Adaptive evolutionary clustering

Kevin S. Xu, Mark Kliger & Alfred

O. Hero 111

Data Mining and Knowledge
Discovery

ISSN 1384-5810

Data Min Knowl Disc
DOI 10.1007/s10618-012-0302-x

Volume 26, Number 1, January 2013

Data Mining and
I(mlwlellge Illscavel'v

Edltor In- Chlef

frey 1. Webb, iversity, Australia
i Board

Available 3¢
ISSN: 1384-5810 online
www.springerlink.com

@ Springer

@ Springer

Your article is protected by copyright and all
rights are held exclusively by The Author(s).
This e-offprint is for personal use only

and shall not be self-archived in electronic
repositories. If you wish to self-archive your
work, please use the accepted author’s
version for posting to your own website or
your institution’s repository. You may further
deposit the accepted author’s version on

a funder’s repository at a funder’s request,
provided it is not made publicly available until
12 months after publication.

@ Springer

Data Min Knowl Disc
DOI 10.1007/s10618-012-0302-x

Adaptive evolutionary clustering

Kevin S. Xu - Mark Kliger - Alfred O. Hero III

Received: 10 April 2011 / Accepted: 21 December 2012
© The Author(s) 2013

Abstract In many practical applications of clustering, the objects to be clustered
evolve over time, and a clustering result is desired at each time step. In such applica-
tions, evolutionary clustering typically outperforms traditional static clustering by pro-
ducing clustering results that reflect long-term trends while being robust to short-term
variations. Several evolutionary clustering algorithms have recently been proposed,
often by adding a temporal smoothness penalty to the cost function of a static cluster-
ing method. In this paper, we introduce a different approach to evolutionary clustering
by accurately tracking the time-varying proximities between objects followed by static
clustering. We present an evolutionary clustering framework that adaptively estimates
the optimal smoothing parameter using shrinkage estimation, a statistical approach
that improves a naive estimate using additional information. The proposed framework
can be used to extend a variety of static clustering algorithms, including hierarchical,
k-means, and spectral clustering, into evolutionary clustering algorithms. Experiments
on synthetic and real data sets indicate that the proposed framework outperforms static
clustering and existing evolutionary clustering algorithms in many scenarios.

Responsible editor: Ian Davidson.

K. S. Xu (X)- A. O. Hero III
EECS Department, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
e-mail: xukevin@umich.edu

A. O. Hero IIT
e-mail: hero@umich.edu

M. Kliger
Omek Interactive, Bet Shemesh, Israel
e-mail: mark kliger @ gmail.com

Published online: 10 January 2013 &\ Springer

K. S. Xu et al.

Keywords Evolutionary clustering - Similarity measures - Clustering algorithms -
Tracking - Data smoothing - Adaptive filtering - Shrinkage estimation

1 Introduction

In many practical applications of clustering, the objects to be clustered are observed
at many points in time, and the goal is to obtain a clustering result at each time step.
This situation arises in applications such as identifying communities in dynamic social
networks (Falkowski et al. 2006; Tantipathananandh et al. 2007), tracking groups of
moving objects (Li et al. 2004; Carmi et al. 2009), finding time-varying clusters of
stocks or currencies in financial markets (Fenn et al. 2009), and many other applications
in data mining, machine learning, and signal processing. Typically the objects evolve
over time both as a result of long-term drifts due to changes in their statistical properties
and short-term variations due to noise.

A naive approach to these types of problems is to perform static clustering at each
time step using only the most recent data. This approach is extremely sensitive to noise
and produces clustering results that are unstable and inconsistent with clustering results
from adjacent time steps. Subsequently, evolutionary clustering methods have been
developed, with the goal of producing clustering results that reflect long-term drifts
in the objects while being robust to short-term variations. !

Several evolutionary clustering algorithms have recently been proposed by adding
a temporal smoothness penalty to the cost function of a static clustering method. This
penalty prevents the clustering result at any given time from deviating too much from
the clustering results at neighboring time steps. This approach has produced evolu-
tionary extensions of commonly used static clustering methods such as agglomerative
hierarchical clustering (Chakrabarti et al. 2006), k-means (Chakrabarti et al. 2006),
Gaussian mixture models (Zhang et al. 2009), and spectral clustering (Tang et al. 2008;
Chi et al. 2009) among others. How to choose the weight of the penalty in an optimal
manner in practice, however, remains an open problem.

In this paper, we propose a different approach to evolutionary clustering by treating
it as a problem of tracking followed by static clustering (Sect. 3). We model the
observed matrix of proximities between objects at each time step, which can be either
similarities or dissimilarities, as a linear combination of a true proximity matrix and a
zero-mean noise matrix. The true proximities, which vary over time, can be viewed as
unobserved states of a dynamic system. Our approach involves estimating these states
using both current and past proximities, then performing static clustering on the state
estimates.

The states are estimated using a restricted class of estimators known as shrinkage
estimators, which improve a raw estimate by combining it with other information. We
develop a method for estimating the optimal weight to place on past proximities so
as to minimize the mean squared error (MSE) between the true proximities and our
estimates. We call this weight the forgetting factor. One advantage of our approach

! The term “evolutionary clustering” has also been used to refer to clustering algorithms motivated by
biological evolution, which are unrelated to the methods discussed in this paper.

@ Springer

Adaptive evolutionary clustering

is that it provides an explicit formula for the optimal forgetting factor, unlike existing
evolutionary clustering methods. The forgetting factor is estimated adaptively, which
allows it to vary over time to adjust to the conditions of the dynamic system.

The proposed framework, which we call Adaptive Forgetting Factor for Evolution-
ary Clustering and Tracking (AFFECT), can extend any static clustering algorithm that
uses pairwise similarities or dissimilarities into an evolutionary clustering algorithm. It
is flexible enough to handle changes in the number of clusters over time and to accom-
modate objects entering and leaving the data set between time steps. We demonstrate
how AFFECT can be used to extend three popular static clustering algorithms, namely
hierarchical clustering, k-means, and spectral clustering, into evolutionary clustering
algorithms (Sect. 4). These algorithms are tested on several synthetic and real data
sets (Sect. 5). We find that they not only outperform static clustering, but also other
recently proposed evolutionary clustering algorithms due to the adaptively selected
forgetting factor.

The main contribution of this paper is the development of the AFFECT adaptive
evolutionary clustering framework, which has several advantages over existing evo-
lutionary clustering approaches:

1. It involves smoothing proximities between objects over time followed by static
clustering, which enables it to extend any static clustering algorithm that takes a
proximity matrix as input to an evolutionary clustering algorithm.

2. It provides an explicit formula and estimation procedure for the optimal weight
(forgetting factor) to apply to past proximities.

3. It outperforms static clustering and existing evolutionary clustering algorithms in
several experiments with a minimal increase in computation time compared to
static clustering (if a single iteration is used to estimate the forgetting factor).

This paper is an extension of our previous work (Xu et al. 2010), which was limited
to evolutionary spectral clustering. In this paper, we extend the previously proposed
framework to other static clustering algorithms. We also provide additional insight
into the model assumptions in Xu et al. (2010) and demonstrate the effectiveness of
AFFECT in several additional experiments.

2 Background
2.1 Static clustering algorithms

We begin by reviewing three commonly used static clustering algorithms. We demon-
strate the evolutionary extension of these algorithms in Sect. 4, although the AFFECT
framework can be used to extend many other static clustering algorithms. The term
“clustering” is used in this paper to refer to both data clustering and graph clustering.
The notation i € c is used to denote object i being assigned to cluster c. |c| denotes
the number of objects in cluster ¢, and % denotes a clustering result (the set of all
clusters).

In the case of data clustering, we assume that the n objects in the data set are stored
in an n X p matrix X, where object i is represented by a p-dimensional feature vector
x; corresponding to the ith row of X. From these feature vectors, one can create a

@ Springer

K. S. Xu et al.

Fig. 1 A general agglomerative
hierarchical clustering algorithm

: Assign each object to its own cluster

: repeat

Compute dissimilarities between each pair of clusters
Merge clusters with the lowest dissimilarity

: until all objects are merged into one cluster

: return dendrogram

proximity matrix W, where w;; denotes the proximity between objects i and j, which
could be their Euclidean distance or any other similarity or dissimilarity measure.

For graph clustering, we assume that the n vertices in the graph are represented
by an n x n adjacency matrix W where w;; denotes the weight of the edge between
vertices i and j. If there is no edge between i and j, then w;; = 0. For the usual
case of undirected graphs with non-negative edge weights, an adjacency matrix is a
similarity matrix, so we shall refer to it also as a proximity matrix.

2.1.1 Agglomerative hierarchical clustering

Agglomerative hierarchical clustering algorithms are greedy algorithms that create
a hierarchical clustering result, often represented by a dendrogram (Hastie et al. 2001).
The dendrogram can be cut at a certain level to obtain a flat clustering result. There
are many variants of agglomerative hierarchical clustering. A general algorithm is
described in Fig. 1. Varying the definition of dissimilarity between a pair of clusters
often changes the clustering results. Three common choices are to use the minimum
dissimilarity between objects in the two clusters (single linkage), the maximum dis-
similarity (complete linkage), or the average dissimilarity (average linkage) (Hastie
et al. 2001).

2.1.2 k-means

k-means clustering (MacQueen 1967; Hastie et al. 2001) attempts to find clusters that
minimize the sum of squares cost function

k
(X, €)=Y > lIxi —m|?, 0]

c=1 iec
where || - || denotes the ¢>-norm, and m, is the centroid of cluster ¢, given by

Ziec Xi

m, =
|c]

Each object is assigned to the cluster with the closest centroid. The cost of a clustering
result % is simply the sum of squared Euclidean distances between each object and
its closest centroid. The squared distance in (1) can be rewritten as

2Z:jEc Wij i Zj,lec wi

lc] le|?

