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ABSTRACT

This paper addresses the problem of tracking multiple moving targets by estimating their joint multitarget
probability density (JMPD). The JMPD technique is a Bayesian method for tracking multiple targets that allows
nonlinear, non-Gaussian target motions and measurement to state coupling. JMPD simultaneously estimates
both the target states and the number of targets. In this paper, we give a new grid-free implementation of JMPD
based on particle filtering techniques and explore several particle proposal strategies, resampling techniques, and
particle diversification methods. We report the effect of these techniques on tracker performance in terms of
tracks lost, mean squared error, and computational burden.
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1. INTRODUCTION

The problem of multitarget tracking is to estimate the state of a collection of targets in a surveillance region given
a set of noisy measurements, Z. One way to characterize the states of a collection of targets is to use Bayesian
methods to construct the joint multitarget probability density (JMPD) p(x1,x2, ...xT−1,xT |Z), which is the
density for T targets having states x1,x2, ...xT−1,xT conditioned on the set of measurements Z. In principle,
the JMPD can be recursively updated as new measurements come in using standard Bayesian methods, namely
solving the prediction and update equations.4

In the Kalman Filter case, a set of analytical expressions for filter recursions are available. However, in the
more general nonlinear filtering problem where states may evolve nonlinearly, measurements may be nonlinearly
coupled to states, and densities may be non-Gaussian, no such analytical solution exists. In the past, grid based
techniques5,6 have been successfully used to show the potential of nonlinear filtering, but have ultimately proven
to be too computationally intensive to extend to more realistic scenarios.

We present here a new grid-free implementation of JMPD based on particle filtering techniques. We find
that this method allows us to break the computational logjam involved in grid based solutions, and to tackle
more realistic problems. In the sequel to this paper7 we show how this particle filter based multitarget tracking
technique allows us to address the interesting problem of sensor allocation.

The paper is organized as follows. In Section 2, we present the conceptual details of our multitarget tracking
algorithm. Specifically, we give the details of JMPD and examine the numerical difficulties involved in directly
implementing JMPD on a grid. In Section 3, we present a particle filter (PF) based implementation of JMPD. We
see that this provides for computationally tractable implementation, allowing for applicability in more realistic
scenarios. We investigate several particle proposal strategies, resampling techniques, and particle diversification
methods and report their effect on tracker performance in terms of tracks lost, mean squared error, and compu-
tational burden. We give simulation results on a problem involving ten moving targets in Section 4. Finally, we
provide some thoughts on future direction in Section 5.
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2. THE JOINT MULTITARGET PROBABILITY DENSITY (JMPD)

In this section, we introduce the details of using the Joint Multitarget Probability Density (JMPD) for target
tracking. The concept of JMPD was first discussed by Kastella4 where a method of tracking multiple targets
that moved between discrete cells on a line was presented. We generalize the discussion here to deal with targets
that have N -dimensional continuous valued state vectors and arbitrary kinematics. In the model problems, we
are interested in tracking the position (x, y) and velocity (ẋ, ẏ) of multiple targets and so we describe each target
by the four dimensional state vector [x, ẋ, y, ẏ]′.

JMPD provides a means for tracking an unknown number of targets in a Bayesian setting. The statistics model
uses the joint multitarget conditional probability density p(xk

1 ,x
k
2 , ...x

k
T−1,x

k
T |Zk) as the probability density for

exactly T targets with states xk
1 ,x

k
2 , ...x

k
T−1,x

k
T at time k based on a set of observations Zk. The number of

targets T is a variable to be estimated simultaneously with the states of the T targets. The observation set Zk

refers to the collection of measurements up to and including time k, i.e. Zk = {z1, z2, ...zk}, where each of the
zi may be a single measurement or a vector of measurements made at time i.

