1 yields the best tracking performance
(lowest tracking error). On the other hand, for high SNR measurements,β ≈ 0.5 yields the best tracking performance.

uses the measurements exclusively when evolving the target
state density through time (i.e. ignores the target kinemat-
ics). Of course, both the measurements and the kinematics
are always used when weighting the particles, in the manner
given by eq. (5).

5.4. Results of Simulation II

Figure 4 shows results versusβ of tracking simulations in
three situations: low, medium and high SNR. For the low
SNR case, the best performance occurs withβ ≈ 1, which
implies that the measurements are ignored when evolving
the density through time. This is consistent with the fact
that the measurements are poor and ought not be allowed to
unduly influence the propagation of the density. Conversely,
in the high SNR case,β ≈ 0.5 yields the best tracking per-
formance. This implies that roughly half of the particles
should be proposed using the kinematics and half from the
measurements. Since the measurements are very reliable,
using them to bias particle proposals leads to improved per-
formance.

6. CONCLUSIONS

We have investigated the use of the IMM algorithm in the
setting of particle filter based multitarget tracking. First, we
considered application to targets that switch between kine-
matic modes. Second, we presented experiments where the
IMM uses multiple models on the state of the filter rather
than on the state of the target. In the context of particle fil-
ter target tracking, this technique may be viewed as a biased
sampling scheme for particle proposal. Through simulation,
we showed that this strategy adds robustness by helping to
prevent the filter from losing targets.

The approach we take has the merit of a unifying frame-
work of Bayesian posterior propagation of a multiple target

state vector given noisy measurements. We have previously
demonstrated that JMPD provides a reliable tracking capa-
bility in a fully Bayesian setting [1]. This paper goes further
in illustrating the benefits in using multiple models for tar-
gets whose kinematics may be very different and therefore
do not obey the same linear diffusion model.
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