, @)

@ Springer

Adaptive evolutionary clustering

100

: € «— vector of random integers in {1,...,k}

: Compute similarity matrix W = XX

. repeat

i—i+1

Calculate squared distance between all objects and centroids using (2)
Compute ') by assigning each object to its closest centroid

:until #0) = g1

return %)

b

Fig. 2 Pseudocode for k-means clustering using similarity matrix W

where w;; = x,-x/T, the dot product of the feature vectors. Using the form of (2) to
compute the k-means cost in (1) allows the k-means algorithm to be implemented with
only the similarity matrix W = [w; j];f j=1 consisting of all pairs of dot products, as
described in Fig. 2.

2.1.3 Spectral clustering

Spectral clustering (Shi and Malik 2000; Ng et al. 2001; von Luxburg 2007) is a pop-
ular modern clustering technique inspired by spectral graph theory. It can be used for
both data and graph clustering. When used for data clustering, the first step in spectral
clustering is to create a similarity graph with vertices corresponding to the objects and
edge weights corresponding to the similarities between objects. We represent the graph
by an adjacency matrix W with edge weights w;; given by a positive definite similar-
ity function s(x;, X;). The most commonly used similarity function is the Gaussian
similarity function s(x;, X;) = exp{—[x; — X; 12/(2p%)} (Ng et al. 2001), where p is
a scaling parameter. Let D denote a diagonal matrix with elements corresponding to
row sums of W. Define the unnormalized graph Laplacian matrix by L = D — W and
the normalized Laplacian matrix (Chung 1997) by ¥ = I — D~'/2wD~1/2,

Three common variants of spectral clustering are average association (AA), ratio cut
(RC), and normalized cut (NC) (Shi and Malik 2000). Each variant is associated with
an NP-hard graph optimization problem. Spectral clustering solves relaxed versions
of these problems. The relaxed problems can be written as (von Luxburg 2007; Chi et
al. 2009)

AA(Z) = maxktr(ZTWZ) subject to zZTz =1 3)
ZeRnx

RC(Z) = min t(ZTLZ) subjectto 2T Z =1 (4)
ZeRnxk

NC(Z) = min_ tr(Z7 £ 7) subjectto 2T Z = 1. (5)
ZGR"X

These are variants of a trace optimization problem; the solutions are given by a gen-
eralized Rayleigh-Ritz theorem (Liitkepohl 1997). The optimal solution to (3) consists
of the matrix containing the eigenvectors corresponding to the k largest eigenvalues of
W as columns. Similarly, the optimal solutions to (4) and (5) consist of the matrices
containing the eigenvectors corresponding to the k smallest eigenvalues of L and .Z,
respectively. The optimal relaxed solution Z is then discretized to obtain a clustering

@ Springer

K. S. Xu et al.

Fig. 3 Pseudocode for : Z «— k smallest eigenvectors of .

1
normalized cut spectral 2: fori=1tondo
clustering 3: z; < z;/||z;|| {Normalize each row of Z to have unit norm}
4: end for
5: ¢ < kmeans(Z)
6: return ¢

result, typically by running the standard k-means algorithm on the rows of Z or a
normalized version of Z.

An algorithm (Ng et al. 2001) for normalized cut spectral clustering is shown in
Fig. 3. To perform ratio cut spectral clustering, compute eigenvectors of L instead
of .Z and ignore the row normalization in steps 2—4. Similarly, to perform average
association spectral clustering, compute instead the k largest eigenvectors of W and
ignore the row normalization in steps 2—4.

2.2 Related work

We now summarize some contributions in the related areas of incremental and con-
strained clustering, as well as existing work on evolutionary clustering.

2.2.1 Incremental clustering

The term “incremental clustering” has typically been used to describe two types of
clustering problems?:

1. Sequentially clustering objects that are each observed only once.
2. Clustering objects that are each observed over multiple time steps.

Type 1is also known as data stream clustering, and the focus is on clustering the data
in a single pass and with limited memory (Charikar et al. 2004; Gupta and Grossman
2004). It is not directly related to our work because in data stream clustering each
object is observed only once.

Type 2 is of greater relevance to our work and targets the same problem setting as
evolutionary clustering. Several incremental algorithms of this type have been pro-
posed (Li et al. 2004; Sun et al. 2007; Ning et al. 2010). These incremental clustering
algorithms could also be applied to the type of problems we consider; however, the
focus of incremental clustering is on low computational cost at the expense of clus-
tering quality. The incremental clustering result is often worse than the result of per-
forming static clustering at each time step, which is already a suboptimal approach as
mentioned in the introduction. On the other hand, evolutionary clustering is concerned
with improving clustering quality by intelligently combining data from multiple time
steps and is capable of outperforming static clustering.

2 It is also sometimes used to refer to the simple approach of performing static clustering at each time step.

@ Springer

Adaptive evolutionary clustering

2.2.2 Constrained clustering

The objective of constrained clustering is to find a clustering result that optimizes
some goodness-of-fit objective (such as the k-means sum of squares cost function
(1)) subject to a set of constraints. The constraints can either be hard or soft. Hard
constraints can be used, for example, to specify that two objects must or must not be in
the same cluster (Wagstaff et al. 2001; Wang and Davidson 2010). On the other hand,
soft constraints can be used to specify real-valued preferences, which may be obtained
from labels or other prior information (Ji and Xu 2006; Wang and Davidson 2010).
These soft constraints are similar to evolutionary clustering in that they bias clustering
results based on additional information; in the case of evolutionary clustering, the
additional information could correspond to historical data or clustering results.

Tadepalli et al. (2009) considered the problem of clustering time-evolving objects
such that objects in the same cluster at a particular time step are unlikely to be in the
same cluster at the following time step. Such an approach allows one to divide the time
series into segments that differ significantly from one another. Notice that this is the
opposite of the evolutionary clustering objective, which favors smooth evolutions in
cluster memberships over time. Hossain et al. (2010) proposed a framework that unifies
these two objectives, which are referred to as disparate and dependent clustering,
respectively. Both can be viewed as clustering with soft constraints to minimize or
maximize similarity between multiple sets of clusters, e.g. clusters at different time
steps.

2.2.3 Evolutionary clustering

The topic of evolutionary clustering has attracted significant attention in recent years.
Chakrabarti et al. (2006) introduced the problem and proposed a general framework
for evolutionary clustering by adding a temporal smoothness penalty to a static clus-
tering method. Evolutionary extensions for agglomerative hierarchical clustering and
k-means were presented as examples of the framework.

Chi et al. (2009) expanded on this idea by proposing two frameworks for evolu-
tionary spectral clustering, which they called Preserving Cluster Quality (PCQ) and
Preserving Cluster Membership (PCM). Both frameworks proposed to optimize the
modified cost function

Ciotal = @ Ctemporal +(1—-a) Csnapshota (6)

where Cgpapshot denotes the static spectral clustering cost, which is typically taken to
be the average association, ratio cut, or normalized cut as discussed in Sect. 2.1.3. The
two frameworks differ in how the temporal smoothness penalty Ciemporal is defined.
In PCQ, Ctemporal is defined to be the cost of applying the clustering result at time ¢
to the similarity matrix at time ¢ — 1. In other words, it penalizes clustering results
that disagree with past similarities. In PCM, Ciemporal is defined to be a measure of
distance between the clustering results at time # and # — 1. In other words, it penalizes
clustering results that disagree with past clustering results. Both choices of temporal
cost are quadratic in the cluster memberships, similar to the static spectral clustering

@ Springer

K. S. Xu et al.

cost as in (3)—(5), so optimizing (6) in either case is simply a trace optimization
problem. For example, the PCQ average association evolutionary spectral clustering
problem is given by

max_atr (ZTWHZ) + (- (ZTW'Z) subject to 277 = I,
ZeRnx

where W' and W'~! denote the adjacency matrices at times ¢ and ¢ — 1, respec-
tively. The PCQ cluster memberships can be found by computing eigenvectors of
aW!'=! 4 (1 —a) W' and then discretizing as discussed in Sect. 2.1.3. Our work takes
a different approach than that of Chi et al. (2009) but the resulting framework shares
some similarities with the PCQ framework. In particular, AFFECT paired with aver-
age association spectral clustering is an extension of PCQ to longer history, which we
discuss in Sect. 4.3.

Following these works, other evolutionary clustering algorithms that attempt to
optimize the modified cost function defined in (6) have been proposed (Tang et al.
2008; Lin et al. 2009; Zhang et al. 2009; Mucha et al. 2010). The definitions of snap-
shot and temporal cost and the clustering algorithms vary by approach. None of the
aforementioned works addresses the problem of how to choose the parameter « in
(6), which determines how much weight to place on historic data or clustering results.
It has typically been suggested (Chi et al. 2009; Lin et al. 2009) to choose it in an
ad-hoc manner according to the user’s subjective preference on the temporal smooth-
ness of the clustering results.

It could also be beneficial to allow « to vary with time. Zhang et al. (2009) proposed
to choose « adaptively by using a test statistic for checking dependency between two
data sets (Gretton et al. 2007). However, this test statistic also does not satisfy any opti-
mality properties for evolutionary clustering and still depends on a global parameter
reflecting the user’s preference on temporal smoothness, which is undesirable.

The existing method that is most similar to AFFECT is that of Rosswog and Ghose
(2008), which we refer to as RG. The authors proposed evolutionary extensions of
k-means and agglomerative hierarchical clustering by filtering the feature vectors using
a Finite Impulse Response (FIR) filter, which combines the last / + 1 measurements
of the feature vectors by the weighted sum yl’. = box; + ble T4 blxl’. ~! where
[is the order of the filter, yf is the filter output at time ¢, and by, .. ., b; are the filter
coefficients. The proximities are then calculated between the filter outputs rather than
the feature vectors. The main resemblance between RG and AFFECT is that RG is also
based on tracking followed by static clustering. In particular, RG adaptively selects
the filter coefficients based on the dissimilarities between cluster centroids at the past
time steps. However, RG cannot accommodate varying numbers of clusters over time
nor can it deal with objects entering and leaving at various time steps. It also struggles
to adapt to changes in clusters, as we demonstrate in Sect. 5.2. AFFECT, on the other
hand, is able to adapt quickly to changes in clusters and is applicable to a much larger
class of problems.