Each of the state vectors xi in the density p(xk
1 ,x

k
2 , ...x

k
T−1,x

k
T |Zk) is a vector quantity and may (for example)

be of the form [x, ẋ, y, ẏ]′. We refer to each of the T target state vectors xk
1 ,x

k
2 , ...x

k
T−1,x

k
T as a partition of the

state X. For convenience, the density will be written more compactly in the traditional manner as

p(Xk|Zk) (1)

Equation (1) implies that the state-vector X represents a variable number of targets each possessing their
own state vector. As an illustration, some examples illustrating the sample space of p are

p(∅|Z), the posterior probability density for no targets in the surveillance volume
p(x1|Z), the posterior probability density for one target in state x1

p(x1,x2|Z), the posterior probability density for two targets in states x1 and x2

p(x1,x2,x3|Z), the posterior probability density for three targets in states x1,x2 and x3

Since the targets are not distinguishable on the basis of the measurements available to the tracker, this
density must be symmetric under permutation of the target indices. When the targets are widely separated in
the sensor’s measurement space, each target’s measurements can be uniquely associated with it, and the joint
multitarget conditional density factorizes. In this case, the problem may be treated as a collection of single
target trackers. The characterizing feature of multitarget tracking is that in general some of the measurements
have ambiguous associations, and therefore the conditional density does not factorize.

The temporal update of the posterior likelihood on this density proceeds according to the usual rules of
Bayesian filtering. Given a model of how the JMPD evolves overtime, p(Xk|Xk−1), we may compute the time-
updated or prediction density via

p(Xk|Zk−1) =
∫
dXk−1p(Xk|Xk−1)p(Xk−1|Zk−1) (2)

The time evolution of the JMPD may simply be a collection of target kinematic models, or as we will discuss
later, may involve target birth and death. Bayes rule is used to update the posterior density as new measurements
zk arrive as

p(Xk|Zk) =
p(zk|Xk)p(Xk|Zk−1)

p(zk|Zk−1)
(3)

This formulation allows JMPD to avoid altogether the problem of measurement to track association. There
is no need to identify which target is associated with which measurement because the Bayesian framework keeps
track of the entire joint multitarget density.
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In practice, the sample space of Xk is very large. It contains all possible configurations of state vectors xi

for all possible values of T . The original formulation of JMPD given by Kastella4 approximated the density by
discretizing on a grid. It was immediately found that the computational burden in this scenario makes evaluating
realistic problems intractable, even when using the simple model of targets moving between discrete locations in
one-dimension. In fact, the number grid cells needed grows as LocationsTargets, where Locations is the number
of discrete locations the targets may occupy and Targets is the number of targets.

Thus, we need a method for approximating the JMPD that leads to more tractable computational burden.
In the next section, we show that the Monte Carlo methods collectively known as particle filtering break this
computational barrier.

3. PARTICLE FILTER IMPLEMENTATION OF JMPD

We find that a particle filter based implementation of JMPD breaks the computational logjam and allows us
to investigate more realistic problems. To implement JMPD via a particle filter (PF), we first approximate the
joint multitarget probability density p(X|Z) by a set of Npart weighted samples, Xp, (p = 1...Npart):

p(X|Z) ≈
Npart∑
p=1

wpδ(X−Xp) (4)

Here we have suppressed the time superscript k everywhere for notational simplicity. We will do this whenever
time is not relevant to the discussion at hand.

Particle filtering is then simply a method of solving the prediction and update equations given in the previous
section by simulation. Samples from a density are used to represent the density and to propagate it through
time. The prediction equation (eq. 2) is solved by proposing new particles from the existing set of particles using
a model of state dynamics and perhaps the measurements. The update equation (eq. 3) is solved by assigning a
weight to each of the particles that have been proposed using the measurements and perhaps the model of state
dynamics.

The specific details of the PF implementation are as follows. Recall first from Section 2 that our multitarget
state vector X has T partitions, each corresponding to a target written explicitly in equation (5):

X = [x1, x2, ..., xT−1, xT ] (5)

Furthermore, the joint multitarget probability p(X|Z) is defined for T = 0...∞. Each of the particles Xp,
p = 1...Npart is a sample drawn from the JMPD p(X|Z). Therefore, a particle Xp may have 0, 1, ...∞ partitions,
each partition corresponding to a different target. We will denote the number of partitions in particle Xp by np,
where np may be different for different Xp. Since a partition corresponds to a target, the number of partitions
that a particle has is that particle’s estimate of the number of targets in the surveillance area.

To make our notation more concrete, assume that a particular particle, Xp, is tracking np targets. Then Xp

has np partitions and will be given by

Xp = [xp,1, xp,2, . . . xp,np
] (6)

In the case where each partition (target) is modelled using the state vector x = [x, ẋ, y, ẏ]′, the particle will
have np partitions each of which has 4 components:

Xp = [xp,1, xp,2, . . . xp,np
] =



xp,1 xp,2 . . . xp,np

ẋp,1 ẋp,2 . . . ẋp,np

yp,1 yp,2 . . . yp,np

ẏp,1 ẏp,2 . . . ẏp,np


 (7)
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Where here we expand the notation a bit and use xp,1 to denote the x position estimate that particle p has
of target 1.

Notice that this method differs from traditional particle filter tracking algorithms where a single particle
corresponds to a single target. We find that when each particle is attached to a single target, some targets become
particle starved over time. All of the particles tend to attach to the target receiving the best measurements.
Our method explicitly enforces the multitarget nature of the problem by encoding in each particle the estimate
of the number of targets and the states of those targets. This technique helps to alleviate the particle starvation
issue, ensuring that all targets are represented by the particles. It is also valuable in estimating the number of
targets in the surveillance region.

We illustrate the particle filter representation of JMPD in Figure 1 by setting np = 3 for all particles, and
showing the prediction and update simulations graphically. Each of the three targets is characterized by the four
dimensional state x = [x, ẋ, y, ẏ]′, but only the x and y components are plotted in Figure 1. Each particle which
is used to approximate the JMPD contains a partition corresponding to each of the three targets, and hence will
have 12 dimensions.
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Figure 1. Left: Particles Representing p(Xk−1|Zk−1). Middle: Particles Representing p(Xk|Zk−1), formed by simulating
the prediction equation (eq. 2). Right: Particles Representing p(Xk|Zk), formed by simulating the measurement update
equation (eq. 3). Note that each particle contains a sample from each of the three targets

The permutation symmetry discussed in Section 2 is directly inherited by the particle filter representation.
Each particle contains many partitions (as many as the number of targets it estimates exist in the surveillance
region) and the permutation symmetry of JMPD is visible through the fact that the relative ordering of targets
may change from particle to particle. This permutation symmetry must be dealt with carefully in the particle
proposal process (Section 3.2), and estimation of target positions (Section 3.5).

In the following subsections, we detail the particle filter implementation of JMPD.

3.1. Initialization

As this is primarily a target tracking application, we typically assume that an estimate of the actual ground
truth is available at time 0. To this end, we typically initialize a small set of particles (e.g. 10%) to contain the
true target states at time 0 and randomly assign values (both target states and number of targets) to the rest of
the particles.

Alternatively, we have successfully employed the following detection scheme. All particles are initialized with
np = 0 (i.e. believing there are 0 targets in the surveillance region). For the first t time steps the algorithm is in
detection mode and the sensor is scheduled to periodically scan the surveillance area. As targets are detected,
particles are mutated to be consistent with the detection. As our method allows for particles to be of different
dimension (i.e. different particles may be witness to different numbers of targets in the surveillance area), this is
a natural method of detection. Over time, those particles with the correct number of targets will be consistent
with measurements and survive to approximate the density.
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3.2. Particle Proposal

We have investigated several methods of particle proposal. The standard method used, which we will refer to as
sampling from the Kinematic Prior, proposes new particles at time k, Xk

p, according to the traditional Sampling-
Importance Resampling (SIR) method. For each particle at time k − 1, Xk−1

p , a new particle Xk
p is generated

by simply sampling from the kinematic prior p(Xk|Xk−1). Notice that the state Xp represents a collection of
targets and therefore we must time update each of the targets.