Finally, there has also been recent interest in model-based evolutionary clustering.
In addition to the aforementioned method involving mixtures of exponential families
(Zhang et al. 2009), methods have also been proposed using semi-Markov models

@ Springer

Adaptive evolutionary clustering

(Wang et al. 2007), Dirichlet process mixtures (DPMs) (Ahmed and Xing 2008; Xu et
al. 2008a), hierarchical DPMs (Xu et al. 2008a,b; Zhang et al. 2010), and smooth plaid
models (Mankad et al. 2011). For these methods, the temporal evolution is controlled
by hyperparameters that can be estimated in some cases.

3 Proposed evolutionary framework

The proposed framework treats evolutionary clustering as a tracking problem followed
by ordinary static clustering. In the case of data clustering, we assume that the feature
vectors have already been converted into a proximity matrix, as discussed in Sect. 2.1.
We treat the proximity matrices, denoted by W', as realizations from a non-stationary
random process indexed by discrete time steps, denoted by the superscript . We
assume, like many other evolutionary clustering algorithms, that the identities of the
objects can be tracked over time so that the rows and columns of W correspond to
the same objects as those of W'~! provided that no objects are added or removed
(we describe how the proposed framework handles adding and removing objects in
Sect. 4.4.1). Furthermore we posit the linear observation model

W =w'+N', +=012,... (7

where ¥/ is an unknown deterministic matrix of unobserved states, and N’ is a zero-
mean noise matrix. ¥’ changes over time to reflect long-term drifts in the proximities.
We refer to W' as the true proximity matrix, and our goal is to accurately estimate it
at each time step. On the other hand, N’ reflects short-term variations due to noise.
Thus we assume that N, N'=!, ..., NO are mutually independent.

A common approach for tracking unobserved states in a dynamic system is to use a
Kalman filter (Harvey 1989; Haykin 2001) or some variant. Since the states correspond
to the true proximities, there are O (n?) states and O (n?) observations, which makes
the Kalman filter impractical for two reasons. First, it involves specifying a parametric
model for the state evolution over time, and secondly, it requires the inversion of an
0 ((n?) x O(n?) covariance matrix, which is large enough in most evolutionary clus-
tering applications to make matrix inversion computationally infeasible. We present a
simpler approach that involves a recursive update of the state estimates using only a
single parameter o, which we define in (8).

3.1 Smoothed proximity matrix

If the true proximity matrix ¥’ is known, we would expect to see improved clustering
results by performing static clustering on W' rather than on the current proximity
matrix W because ¥’ is free from noise. Our objective is to accurately estimate ¥'
at each time step. We can then perform static clustering on our estimate, which should
also lead to improved clustering results.

The naive approach of performing static clustering on W’ at each time step can be
interpreted as using W' itself as an estimate for ¥'. The main disadvantage of this
approach is that it suffers from high variance due to the observation noise N’. As a

@ Springer

K. S. Xu et al.

consequence, the obtained clustering results can be highly unstable and inconsistent
with clustering results from adjacent time steps.

A better estimate can be obtained using the smoothed proximity matrix ' defined
by

U= 4 (1 —)W (®)

for + > 1 and by U0 = WO, Notice that ¥’ is a function of current and past data
only, so it can be computed in the on-line setting where a clustering result for time ¢ is
desired before data at time 7 + 1 can be obtained. ¥ incorporates proximities not only
from time ¢ — 1, but potentially from all previous time steps and allows us to suppress
the observation noise. The parameter o’ controls the rate at which past proximities
are forgotten; hence we refer to it as the forgetting factor. The forgetting factor in our
framework can change over time, allowing the amount of temporal smoothing to vary.

3.2 Shrinkage estimation of true proximity matrix

The smoothed proximity matrix @' is a natural candidate for estimating ¥'. It is a
convex combination of two estimators: W’ and ¥'~!. Since N’ is zero-mean, W' is
an unbiased estimator but has high variance because it uses only a single observation.
Ui=lisa weighted combination of past observations so it should have lower variance
than W', but it is likely to be biased since the past proximities may not be represen-
tative of the current ones as a result of long-term drift in the statistical properties of
the objects. Thus the problem of estimating the optimal forgetting factor o’ may be
considered as a bias-variance trade-off problem.

A similar bias-variance trade-off has been investigated in the problem of shrinkage
estimation of covariance matrices (Ledoit and Wolf 2003; Schifer and Strimmer 2005;
Chen et al. 2010), where a shrinkage estimate of the covariance matrix is taken to be
3 = AT+ (1—A)S, aconvex combination of a suitably chosen target matrix 7 and the
standard estimate, the sample covariance matrix S. Notice that the shrinkage estimate
has the same form as the smoothed proximity matrix given by (8) where the smoothed
proximity matrix at the previous time step Pl corresponds to the shrinkage target
T, the current proximity matrix W' corresponds to the sample covariance matrix S,
and o corresponds to the shrinkage intensity A. We derive the optimal choice of o
in a manner similar to Ledoit and Wolf’s derivation of the optimal A for shrinkage
estimation of covariance matrices (Ledoit and Wolf 2003).

As in Ledoit and Wolf (2003), Schéfer and Strimmer (2005), and Chen et al. (2010),
we choose to minimize the squared Frobenius norm of the difference between the true
proximity matrix and the smoothed proximity matrix. That is, we take the loss function
to be

L(')=|¢" -y

= ii (%‘ - ‘”itj)z‘

i=1 j=1I

@ Springer

Adaptive evolutionary clustering

We define the risk to be the conditional expectation of the loss function given all
of the previous observations

N 2
R (at) —E [Hlpt _ ,ptHF ' W(tl):|

where W=D denotes the set {W’_l, w2 ..., WO}. Note that the risk function is
differentiable and can be easily optimized if ¥’ is known. However, ¥ is the quantity
that we are trying to estimate so it is not known. We first derive the optimal forgetting
factor assuming it is known. We shall henceforth refer to this as the oracle forgetting
factor.

Under the linear observation model of (7),

var (W’|W(’*l)) = var (W') = var (N') (10)
because N, N'=1, ..., N9 are mutually independent and have zero mean. From the

definition of ¥’ in (8), the risk can then be expressed as

=S S E[(e el -)| W]

i=1 j=1

—ZZ[var(aw,’jl—i-(l—a) =

i=1 j=1

+E[a Ui (L =a)wly =yl | WO ”]] (11)

(11) can be simplified using (9) and (10) and by noting that the conditional variance
of 1//1 | lis zero and that W is deterministic. Thus

;Z}[(1-e) var(j)+(a’)2(&{j—l—¢;j)2}. (12)

From (12), the first derivative is easily seen to be

—ZZZ[a — 1) var()+oz (wltjl—l//fj)2].

i=1j=1

@ Springer

K. S. Xu et al.

To determine the oracle forgetting factor (a')”, simply set R’(a') = 0. Rearranging
to isolate o, we obtain

(13)

We find that (o)* does indeed minimize the risk because R” (') > 0 for all o'.

The oracle forgetting factor (a’) * Jeads to the best estimate in terms of minimizing
risk but is not implementable because it requires oracle knowledge of the true proximity
matrix W', which is what we are trying to estimate, as well as the noise variance
var (N ’). It was suggested in Schifer and Strimmer (2005) to replace the unknowns
with their sample equivalents. In this setting, we would replace 1//1.’ ! with the sample
mean of w! ; and var(n! ;)= var(w! ;) with the sample variance of w! ;- However, y!
and potentially var (N !) are time-varying so we cannot simply use the temporal sample
mean and variance. Instead, we propose to use the spatial sample mean and variance.
Since objects belong to clusters, it is reasonable to assume that the structure of W'
and var (N d) should reflect the cluster memberships. Hence we make an assumption
about the structure of ¥! and var (N !) in order to proceed.

3.3 Block model for true proximity matrix

We propose a block model for the true proximity matrix ¥’ and var (N !) and use the
assumptions of this model to compute the desired sample means and variances. The
assumptions of the block model are as follows:

Lyl = w} j for any two objects i, j that belong to the same cluster.

2. wi’j =y, for any two distinct objects i, j and any two distinct objects /, m such
that i, [belong to the same cluster, and j, m belong to the same cluster.

The structure of the true proximity matrix ¥’ under these assumptions is shown in
Fig. 4. In short, we are assuming that the true proximity is equal inside the clusters
and different between clusters. We make the assumptions on var (N !) that we do on
¥’ namely that it also possesses the assumed block structure.

One scenario where the block assumptions are completely satisfied is the case where
the data at each time ¢ are realizations from a dynamic Gaussian mixture model (GMM)
(Carmi et al. 2009), which is described as follows. Assume that the kX components of

the dynamic GMM are parameterized by the k time-varying mean vectors {ui}fz I

and covariance matrices {Ect-}]:-:y Let {qbc}’;:1 denote the mixture weights. Objects

are sampled in the following manner:

1. (Only at¢# = 0) Draw n samples {z;}7_, from the categorical distribution specified
by {(i)c}lc‘:1 to determine the component membership of each object.

2. (For all t) For each object i, draw a sample xf from the Gaussian distribution
parameterized by (p!., X!).

@ Springer

Adaptive evolutionary clustering

Fig. 4 Block structure of true 2
proximity matrix ¥7. W([L.) Y
denotes wi’i for all objects i in 1!1(1)
cluster ¢, and '/’(tcd) denotes '/’itj wtll
for all distinct objects i, j such)
that 7 is in cluster ¢ and j is in
cluster d

Notice that while the parameters of the individual components change over time,
the component memberships do not, i.e. objects stay in the same components over
time. The dynamic GMM simulates clusters moving in time. In Appendix A.1, we
show that at each time ¢, the mean and variance of the dot product similarity matrix
W, which correspond to ¥ and var (N') respectively under the observation model
of (7), do indeed satisfy the assumed block structure. This scenario forms the basis of
the experiment in Sect. 5.1.