This method has the benefit that it is simple to implement and is computationally inexpensive. However,
one obvious drawback is that it does not take advantage of the fact that the state vector in fact represents many
targets. Targets that are far apart in measurement space behave independently and should be treated as such.
A second drawback, common to many particle filtering applications, is that the current measurements are not
used when proposing new particles.

To overcome these deficiencies, we have investigated alternative particle proposal techniques, all of which are
developed as a means of biasing the proposal process towards the measurements. These techniques are collectively
called multi-partition proposal (MPP) strategies. The MPP strategies propose each partition (target) in a particle
separately, and form new particles as the combination of the proposed partitions.

In this manner, particles are herded towards the correct location of state space. Both of these measurement-
aided techniques still rely on the kinematic prior for proposing particles and so all proposed particles are consistent
with the model of target kinematics. The results of this study are detailed in sections 3.2.1 through 3.2.4.

In any of these methods, target birth and death may be accounted for in a straightforward manner by
modifying the proposal density to incorporate a probability that the proposed particle Xk

p has either fewer or
more targets then Xk−1

p . In particular, assume a death rate α, which may be spatially varying to account for
the fact that targets exit along the boundaries of the surveillance region. Then when proposing new particles,
with probability α, a target is removed from particle p and the updated number of targets in this particle is set
as nk

p = nk−1
p − 1. Further, assume a birth rate β. Then when proposing new particles, with probability β, a

new target is added to particle p. The location of the new target may be random, or more realistically chosen
along the perimeter of the surveillance area. In this case, the number of targets in this particle is updated to
nk

p = n
k−1
p + 1.

3.2.1. Independent-Partition (IP) Method

The independent partition (IP) method given by Orton9 is a convenient way to propose particles when part or
all of the joint multitarget density factorizes. When applicable, we apply the Independent-Partition (IP) method
to propose new partitions independently as follows. For a partition i, each particle at time k − 1 has it’s ith

partition proposed via the Kinematic prior and weighted by the measurements. From this set of Npart weighted
estimates of the state of the ith target, we select Npart samples with replacement to form the ith partition of the
particles at time k.

Recall that in our paradigm a partition corresponds to a target. See equation (7) for a concrete example
of a particle and its partitions. A particle is then built by combining the individual partitions selected and
reweighting correctly. Notice that when this method is used an additional term is introduced into the weighting
process given in Section 3.3. Pseudocode for this algorithm is given in the table below.

Table 1. Independent Partition Algorithm

For each partition i, (i = 1...T )
Propose the ith partition of all Npart particles at time k − 1 to time k via Kinematic prior
Weight the proposed partitions via the measurements from time k
Sample Npart target states from this set to form ith partition of particles at time k

end
Weight particles appropriately, to accommodate for the biased sampling
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It is important to carefully account for the permutation symmetry issue discussed in Section 3 here. The IP
method assumes that the ith partition of each particle corresponds to the same target. Therefore the partitions
in each particle must be sorted before this method is applied.

In the case of well separated targets, this method allows us to track many targets with the same number of
particles as needed to track a single target. Indeed, as mentioned earlier, in the case of well separated targets, the
multitarget tracking problem breaks down into many single-target problems. The IP method is useful for just
this case, as it allows the targets to be treated independently when their relative spacing deems that appropriate.
Note, however, that this method is not applicable when there is any measurement-to-target association ambiguity.
Therefore, when targets are close together in sensor space, an alternative method must be used.

3.2.2. Coupled Partition (CP) Proposal Method

When targets are close together in sensor space, we say that the corresponding partitions are coupled. In these
instances, the IP method is no longer applicable, and another method of particle proposal such as Coupled
Partitions (CP) must be used.

We apply the coupled partitions method as follows. To propose partition i of particle p, CP proposes M
possible realizations of the future state using the Kinematic prior. The M proposed futures are then given
weights according to the current measurements and a representative is selected. This process is repeated for each
particle until the ith partition for all particles has been formed. The pseudocode for this algorithm is given in
the table below.