Although the proposed block model is rather simplistic, we believe that it is a
reasonable choice when there is no prior information about the shapes of clusters. A
similar block assumption has also been used in the dynamic stochastic block model
(Yang et al. 2011), developed for modeling dynamic social networks. A nice feature
of the proposed block model is that it is permutation invariant with respect to the
clusters; that is, it does not require objects to be ordered in any particular manner.
The extension of the proposed framework to other models is beyond the scope of this
paper and is an area for future work.

3.4 Adaptive estimation of forgetting factor

Under the block model assumption, the means and variances of proximities are iden-
tical in each block. As a result, we can sample over all proximities in a block to obtain
sample means and variances. Unfortunately, we do not know the true block structure
because the cluster memberships are unknown.

To work around this problem, we estimate the cluster memberships along with (a)*
in an iterative fashion. First we initialize the cluster memberships. Two logical choices
are to use the cluster memberships from the previous time step or the memberships
obtained from performing static clustering on the current proximities. We can then
sample over each block to estimate the entries of ¥’ and var(N') as detailed below,
and substitute them into (13) to obtain an estimate (&')* of (a’)*. Now substitute (&')*
into (8) and perform static clustering on ¥ to obtain an updated clustering result. This
clustering result is then used to refine the estimate of (a’)*, and this iterative process
is repeated to improve the quality of the clustering result. We find, empirically, that
the estimated forgetting factor rarely changes after the third iteration and that even a
single iteration often provides a good estimate.

@ Springer

K. S. Xu et al.

7. %/t—]

: fori=1,2,... do {iteration number}

Compute E [#'] and vai (") using 6"

Calculate (/)" by substituting estimates E /7] and var () into (13)
P (o) P (1 (o))

6: %' — cluster(¥)

7: end for

8: return ¢’

BARE > o

Fig. 5 Pseudocode for generic AFFECT evolutionary clustering algorithm. Cluster(-) denotes any static
clustering algorithm that takes a similarity or dissimilarity matrix as input and returns a flat clustering result

To estimate the entries of ¥/ = E [W’], we proceed as follows. For two distinct
objects i and j both in cluster c, we estimate] ; using the sample mean

—~ 1
lub) = e Z 2 v

lec mec

m=#£l

Similarly, we estimate v/, by

~ 1
t t
E[wii] = H an'
lec
For distinct objects 7 in cluster ¢ and j in cluster d with ¢ # d, we estimate 1//1.’j by

~ 1
El:wlt/] = |C||d| Zzwltm'

lec med

var (N') = var (W') can be estimated in a similar manner by taking unbiased sample
variances over the blocks.

4 Evolutionary algorithms

From the derivation in Sect. 3.4, we have the generic algorithm for AFFECT at each
time step shown in Fig. 5. We provide some details and interpretation of this generic
algorithm when used with three popular static clustering algorithms: agglomerative
hierarchical clustering, k-means, and spectral clustering.

4.1 Agglomerative hierarchical clustering

The proposed evolutionary extension of agglomerative hierarchical clustering has an
interesting interpretation in terms of the modified cost function defined in (6). Recall
that agglomerative hierarchical clustering is a greedy algorithm that merges the two
clusters with the lowest dissimilarity at each iteration. The dissimilarity between two

@ Springer

Adaptive evolutionary clustering

clusters can be interpreted as the cost of merging them. Thus, performing agglomer-
ative hierarchical clustering on @' results in merging the two clusters with the lowest
modified cost at each iteration. The snapshot cost of a merge corresponds to the cost
of making the merge at time ¢ using the dissimilarities given by W', The temporal cost
of a merge is a weighted combination of the costs of making the merge at each time
steps € {0, 1,...,1 — 1} using the dissimilarities given by W*. This can be seen by
expanding the recursive update in (8) to obtain

gl — (1 _ at) wi +at(1 . at—l)Wt—l +ala! (1 _ at—Z) i

+ala ™ a? (1—051) w!+ala' ™ aPa WO (14)

4.2 k-means

k-means is an iterative clustering algorithm and requires an initial set of cluster mem-
berships to begin the iteration. In static k-means, typically a random initialization is
employed. A good initialization can significantly speed up the algorithm by reducing
the number of iterations required for convergence. For evolutionary k-means, an obvi-
ous choice is to initialize using the clustering result at the previous time step. We use
this initialization in our experiments in Sect. 5.

The proposed evolutionary k-means algorithm can also be interpreted as optimizing
the modified cost function of (6). The snapshot cost is & (X 1!) where Z(-, +) is
the sum of squares cost defined in (1). The temporal cost is a weighted combination
of 9 (X’, ‘53) ,5 €{0,1,...,t — 1}, i.e. the cost of the clustering result applied to
the data at time s. Hence the modified cost measures how well the current clustering
result fits both current and past data.

4.3 Spectral clustering

The proposed evolutionary average association spectral clustering algorithm involves
computing and discretizing eigenvectors of @ rather than W' . It can also be interpreted
in terms of the modified cost function of (6). Recall that the cost in static average
association spectral clustering is tr (Z Twz) Performing average association spectral

clustering on ¥' optimizes

tr(ZT [Z ,BSWS:| z) => pu (ZTWSZ) , (15)

s=0 s=0

where B¢ corresponds to the coefficient in front of W* in (14). Thus, the snapshot cost
is simply tr (Z Tyt Z) while the temporal cost corresponds to the remaining ¢ terms
in (15). We note that in the case where o/ ~! = 0, this modified cost is identical to that
of PCQ, which incorporates historical data from time ¢ — 1 only. Hence our proposed
generic framework reduces to PCQ in this special case.

@ Springer

K. S. Xu et al.

Fig. 6 Adding and removing I New objects

objects over time. Shaded rows

and columns are to be removed | !

before computing ¥'. The rows : :

and columns for the new objects pt—1 t !
: v w :
| I
]

are then appended to &'

Objects to be removed [

Chi et al. (2009) noted that PCQ can easily be extended to accommodate longer
history and suggested to do so by using a constant exponentially weighted forget-
ting factor. Our proposed framework uses an adaptive forgetting factor, which should
improve clustering performance, especially if the rate at which the statistical properties
of the data are evolving is time-varying.

Evolutionary ratio cut and normalized cut spectral clustering can be performed by
forming the appropriate graph Laplacian, L’ or .£", respectively, using ¥’ instead of
W'. They do not admit any obvious interpretation in terms of a modified cost function
since they operate on L" and .’ rather than W'.

4.4 Practical issues
4.4.1 Adding and removing objects over time

Up to this point, we have assumed that the same objects are being observed at multiple
time steps. In many application scenarios, however, new objects are often introduced
over time while some existing objects may no longer be observed. In such a scenario,
the indices of the proximity matrices W' and gl correspond to different objects, so
one cannot simply combine them as described in (8).

These types of scenarios can be dealt with in the following manner. Objects that
were observed at time ¢ — 1 but not at time ¢ can simply be removed from gl
(8). New objects introduced at time 7 have no corresponding rows and columns in
lI/’ ~1. These new objects can be naturally handled by adding rows and columns to

! after performing the smoothing operation in (8). In this way, the new nodes have
no inﬂuence on the update of the forgetting factor «’ yet contribute to the clustering
result through W' This process is illustrated graphically in Fig. 6.

4.4.2 Selecting the number of clusters

The task of optimally choosing the number of clusters at each time step is a difficult
model selection problem that is beyond the scope of this paper. However, since the
proposed framework involves simply forming a smoothed proximity matrix followed
by static clustering, heuristics used for selecting the number of clusters in static clus-
tering can also be used with the proposed evolutionary clustering framework. One
such heuristic applicable to many clustering algorithms is to choose the number of

@ Springer

Adaptive evolutionary clustering

clusters to maximize the average silhouette width (Rousseeuw 1987). For hierarchical
clustering, selection of the number of clusters is often accomplished using a stopping
rule; a review of many such rules can be found in Milligan and Cooper (1985). The
eigengap heuristic (von Luxburg 2007) and the modularity criterion (Newman 2006)
are commonly used heuristics for spectral clustering. Any of these heuristics can be
employed at each time step to choose the number of clusters, which can change over
time.

4.4.3 Matching clusters between time steps

While the AFFECT framework provides a clustering result at each time that is consis-
tent with past results, one still faces the challenge of matching clusters at time ¢ with
those at times ¢ — 1 and earlier. This requires permuting the clusters in the clustering
result at time 7. If a one-to-one cluster matching is desired, then the cluster matching
problem can be formulated as a maximum weight matching between the clusters at
time ¢ and those at time ¢ — 1 with weights corresponding to the number of common
objects between clusters. The maximum weight matching can be found in polyno-
mial time using the Hungarian algorithm (Kuhn 1955). The more general cases of
many-to-one (multiple clusters being merged into a single cluster) and one-to-many
(a cluster splitting into multiple clusters) matching are beyond the scope of this paper.
We refer interested readers to Greene et al. (2010) and Brodka et al. (2012), both of
which specifically address the cluster matching problem.

5 Experiments

We investigate the performance of the proposed AFFECT framework in five experi-
ments involving both synthetic and real data sets. Tracking performance is measured in

terms of the MSE E [|| Ul — gt ||%], which is the criterion we seek to optimize. Clus-

tering performance is measured by the Rand index (Rand 1971), which is a quantity
between 0 and 1 that indicates the amount of agreement between a clustering result and
a set of labels, which are taken to be the ground truth. A higher Rand index indicates
higher agreement, with a Rand index of 1 corresponding to perfect agreement. We
run at least one experiment for each of hierarchical clustering, k-means, and spectral
clustering and compare the performance of AFFECT against three recently proposed
evolutionary clustering methods discussed in Sect. 2.2.3: RG, PCQ, and PCM. We run
three iterations of AFFECT unless otherwise specified.