Table 2. Coupled Partition Algorithm

For each partition i, (i = 1...T )
For each particle p, (p = 1...Nparts),

Propose M possible futures x∗m(m = 1...M) for partition i of particle p via Kinematic prior
Weight each of the M possible futures via the measurements
Select a representative x from the x∗m
Set xk

p,i, the i
th partition of the pth particle at time k, to x

end
end

This algorithm is a modified version of the traditional SIR technique that operates on partitions individually.
It improves tracking performance over SIR at the expense of additional computations.

3.2.3. Comparison of IP and CP Methods

In Figure 2, we compare the performance of the two proposal schemes presented here with that of the traditional
scheme of sampling from the Kinematic Prior. This model problem is constructed to have five well separated
targets moving in four dimensions (position and velocity for each x and y as outlined earlier). For the purposes
of this model problem, we restrict target motion to be linear, measurement to state coupling to be linear, and
the noise processes to be Gaussian. In this case we can use the Kalman Filter as a bound. Note that it is
not necessary to make these assumptions for the PF. In fact, the strength of the PF (and nonlinear filtering in
general) is that no linearity/Gaussian assumptions are needed. However, we have restricted the problem in this
manner here in order to provide an asymptotic performance bound and show that the PF implementation indeed
reaches the bound.

The CP method is shown with a particular choice ofM ,M = 25. It can be seen that the IP technique reduces
the number of particles needed by between two and three orders of magnitude as compared to the traditional
technique. Since the work per particle to perform IP is nearly identical to that of sampling from the kinematic
prior, IP actually reduces computational burden by two to three orders of magnitude when targets are well
separated.
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Figure 2. The Performance of the Two Proposal Schemes Used Here, In Comparison to Sampling from the Kinematic
Prior. In this simple example, the Kalman Filter is optimal and is shown as a performance bound.

3.2.4. Adaptive Particle Proposal Method

In order to mitigate the problem of additional computational cost of the CP method, and the problems with
the IP method when targets are close together, we propose a hybrid solution, called the Adaptive-Partition
(AP) method. The adaptive-partition method again considers each partition separately. Those partitions that
are sufficiently well separated from all other partitions are treated as independent and proposed using the IP
method. When targets are not sufficiently distant, the CP method is used.

The issue of determining when targets are sufficiently separated is settled by computing distances between
the estimated centers of the ith partition and the jth partition. We have computed this distance using a simple
distance between the estimated centers, and the Mahalanobis metric (eq. 8), where Σ̂j is the covariance associated
with the estimate of the jth partition (see equation 21).

r2 = (x̂i − x̂j)′Σ̂−1
j (x̂i − x̂j) (8)

In practice, it is found that simply using the distance between estimated centers is sufficient and less compu-
tationally burdensome.

Figure 3 gives a comparison of the adaptive-partition methods with the IP, CP, and Kinematic proposal
methods in terms of mean-squared track error and percentage of tracks lost. The model problem used to
generate these results is truly a nonlinear filtering problem. The problem involves three simulated targets which
cross paths several times during the simulation, and remain close in sensor space for about 50% of the time. The
measurements couple to the states of the targets in a nonlinear manner.

As expected, since the IP method is inappropriate during target crossings, the performance of the tracker
using IP exclusively is poor. The CP method makes no assumption about the independence of the targets and
therefore performs very well, with significant computational cost. Most importantly, the adaptive method, which
uses IP when appropriate and CP otherwise, performs nearly as well as the CP method itself, at about a 50%
reduction in flops as compared to the CP method. This indicates that during the 50% of the simulation where
targets were well separated IP was used, and during the time where targets were close, CP was used.

3.3. Measurement Update

Regardless of the particle proposal scheme employed, the proposed multitarget particles must be weighted. Each
proposed particle is given a weight according to its agreement with the measurements, the kinematic model,
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Figure 3. The Performance of the Two Proposal Schemes Used Here, In Comparison to Simply Using the Kinematic
Prior.

and the importance density.1 When proposing particles based on the Kinematic prior p(Xk|Xk−1), the proper
weighting is given by

wp ∝ p(z|Xk
p) (9)

Each particle Xk
p simultaneously postulates that a specific number of targets exist in the surveillance region

(np) and that the target states are given by [x1,x2, ...,xnp−1 ,xnp
]. In the case where the measurement set is

made up of a scan i cells (say for example on a XY grid) where the measurement in each cell is independent of
the measurements in the other cells, the weight becomes

wp ∝
∏

i

p(zi|Xp) (10)

where in this notation zi refers to the measurement made in cell i. A particular particle Xp will postulate that
there are targets in some cells ix (not necessarily distinct):

ix = i1, i2, ...inp
(11)

We denote the measurement density when there are 0 targets present as p0, and simplify the weight equation
as

wp ∝
∏
i/∈ix

p0(zi)
∏
i∈ix

p(zi|Xp) (12)

wp ∝
∏

i

p0(zi)
∏
i∈ix

p(zi|Xp)
p0(zi)

(13)

wp ∝
∏
i∈ix

p(zi|Xp)
p0(zi)

(14)

Proc. of SPIE Vol. 5204     265



If we let Oi,p (the occupation number) denote the number of targets that a particle p postulates exist in cell
i, then we write the weight as

wp ∝
∏
i∈ix

p(zi|Oi,p)
p0(zi)

(15)

3.4. Resampling

In the traditional method of resampling, after each measurement update Npart particles are selected with replace-
ment from Xp based upon the weights wp. What results is a set of Npart particles having uniform weight that
approximate the density p(X|Z). At this step, particles that do not correspond to measurements are eliminated
– in particular, particles that have an np that is not supported by measurements are not selected.

The particular resampling that we have implemented is called systematic resampling.1 We like this scheme
because it is easy to implement, runs in O(N), is unbiased, and minimizes Monte Carlo variance. Many other
resampling schemes and modifications are presented in the literature.3 Of these methods, we have found that
adaptive resampling,8 also known as resample-when-needed, leads to improved performance while reducing
compute time. All results presented in this work use adaptive resampling. We have also found that Markov
Chain Monte Carlo (MCMC) moves using a Metropolis-Hastings scheme3 leads to slightly improved performance
in our application.

3.5. Estimation

Estimates of various interesting quantities may be easily made using the particles. Estimation is best performed
before resampling, as resampling has been shown to only increase the variance of the estimate.

To compute the probability that there are exactly n targets in the surveillance volume, first define the
indicator variable

Ip =
{
1 if np = n
0 otherwise (16)

Then the probability of n targets in the surveillance volume, p(n|Z), is given by

p(n|Z) =
Npart∑
p=1

Ipwp (17)

So to estimate the probability of n targets in the surveillance volume, we sum up the weights of the particles
that have n partitions. Note that the weights are normalized to sum to 1 for equations in this section.

To compute the estimated state and covariance of target i, we first define a second indicator variable Ĩp that
indicates if particle p has a partition corresponding to target i:

Ĩp =
{
1 if np ≥ n
0 otherwise (18)

Furthermore, we define the normalized weights to be

ŵp =
wpĨp∑Npart

l=1 Ĩlwl

(19)

So ŵp is the relative weight of particle p, with respect to all particles tracking target i. Then the estimate of
the state of target i is given by
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X̂(i) = E[X(i)] =
Npart∑
p=1

ŵpXp,i (20)

Which is simply the weighted summation of the position estimates from those particles that are tracking
target i. The covariance is given by

Λ̂(i) =
Npart∑
p=1

ŵp(Xp,i − ˆX(i))(Xp,i − ˆX(i))′ (21)

The indicator function Ĩp ensures that the summations in (20) and (21) are taken over only those particles
that are tracking target i. The permutation symmetry issue mentioned in Section 3 earlier comes to the forefront
here. Notice that it is not necessarily true that partition i of particle j is tracking the same target that partition
i of particle j + 1 is tracking. Therefore, before evaluation of equation (20) or equation (21) can be made, a
sorting of the partitions in each particle must be accomplished.