5.1 Well-separated Gaussians

This experiment is designed to test the tracking ability of AFFECT. We draw 40
samples equally from a mixture of two 2-D Gaussian distributions with mean vectors
(4, 0) and (—4, 0) and with both covariance matrices equal to 0.17. At each time step,
the means of the two distributions are moved according to a one-dimensional random
walk in the first dimension with step size 0.1, and a new sample is drawn with the

@ Springer

K. S. Xu et al.

10
. —%— Estimated o
Covariance \
— — — Oracle o
changed X
666 6600 —&— Static
W oo o'=0.25
)] F | i
= o d - - d=05
—o—6-6—6—69, -~~~ T 77
- . B o'=075
| g T =
#
e S
10°

0 10 20 30 40
Time step
Fig. 7 Comparison of MSE in well-separated Gaussians experiment. The adaptively estimated forgetting

factor outperforms the constant forgetting factors and achieves MSE very close to the oracle forgetting
factor

Soroood o8 Fedenexk
- Covariance - 06 Covariance

s changed s 0.4 changed

; 1 - {

0.2 —*— Estlmatetd o 0.2 —*— Esnmate:j [
— — — Oracle o — — — Oracle o

0 ! 0 !
0 10 20 30 40 0 10 20 30 40
Time step Time step

(a) 40 samples (b) 200 samples

Fig.8 Comparison of oracle and estimated forgetting factors in well-separated Gaussians experiment. The
gap between the estimated and oracle forgetting factors decreases as the sample size increases

component memberships fixed, as described in Sect. 3.3. At time 19, we change the
covariance matrices to 0.37 to test how well the framework can respond to a sudden
change.

We run this experiment 100 times over 40 time steps using evolutionary k-means
clustering. The two clusters are well-separated so even static clustering is able to
correctly identify them. However the tracking performance is improved significantly
by incorporating historical data, which can be seen in Fig. 7 where the MSE between
the estimated and true similarity matrices is plotted for several choices of forgetting
factor, including the estimated «. We also compare to the oracle o', which can be
calculated using the true moments and cluster memberships of the data as shown in
Appendix A.1 but is not implementable in a real application. Notice that the estimated
a' performs very well, and its MSE is very close to that of the oracle o’ . The estimated
a' also outperforms all of the constant forgetting factors.

The estimated o is plotted as a function of time in Fig. 8a. Since the clusters are
well-separated, only a single iteration is performed to estimate . Notice that both
the oracle and estimated forgetting factors quickly increase from O then level off to
a nearly constant value until time 19 when the covariance matrix is changed. After
the transient due to the change in covariance, both the oracle and estimated forgetting
factors again level off. This behavior is to be expected because the two clusters are

@ Springer

Adaptive evolutionary clustering

Fig. 9 Setup of two colliding 6
Gaussians experiment: one 000
cluster is slowly moved toward 4+t o o
the other, then a change in © o 8 o
cluster membership is simulated 2r xx O O °

% X

moving according to random walks. Notice that the estimated «’ does not converge to
the same value the oracle o appears to. This bias is due to the finite sample size. The
estimated and oracle forgetting factors are plotted in Fig. 8b for the same experiment
but with 200 samples rather than 40. The gap between the steady-state values of
the estimated and oracle forgetting factors is much smaller now, and it continues to
decrease as the sample size increases.

5.2 Two colliding Gaussians

The objective of this experiment is to test the effectiveness of the AFFECT framework
when a cluster moves close enough to another cluster so that they overlap. We also
test the ability of the framework to adapt to a change in cluster membership.

The setup of this experiment is illustrated in Fig. 9. We draw 40 samples from a
mixture of two 2-D Gaussian distributions, both with covariance matrix equal to iden-
tity. The mixture proportion (the proportion of samples drawn from the second cluster)
is initially chosen to be 1/2. The first cluster has mean (3, 3) and remains stationary
throughout the experiment. The second cluster’s mean is initially at (—3, —3) and is
moved toward the first cluster from time steps 0 to 9 by (0.4, 0.4) at each time. At
times 10 and 11, we switch the mixture proportion to 3/8 and 1/4, respectively, to
simulate objects changing cluster. From time 12 onwards, both the cluster means and
mixture proportion are unchanged. At each time, we draw a new sample.

We run this experiment 100 times using evolutionary k-means clustering. The MSE
in this experiment for varying &' is shown in Fig. 10. As before, the oracle o' is
calculated using the true moments and cluster memberships and is not implementable
in practice. It can be seen that the choice of a affects the MSE significantly. The
estimated o performs the best, excluding the oracle o, which is not implementable.
Notice also that o’ = 0.5 performs well before the change in cluster memberships
at time 10, i.e. when cluster 2 is moving, while &’ = 0.75 performs better after the
change when both clusters are stationary.

The clustering accuracy for this experiment is plotted in Fig. 11. Since this exper-
iment involves k-means clustering, we compare to the RG method. We simulate two
filter lengths for RG: a short-memory 3rd-order filter and a long-memory 10th-order
filter. In Fig. 11 it can be seen that the estimated o’ also performs best in Rand index,

@ Springer

K. S. Xu et al.

10
—#— Estimated o
h ; ch) — — —Oracle o
ange ange)
10° b 9 9 —o— S:atlc
W Ree 5—6—6-—o06—6—0 “s 0.25
g —@;67779/&{\ ~— ~ a=05
= NS T - ot =0.75
10* } Sy 1
\%
10°
0 5 10 15 20 25

Time step

Fig. 10 Comparison of MSE in two colliding Gaussians experiment. The estimated & performs best both
before and after the change points

1
—*— Estimated o
0.9 ~ — — Oracle o
’ —o&— Static
% RG (3rd order)
gl 0.8 “ 1 —— RG (10th order)
= | ‘
S 07 \ :
o \ !
I
0.6
Change 1 Change 2
0.5 - :
0 5 10 15 20 25
Time step

Fig. 11 Comparison of Rand index in two colliding Gaussians experiment. The estimated o’ detects the
changes in clusters quickly unlike the RG method

approaching the performance of the oracle «’. The static method performs poorly as
soon as the clusters begin to overlap at around time step 7. All of the evolutionary
methods handle the overlap well, but the RG method is slow to respond to the change
in clusters, especially the long-memory filter. In Table 1, we present the means and
standard errors (over the simulation runs) of the mean Rand indices of each method
over all time steps. For AFFECT, we also show the Rand index when only one iteration
is used to estimate o' and when arbitrarily setting &’ = 0.5, both of which also outper-
form the RG method in this experiment. The poorer performance of the RG method is
to be expected because it places more weight on time steps where the cluster centroids
are well-separated, which again results in too much weight on historical data after the
cluster memberships are changed.

The estimated o' is plotted by iteration in Fig. 12 along with the oracle «’. Notice
that the estimate gets better over the first three iterations, while the fourth and fifth
show no visible improvement. The plot of the estimated o’ suggests why it is able to
outperform the constant o’ ’s. It is almost constant at the beginning of the experiment
when the second cluster is moving, then it decreases over the two times when cluster
memberships are changed, and finally it increases when the two clusters are both
stationary. The values of the oracle a' before and after the change corroborate the
previous observation that o’ = 0.5 performs well before the change, but ' = 0.75

@ Springer

Adaptive evolutionary clustering

Table 1 Means and standard

errors of k-means Rand indices Method Parameters Rand index

in twg colliding Gaussians Static _ 0.899 - 0.002

experiment AFFECT Estimated o! (3 iterations) 0.984 + 0.001
Estimated o (1 iteration) 0.978 £+ 0.001
a' =05 0.975 £ 0.001

Bolded numl.)elt indicates best RG =3 0.955 = 0.001

performer within one standard

error =10 0.861 £ 0.001

—%— 1st iteration
—©5— 2nd iteration
3rd iteration

— — 4th iteration
5th iteration

— — — Oracle o

Change 1 Change 2

0 5 10 15 20 25
Time step

Fig. 12 Comparison of oracle and estimated forgetting factors in two colliding Gaussians experiment.
There is no noticeable change after the third iteration

performs better afterwards. Notice that the estimated o appears to converge to a lower
value than the oracle «’. This is once again due to the finite-sample effect discussed
in Sect. 5.1.

5.3 Flocks of boids

This experiment involves simulation of a natural phenomenon, namely the flocking
behavior of birds. To simulate this phenomenon we use the bird-oid objects (boids)
model proposed by Reynolds (1987). The boids model allows us to simulate natural
movements of objects and clusters. The behavior of the boids are governed by three
main rules:

1. Boids try to fly towards the average position (centroid) of local flock mates.
2. Boids try to keep a small distance away from other boids.
3. Boids try to fly towards the average heading of local flock mates.

Our implementation of the boids model is based on the pseudocode of Parker (2007).
At each time step, we move each boid 1/100 of the way towards the average position
of local flock mates, double the distance between boids that are within 10 units of each
other, and move each boid 1/8 of the way towards the average heading.

We run two experiments using the boids model; one with a fixed number of flocks
over time and one where the number of flocks varies over time.

@ Springer

K. S. Xu et al.

Fig. 13 Setup of boids
experiment: four flocks fly along
parallel paths (start and end
positions shown). At each time
step, a randomly selected boid
joins one of the other flocks

Fig. 14 Comparison of 1 ; . :
complete linkage Rand index in
boids experiment. The estimated
o performs much better than 0.95¢ E*W *,/*:}i 1
static clustering and slightly 3 ~
better than the RG method 2 09l \@/y)“@ Cach '@”Q\V@/\@J@@"@“&fmf]
g
o —— Estimated o
0.85 —&— Static 1
RG (3rd order)
— = RG (10th order)
0.8 - - -
0 10 20 30 40
Time step
Table 2 Means anq standard Method Parameters Rand index
errors of complete linkage Rand
indices in boids experiment Static . 0.908 + 0.001
AFFECT Estimated o (3 iterations) 0.950 & 0.001
Estimated o (1 iteration) 0.945 £+ 0.001
al =0.5 0.945 £+ 0.001
Bolded numl?elt indicates best RG =3 0.942 4 0.001
performer within one standard
error =10 0.939 4 0.000

5.3.1 Fixed number of flocks

Four flocks of 25 boids are initially distributed uniformly in separate 60 x 60 x 60
cubes. To simulate boids moving continuously in time while being observed at regular
time intervals, we allow each boid to perform five movements per time step according
to the aforementioned rules. Similar to Reynolds (1987), we use goal setting to push the
flocks along parallel paths. Note that unlike in the previous experiments, the flocking
behavior makes it possible to simulate natural changes in cluster, simply by changing
the flock membership of a boid. We change the flock memberships of a randomly
selected boid at each time step. The initial and final positions of the flocks for one
realization are shown in Fig. 13.