4. SIMULATION RESULTS

We illustrate the performance of our multitarget tracking scheme by considering the following model problem.
There are ten targets moving in a 5000m x 5000m surveillance area. Each target is modelled using the four-
dimensional state vector [x, ẋ, y, ẏ]′ . Target trajectories for the simulation come directly from a set of recorded
data based on GPS measurements of vehicle positions over time collected as part of a battle training exercise at
NTC. Targets routinely come within sensor resolution (i.e. cross). Therefore, there is a track to measurement
ambiguity, which is handled automatically by JMPD because here is no measurement to track assignment done
in JMPD.

The filter assumes constant velocity motion with a large diffusive component as the model of target kinematics.
This model is severely at odds with the actual target behavior which contains sudden accelerations and move-
stop-move behavior. We use 500 particles, each of which is tracking the states of all ten targets, and therefore
each particle has 40 dimensions. The adaptive particle proposal scheme described earlier in Section 3.2.4 is used.

At each time step, an imager is able to measure the entire surveillance area by making measurements on
a grid with 100m x 100m detection cell resolution. The sensor is at a fixed location above the targets and all
cells are always visible to the sensor. When measuring a cell, the imager returns either a 0 (no detection) or a
1 (detection) governed by Pd, Pf , and SNR. This model is known by the filter and used to evaluate equation
(3). In this illustration, we take Pd = 0.5, SNR = 10dB, and Pf = P

(1+SNR)
d , which is a standard model for

thresholded detection of Rayleigh returns.

Shown in Figures 4 through 7 are 12 snapshots of a 1000 time step run of the above described simulation,
where each time step corresponds to one second of actual time. The actual target positions are indicated with
an asterisk. Covariance ellipses derived from the partitions of the particles are given as well. This simulation
runs in about one hour in MatLab on a 2.4GhZ Linux Box, which is about three times real time.

We find that even in this challenging scenario where targets exhibit move-stop-move behavior and routinely
cross (come within sensor cell resolution of each other), that the filter is consistently able to keep the targets in
track.

Proc. of SPIE Vol. 5204     267



X

Y

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

X

Y

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

X

Y

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Figure 4. Time Steps 1, 10, and 20. Two Targets Near the Bottom Approach Each Other and then Cross. At Time Step
10, 5 Partitions are Proposed using IP and 5 using CP.
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Figure 5. Time Steps 80, 90, 227. A second Target Crossing Occurs in the Same Area as Figure 4. Ambiguity Between
the Two Targets Remains for Some Time After the Crossing, but is Resolved in the by Time Step 227.
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Figure 6. Time Steps 235, 450, 550. Two Targets Near the Center of the Image Come Together and Move in Tandem
for Approximately 5 minutes. Meanwhile, the Two Targets Near the Left of the Image Enter a Staging Area.
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Figure 7. Time Steps 600, 750, and 950. By the End of the Vignette, 8 of the 10 Targets Have Entered a Staging Area,
While the Other Two Have Moved to Another Area.
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5. DISCUSSION

This paper has presented a new grid-free implementation of a Bayesian method for tracking multiple targets called
JMPD. We have developed an adaptive particle proposal scheme that explicitly takes into account the multitarget
nature of the problem and automatically factors it into a series of smaller problems when appropriate. We have
demonstrated that this method reduces the computational burden to a reasonable level for realistic problems. In
simulations with real target motion, we have shown the ability to track ten targets with complicated kinematic
behavior, using thresholded measurements on a grid.

In the sequel to this paper,7 we show how this framework can be used to address the sensor management
problem. We directly exploit the fact that the JMPD provides a representation that captures all of the information
about the states of the targets. This representation can be exploited using information theoretic methods to
determine the optimal area of sensor space to direct a measurement.
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