We run this experiment 100 times using complete linkage hierarchical clustering.
Unlike in the previous experiments, we do not know the true proximity matrix so
MSE cannot be calculated. Clustering accuracy, however, can still be computed using
the true flock memberships. The clustering performance of the various approaches is
displayed in Fig. 14. Notice that AFFECT once again performs better than RG, both

@ Springer

Adaptive evolutionary clustering

Fig. 15 Comparison of spectral 1

ee%%~%~*~%—ﬁ

clustering Rand index in boids NG
experiment. The estimated o osl
outperforms static clustering,
x
PCQ, and PCM 2 o6l]
-_g Flocks scattered Flocks rearranged
S 04 1
o —%— Estimated o
B —&— Static
0.2 & PCQ 1
-~ PCM
0 s . :
0 10 20 30 40

Time step

with short and long memory, although the difference is much smaller than in the two
colliding Gaussians experiment. The means and standard errors of the Rand indices
for the various methods are listed in Table 2. Again, it can be seen that AFFECT is the
best performer. The estimated ' in this experiment is roughly constant at around 0.6.
This is not a surprise because all movements in this experiment, including changes in
clusters, are smooth as a result of the flocking motions of the boids. This also explains
the good performance of simply choosing o’ = 0.5 in this particular experiment.

5.3.2 Variable number of flocks

The difference between this second boids experiment and the first is that the number of
flocks changes over time in this experiment. Up to time 16, this experiment is identical
to the previous one. At time 17, we simulate a scattering of the flocks by no longer
moving them toward the average position of local flock mates as well as increasing
the distance at which boids repel each other to 20 units. The boids are then rearranged
at time 19 into two flocks rather than four.

We run this experiment 100 times. The RG framework cannot handle changes in
the number of clusters over time, thus we switch to normalized cut spectral clustering
and compare AFFECT to PCQ and PCM. The number of clusters at each time step
is estimated using the modularity criterion (Newman 2006). PCQ and PCM are not
equipped with methods for selecting «. As a result, for each run of the experiment, we
first performed a training run where the true flock memberships are used to compute
the Rand index. The o which maximizes the Rand index is then used for the test run.

The clustering performance is shown in Fig. 15. The Rand indices for all methods
drop after the flocks are scattered, which is to be expected. Shortly after the boids
are rearranged into two flocks, the Rand indices improve once again as the flocks
separate from each other. AFFECT once again outperforms the other methods, which
can also be seen from the summary statistics presented in Table 3. The performance
of PCQ and PCM with both the trained « and arbitrarily chosen o = 0.5 are listed.
Both outperform static clustering but perform noticeably worse than AFFECT with
estimated «'. From Fig. 15, it can be seen that the estimated o best responds to the
rearrangement of the flocks. The estimated forgetting factor by iteration is shown in
Fig. 16. Notice that the estimated ' drops when the flocks are scattered. Notice also

@ Springer

K. S. Xu et al.

Table 3 Means and standard

. Method Parameters Rand index
errors of spectral clustering
Rand delces in boids Static _ 0.767 + 0.001
experiment
AFFECT Estimated o (3 iterations) 0.921 £ 0.001
Estimated o (1 iteration) 0.921 + 0.001
al =0.5 0.873 £ 0.002
PCQ Trained « 0.779 £ 0.001
L a=05 0.779 £ 0.001
Bolded number indicates best .
performer within one standard PCM Trained o 0.840 £ 0.002
error a=05 0.811 £ 0.001

that the estimates of o’ hardly change after the first iteration, hence why performing
one iteration of AFFECT achieves the same mean Rand index as performing three
iterations. Unlike in the previous experiments, o’ = 0.5 does not perform well in this
experiment.

Another interesting observation is that the most accurate estimate of the number of
clusters at each time is obtained when using AFFECT, as shown in Fig. 17. Prior to the
flocks being scattered, using AFFECT, PCQ, or PCM all result in good estimates for
the number of clusters, while using the static method results in overestimates. How-
ever, after the rearrangement of the flocks, the number of clusters is only accurately
estimated when using AFFECT, which partially contributes to the poorer Rand indices
of PCQ and PCM after the rearrangement.

5.4 MIT Reality Mining

The objective of this experiment is to test the proposed framework on areal data set with
objects entering and leaving at different time steps. The experiment is conducted on the
MIT Reality Mining data set (Eagle et al. 2009). The data was collected by recording
cell phone activity of 94 students and staff at MIT over a year. Each phone recorded the
Media Access Control (MAC) addresses of nearby Bluetooth devices at five-minute
intervals. Using this device proximity data, we construct a similarity matrix where the
similarity between two students corresponds to the number of intervals where they
were in physical proximity. We divide the data into time steps of one week, resulting
in 46 time steps between August 2004 and June 2005.

In this data set we have partial ground truth. Namely we have the affiliations of each
participant. Eagle et al. (2009) found that two dominant clusters could be identified
from the Bluetooth proximity data, corresponding to new students at the Sloan business
school and coworkers who work in the same building. The affiliations are likely to be
representative of the cluster structure, at least during the school year.

We perform normalized cut spectral clustering into two clusters for this experiment
and compare AFFECT with PCQ and PCM. Since this experiment involves real data,
we cannot simulate training sets to select o for PCQ and PCM. Instead, we use 2-fold
cross-validation, which we believe is the closest substitute. A comparison of clustering

@ Springer

Adaptive evolutionary clustering

Fig. 16 Comparison of 1 : : :
estlmaFed spectral cl.uster.mg ' gxﬂgwgwégédéﬁig#
forgetting factor by iteration in 08 | o /\ﬁ~ * |
. . . N o R &
boids experiment. The estimated -~ T &
forgetting factor drops at the g 06 i
change point, i.e. when the % 2@» Flocks scattered || | Flocks rearranged
flocks are scattered. There is no E | ¥
. . 3 04r / 1
noticeable change in the it |
forgetting factor after the second J — % 1stiteration
iteration 02 ~—©— 2nd iteration
3rd iteration
0 ‘ ‘ ‘
0 10 20 30 40
Time step
Fig. 17 Comparison of number ' ' '
Flocks scattered Flocks rearranged

of clusters detected by spectral
clustering in boids experiment.
Using the estimated &' results in
the best estimates of the number
of flocks (4 before the change
point and 2 after)

5,@

/\

/ \O/Q\ﬁ)/@/c\”\ 5]

—%— Estimated of
3| —©&— Static
PCQ
- - PCM
2 L H—H—¥
0 10 20 30 40

Detected number of clusters
iy

Time step

performance is given in Table 4. Both the mean Rand indices over the entire 46 weeks
and only during the school year are listed. AFFECT is the best performer in both
cases. Surprisingly, PCQ barely performs better than static spectral clustering with the
cross-validated o and even worse than static spectral clustering with « = 0.5. PCM
fares better than PCQ with the cross-validated « but also performs worse than static
spectral clustering with &« = 0.5. We believe this is due to the way PCQ and PCM
suboptimally handle objects entering and leaving at different time steps by estimating
previous similarities and memberships, respectively. On the contrary, the method used
by AFFECT, described in Sect. 4.4.1, performs well even with objects entering and
leaving over time.

The estimated o’ is shown in Fig. 18. Six important dates are labeled. The start and
end dates of the terms were taken from the MIT academic calendar (MIT-WWW 2005)
to be the first and last day of classes, respectively. Notice that the estimated o appears
to drop around several of these dates. These drops suggest that physical proximities
changed around these dates, which is reasonable, especially for the students because
their physical proximities depend on their class schedules. For example, the similarity
matrices at time steps 18 and 19, before and after the beginning of winter break, are
shown in Fig. 19. The detected clusters using the estimated o’ are superimposed onto
both matrices, with rows and columns permuted according to the clusters. Notice that
the similarities, corresponding to time spent in physical proximity of other participants,
are much lower at time 19, particularly in the smaller cluster. The change in the structure

@ Springer

K. S. Xu et al.

Table 4 Mean spectral

clustering Rand indices for MIT Method Parameters Raqd index
. . . Entire trace School year
Reality Mining experiment
Static — 0.853 0.905
AFFECT Estimated o (3 iterations) 0.893 0.953
Estimated o (1 iteration) 0.891 0.953
a' =05 0.882 0.949
PCQ Cross-validated o 0.856 0.905
a=05 0.788 0.854
Bolded number denotes best PCM Cross-validated « 0.866 0.941
performer in each category a=0.5 0.554 0.535
1 T T T T
Fall term Fall term Spring
begins ends break
0.8 i
o 06 i
é *\/\\»
= 04r g
it}
02 Winter term Winter term]
Thanksgiving begins ends
O Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45
Time step

Fig. 18 Estimated o over entire MIT Reality Mining data trace. Six important dates are indicated. The
sudden drops in the estimated «’ indicate change points in the network

20

40

60

80

4% 13- 1O |5 20

s sz '
T 40
- 60
80

20 40 60 80

20

40

60

80

Fig. 19 Cluster structure before (left) and after (right) beginning of winter break in MIT Reality Mining
data trace. Darker entries correspond to greater time spent in physical proximity. The empty cluster to the
upper left consists of inactive participants during the time step

of the similarity matrix, along with the knowledge that the fall term ended and the
winter break began around this time, suggests that the low estimated forgetting factor
at time 19 is appropriate.

@ Springer

Adaptive evolutionary clustering

Table 5 Number of stocks in each NASDAQ sector in 2008

Sector Basic Industries Capital Goods Consumer Durables Consumer Non-Durables
Stocks 61 167 188 93

Sector Consumer Services Energy Finance Health Care

Stocks 261 69 472 199

Sector Miscellaneous Public Utilities Technology Transportation

Stocks 65 69 402 49

The sectors are taken to be the ground truth cluster labels for computing Rand indices

Table 6 Means and standard

Method Parameters Rand index

errors (over five random
itializations) of Komeans Rand staiic - 0.801 £ 0.000
indices for N Q stoc AFFECT Estimated o (3 iterations) 0.808 -+ 0.000
prices experiment

Estimated o (1 iteration) 0.806 + 0.000

al =05 0.806 £ 0.000
Bolded numl')er' indicates best RG =3 0.804 + 0.000
performer within one standard

=10 0.806 £ 0.001

error

5.5 NASDAQ stock prices

In this experiment, we test the proposed framework on a larger time-evolving data set,
namely stock prices. We examined the daily prices of stocks listed on the NASDAQ
stock exchange in 2008 (Infochimps-WWW 2012). Using a time step of 3 weeks (15
days in which the stock market is operational), we construct a 15-dimensional vector
for each stock where the ith coordinate consists of the difference between the opening
prices at the (i + 1)th and ith days. Each vector is then normalized by subtracting its
sample mean then dividing by its sample standard deviation. Thus each feature vector
x! corresponds to the normalized derivatives of the opening price sequences over the
tth 15-day period. This type of feature vector was found by Gavrilov et al. (2000) to
provide the most accurate static clustering results with respect to the sectors of the
stocks, which are taken to be the ground truth cluster labels (NASDAQ-WWW 2012).
The number of stocks in each sector in the data set for this experiment are listed in
Table 5, resulting in a total of 2, 095 stocks.

We perform evolutionary k-means clustering into 12 clusters, corresponding to the
number of sectors. The mean Rand indices for AFFECT, static clustering, and RG are
shown in Table 6 along with standard errors over five random k-means initializations.
Since the RG method cannot deal with objects entering and leaving over time, we
only cluster the 2, 049 stocks listed for the entire year for the Rand index compari-
son. AFFECT is once again the best performer, although the improvement is smaller
compared to the previous experiments.

The main advantage of the AFFECT framework when applied to this data set
is revealed by the estimated of, shown in Fig. 20. One can see a sudden drop
in the estimated «’ at + = 13 akin to the drop seen in the MIT Reality Mining

@ Springer

K. S. Xu et al.

Fig. 20 Estimated o over 1
NASDAQ stock opening prices
in 2008. The sudden drop aligns 081

with the stock market crash in 06 I //\
0.4 | 1

late September
0.2 Stock market crash

Estimated o'

0 5 10 15

Time step

Fig. 21 Computation times of 10°
AFFECT k-means and static
k-means for varying numbers of
stocks. The estimation of &' in
AFFECT adds hardly any
computation time

@/ —#*— Estimated o (3 iterations)

107 b C’/ ~—©— Estimated o (1 iteration)
Static clustering

— — 3 x Static clustering

Computation time (seconds)

0 500 1000 1500 2000 2500
Number of stocks

experiment in Sect. 5.4. The sudden drop suggests that there was a significant change
in the true proximity matrix ¥’ around this time step, which happens to align
with the stock market crash that occurred in late September 2008 (Yahoo-WWW
2012), once again suggesting the veracity of the downward shift in the value of the
estimated o,

We also evaluate the scalability of the AFFECT framework by varying the number
of objects to cluster. We selected the top 100, 250, 500, 1, 000, and 1, 500 stocks
in terms of their market cap and compared the computation time of the AFFECT
evolutionary k-means algorithm to the static k-means algorithm. The mean computa-
tion times over ten runs on a Linux machine with a 3.00 GHz Intel Xeon processor
are shown in Fig. 21. Notice that the computation time for AFFECT when running
a single iteration is almost equivalent to that of static k-means. The AFFECT pro-
cedure consists of iterating between static clustering and estimating «’. The latter
involves simply computing sample moments over the clusters, which adds minimal
complexity. Thus by performing a single AFFECT iteration, one can achieve better
clustering performance, as shown in Table 6, with almost no increase in computation
time. Notice also that the computation time of running a single AFFECT iteration
when all 2, 095 stocks are clustered is actually less than that of static k-means. This is
due to the iterative nature of k-means; clustering on the smoothed proximities results
in faster convergence of the k-means algorithm. As the number of objects increases,
the decrease in the computation time due to faster k-means convergence is greater

@ Springer

Adaptive evolutionary clustering

than the increase due to estimating o’ . The same observations apply for 3 iterations of
AFFECT when compared to 3 times the computation time for static clustering (labeled
as “3 x static clustering”).

6 Conclusion

In this paper we proposed a novel adaptive framework for evolutionary clustering by
performing tracking followed by static clustering. The objective of the framework
was to accurately track the true proximity matrix at each time step. This was accom-
plished using a recursive update with an adaptive forgetting factor that controlled the
amount of weight to apply to historic data. We proposed a method for estimating the
optimal forgetting factor in order to minimize mean squared tracking error. The main
advantages of our approach are its universality, allowing almost any static clustering
algorithm to be extended to an evolutionary one, and that it provides an explicit method
for selecting the forgetting factor, unlike existing methods. The proposed framework
was evaluated on several synthetic and real data sets and displayed good performance
in tracking and clustering. It was able to outperform both static clustering algorithms
and existing evolutionary clustering algorithms.

There are many interesting avenues for future work. In the experiments presented
in this paper, the estimated forgetting factor appeared to converge after three itera-
tions. We intend to investigate the convergence properties of this iterative process in
the future. In addition, we would like to improve the finite-sample behavior of the
estimator. Finally, we plan to investigate other loss functions and models for the true
proximity matrix. We chose to optimize MSE and work with a block model in this
paper, but perhaps other functions or models may be more appropriate for certain
applications.

Acknowledgements We would like to thank the anonymous reviewers for their suggestions to improve
this article. Kevin Xu was partially supported by an award from the Natural Sciences and Engineering
Research Council of Canada. This study was partially supported by the National Science Foundation Grant
CCF 0830490 and the US Army Research Office Grant No. W91 1NF-09-1-0310.

Appendix
True similarity matrix for dynamic Gaussian mixture model

We derive the true similarity matrix ¥ and the matrix of variances of similarities
var(W), where the similarity is taken to be the dot product, for data sampled from the
dynamic Gaussian mixture model described in Sect. 3.3. These matrices are required
in order to calculate the oracle forgetting factor for the experiments in Sects. 5.1 and
5.2. We drop the superscript ¢ to simplify the notation.

Consider two arbitrary objects x; ~ N (i, X.) and x; ~ N(pq, X4) where the
entries of u,. and X, are denoted by o« and ok, respectively. For any distinct i, j
the mean is

@ Springer

K. S. Xu et al.

E [XiX,T] =D Elxxp] = Zuckﬂdk,

var (wx?) = | (])|~ B x|

p_p
= Z Z {E [riexjuxiixji] — mekmarieertrar}

P
> Okt + tekiter) (Oart + takitar) = Hekdk el i}

14
> {OckiOaki + Ockitak al + Okl ek et

by independence of x; and x ;. This holds both for x;, X; in the same cluster, i.e.c = d,
and for x;, x; in different clusters, i.e. ¢ # d. Along the diagonal,

[] iE[] i(ackk"f-,ugk).

k=1 k=1

The calculation for the variance is more involved. We first note that
2.2 2 2 2 2 2
E [xikxil] = Uophe + RexOcil + 4licktelOcki + g Ockk + 200y + Ockk Ol

which can be derived from the characteristic function of the multivariate Gaussian
distribution (Anderson 2003). Thus

var (x,-xiT) = {E [xizkxizl] - (ackk + ufk) (ocu + u?l)}

{4Mckﬂclackl + ZUCZ]{[} .

M%
Mm

~
Il

11=1

I
M-~
M-~

»
I

1l=1

The calculated means and variances are then substituted into (13) to compute the
oracle forgetting factor. Since the expressions for the means and variances depend
only on the clusters and not any objects in particular, it is confirmed that both ¥ and
var(W) do indeed possess the assumed block structure discussed in Sect. 3.3.

@ Springer

Adaptive evolutionary clustering

References

Ahmed A, Xing EP (2008) Dynamic non-parametric mixture models and the recurrent chinese restaurant
process: with applications to evolutionary clustering. Proceedings of the STAM international conference
on data mining, Atlanta

Anderson TW (2003) An introduction to multivariate statistical analysis, 3rd edn. Wiley, Hoboken

Brédka P, Saganowski S, Kazienko P (2012) GED: the method for group evolution discovery in social
networks. Soc Netw Anal Min. doi:10.1007/s13278-012-0058-8

Carmi A, Septier F, Godsill SJ (2009) The Gaussian mixture MCMC particle algorithm for dynamic cluster
tracking. Proceedings of the 12th international conference on information fusion, Seattle

Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. Proceedings of the 12th ACM
SIGKDD international conference on knowledge discovery and data mining, Philadelphia

Charikar M, Chekuri C, Feder T, Motwani R (2004) Incremental clustering and dynamic information
retrieval. SIAM J Comput 33(6):1417-1440

Chen Y, Wiesel A, Eldar YC (2010) Shrinkage algorithms for MMSE covariance estimation. IEEE Trans
Signal Process 58(10):5016-5029

Chi Y, Song X, Zhou D, Hino K, Tseng BL (2009) On evolutionary spectral clustering. ACM Trans Knowl
Discov Data 3(4):17

Chung FRK (1997) Spectral graph theory. American Mathematical Society, Providence

Eagle N, Pentland A, Lazer D (2009) Inferring friendship network structure by using mobile phone data.
Proc Nat Acad Sci 106(36):15274-15278

Falkowski T, Bartelheimer J, Spiliopoulou M (2006) Mining and visualizing the evolution of subgroups
in social networks. Proceedings of the IEEE/WIC/ACM international conference on web intelligence,
Hong Kong

Fenn DJ, Porter MA, McDonald M, Williams S, Johnson NF, Jones NS (2009) Dynamic communities in
multichannel data: an application to the foreign exchange market during the 2007-2008 credit crisis.
Chaos 19(033):119

Gavrilov M, Anguelov D, Indyk P, Motwani R (2000) Mining the stock market: Which measure is best?
Proceedings of 6th ACM SIGKDD international conference on knowledge discovery and data mining.
ACM Press, New York, pp 487-496

Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social
networks. Proceedings of international conference on advanced social network analysis and mining, pp
176-183

Gretton A, Borgwardt KM, Rasch M, Scholkopf B, Smola AJ (2007) A kernel approach to comparing
distributions. Proceedings of the 22nd AAAI conference on artificial intelligence

Gupta C, Grossman R (2004) Genlc: a single pass generalized incremental algorithm for clustering. Pro-
ceedings SIAM conference on data mining, Lake Buena Vista

Harvey AC (1989) Forecasting, structural time series models and the Kalman filter. Cambridge University
Press, Cambridge

Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference, and
prediction. Springer, New York

Haykin S (2001) Kalman filtering and neural networks. Wiley-Interscience, New York

Hossain MS, Tadepalli S, Watson LT, Davidson I, Helm RF, Ramakrishnan N (2010) Unifying dependent
clustering and disparate clustering for non-homogeneous data. Proceedings of the 16th ACM SIGKDD
international conference on knowledge discovery and data mining, pp 593-602

Infochimps-WWW (2012) NASDAQ Exchange Daily 1970-2010 Open, Close, High, Low and Vol-
ume data set. http://www.infochimps.com/datasets/nasdaq-exchange-daily-1970-2010-open-close-
high-low-and-volume

Ji X, Xu W (2006) Document clustering with prior knowledge. Proceedings of the 29th annual international
ACM SIGIR conference on research and development in information retrieval, New York, pp 405412

Kuhn HW (1955) The Hungarian method for the assignment problem. Nav Res Logist Quart 2(1-2):83-97

Ledoit O, Wolf M (2003) Improved estimation of the covariance matrix of stock returns with an application
to portfolio selection. J Empir Financ 10(5):603-621

LiY, HanJ, Yang J (2004) Clustering moving objects. Proceedings of the 10th ACM SIGKDD international
conference on knowledge discovery and data mining

Lin YR, Chi Y, Zhu S, Sundaram H, Tseng BL (2009) Analyzing communities and their evolutions in
dynamic social networks. ACM Trans Knowl Discov Data 3(2):8

@ Springer

http://dx.doi.org/10.1007/s13278-012-0058-8
http://www.infochimps.com/datasets/nasdaq-exchange-daily-1970-2010-open-close-high-low-and-volume
http://www.infochimps.com/datasets/nasdaq-exchange-daily-1970-2010-open-close-high-low-and-volume

K. S. Xu et al.

Liitkepohl H (1997) Handbook of matrices. Wiley, New York

MacQueen J (1967) Some methods for classification and analysis of multivariate observations. Proceedings
of the 5th Berkeley symposium on mathematical statistics and probability

Mankad S, Michailidis G, Kirilenko A (2011) Smooth plaid models: a dynamic clustering algorithm with
application to electronic financial markets. Tech Rep. http://ssrn.com/abstract=1787577

Milligan GW, Cooper MC (1985) An examination of procedures for determining the number of clusters in
a data set. Psychometrika 50(2):159-179

MIT-WWW (2005) MIT academic calendar 2004-2005. http://web.mit.edu/registrar/www/calendar0405.
html

Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP (2010) Community structure in time-dependent,
multiscale, and multiplex networks. Science 328(5980):876—878

NASDAQ-WWW (2012) NASDAQ Companies. http://www.nasdaq.com/screening/companies-by-
industry.aspx?exchange=NASDAQ

Newman MEJ (2006) Modularity and community structure in networks. Proc Nat Acad Sci 103(23):
8577-8582

Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: analysis and an algorithm. Adv Neural Inf
Process Syst 14:849-856

Ning H, Xu W, Chi Y, Gong Y, Huang TS (2010) Incremental spectral clustering by efficiently updating
the eigen-system. Pattern Recog 43(1):113-127

Parker C (2007) Boids pseudocode. http://www.vergenet.net/conrad/boids/pseudocode.html

Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):
846-850

Reynolds CW (1987) Flocks, herds, and schools: A distributed behavioral model. Proceedings of 14th
annual conference on computer graphics and interactive techniques, Anaheim

Rosswog J, Ghose K (2008) Detecting and tracking spatio-temporal clusters with adaptive history filtering.
Proceedings of the 8th IEEE international conference on data mining workshops, Pisa

Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.
J Computat Appl Math 20:53-65

Schifer J, Strimmer K (2005) A shrinkage approach to large-scale covariance matrix estimation and impli-
cations for functional genomics. Stat Appl Genet Mol Biol 4(1):32

Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell
22(8):888-905

Sun J, Papadimitriou S, Yu PS, Faloutsos C (2007) Graphscope: Parameter-free mining of large time-
evolving graphs. Proceedings of 13th ACM SIGKDD conference on knowledge discovery and data
mining

Tadepalli S, Ramakrishnan N, Watson LT, Mishra B, Helm RF (2009) Gene expression time courses by
analyzing cluster dynamics. J Bioinforma Comput Biol 7(2):339-356

Tang L, Liu H, Zhang J, Nazeri Z (2008) Community evolution in dynamic multi-mode networks. Proceed-
ings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining

Tantipathananandh C, Berger-Wolf T, Kempe D (2007) A framework for community identification in
dynamic social networks. Proceedings of 13th ACM SIGKDD international conference on knowledge
discovery and data mining

von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395-416

Wagstaff K, Cardie C, Rogers S, Schroedl S (2001) Constrained K-means clustering with background
knowledge. Proceedings of the 18th international conference on machine learning, pp 577-584

Wang X, Davidson I (2010) Flexible constrained spectral clustering. In: Proceedings of the 16th ACM
SIGKDD international conference on knowledge discovery and data mining, pp 563-572

Wang Y, Liu SX, Feng J, Zhou L (2007) Mining naturally smooth evolution of clusters from dynamic data.
Proceedings of SIAM conference on data mining

Xu KS, Kliger M, Hero AO III (2010) Evolutionary spectral clustering with adaptive forgetting factor.
Proceeding of IEEE international conference on acoustics, speech, and signal processing

Xu T, Zhang Z, Yu PS, Long B (2008a) Dirichlet process based evolutionary clustering. Proceedings of the
8th IEEE international conference on data mining

Xu T, Zhang Z, Yu PS, Long B (2008b) Evolutionary clustering by hierarchical Dirichlet process with
hidden Markov state. Proceedings of the 8th IEEE international conference on data mining

Yahoo-WWW (2012) IXIC Historical PricesINASDAQ composite stock—Yahoo! Finance. http://finance.
yahoo.com/q/hp?s=IXIC+Historical+Prices

@ Springer

http://ssrn.com/abstract=1787577
http://web.mit.edu/registrar/www/calendar0405.html
http://web.mit.edu/registrar/www/calendar0405.html
http://www.nasdaq.com/screening/companies-by-industry.aspx?exchange=NASDAQ
http://www.nasdaq.com/screening/companies-by-industry.aspx?exchange=NASDAQ
http://www.vergenet.net/conrad/boids/pseudocode.html
http://finance.yahoo.com/q/hp?s=IXIC+Historical+Prices
http://finance.yahoo.com/q/hp?s=IXIC+Historical+Prices

Adaptive evolutionary clustering

Yang T, Chi Y, Zhu S, Gong Y, Jin R (2011) Detecting communities and their evolutions in dynamic social
networks—a Bayesian approach. Mach Learn 82(2):157-189

Zhang J, Song Y, Chen G, Zhang C (2009) On-line evolutionary exponential family mixture. Proceedings
of the 21st international joint conference on artificial intelligence, Pasadena

ZhangJ, Song Y, Zhang C, Liu S (2010) Evolutionary hierarchical Dirichlet processes for multiple correlated
time-varying corpora. Proceedings of the 16th ACM SIGKDD international conference on knowledge
discovery and data mining

@ Springer

	Adaptive evolutionary clustering
	Abstract
	1 Introduction
	2 Background
	2.1 Static clustering algorithms
	2.1.1 Agglomerative hierarchical clustering
	2.1.2 k-means
	2.1.3 Spectral clustering

	2.2 Related work
	2.2.1 Incremental clustering
	2.2.2 Constrained clustering
	2.2.3 Evolutionary clustering

	3 Proposed evolutionary framework
	3.1 Smoothed proximity matrix
	3.2 Shrinkage estimation of true proximity matrix
	3.3 Block model for true proximity matrix
	3.4 Adaptive estimation of forgetting factor

	4 Evolutionary algorithms
	4.1 Agglomerative hierarchical clustering
	4.2 k-means
	4.3 Spectral clustering
	4.4 Practical issues
	4.4.1 Adding and removing objects over time
	4.4.2 Selecting the number of clusters
	4.4.3 Matching clusters between time steps

	5 Experiments
	5.1 Well-separated Gaussians
	5.2 Two colliding Gaussians
	5.3 Flocks of boids
	5.3.1 Fixed number of flocks
	5.3.2 Variable number of flocks

	5.4 MIT Reality Mining
	5.5 NASDAQ stock prices

	6 Conclusion
	Acknowledgements
	Appendix
	True similarity matrix for dynamic Gaussian mixture model

	References

