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Estimation of Message Source and
Destination From Network Intercepts
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Abstract—We consider the problem of estimating the endpoints
(source and destination) of a transmission in a network based
on partial measurement of the transmission path. Possibly asyn-
chronous sensors placed at various points within the network
provide the basis for endpoint estimation by indicating that
a specific transmission has been intercepted at their assigned
locations. During a training phase, test transmissions are made
between various pairs of endpoints in the network and the sen-
sors they activate are noted. Sensor activations corresponding
to transmissions with unknown endpoints are also observed in
a monitoring phase. A semidefinite programming relaxation is
used in conjunction with the measurements and linear prior infor-
mation to produce likely sample topologies given the data. These
samples are used to generate Monte Carlo approximations of the
posterior distributions of source/destination pairs for measure-
ments obtained in the monitoring phase. The posteriors allow for
maximum a posteriori (MAP) estimation of the endpoints along
with computation of some resolution measures. We illustrate the
method using simulations of random topologies.

Index Terms—Channel and network models, data acquisition
and sensor models, detection and identification of anomalous
events, network tomography and surveillance.

I. INTRODUCTION

WE present a method to estimate the endpoints (source and
destination) of a data transmission in a network whose

logical topology is unknown. We assume there are a number of
asynchronous sensors placed on some subset of elements (links
or nodes) in a network. A sensor is activated, and its activation
recorded, whenever the path of a data transmission is intercepted
on the element where the sensor is situated. The measurement
apparatus is illustrated on a sample network in Fig. 1. Measure-
ments are taken at discrete time instances, and the subscript
is used throughout the paper to index time. If multiple sensors
are activated by a single transmission, they may not be capable
of providing the precise order in which they were activated. In
general, a probability distribution on the possible orders of ac-
tivation is observed for each measurement; here the ar-
gument is simply a natural number used to
indicate a specific ordering of the sensors activated at time .
For example, a transmission with endpoints in
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Fig. 1. Diagram of the measurement apparatus on a sample network. Probing
sites are sources� = f� ; � g and destinations� = f� ; � g. A box on a link
or node represents a sensor that indicates when a transmission path intercepts
that link/node. We see 
 and 
 monitor nodes while 
 , 
 , and 
 monitor
links.

Fig. 1 might activate -suppose this is the first
measurement so . The ordering , corresponding
to , might have probability , while the or-
dering , where , has probability .
Since the orderings are defined over distinct sensor sets, we im-
plicitly assume the transmission does not cycle in its path-that is,
a particular sensor is activated at most once by a single transmis-
sion. During a preliminary training phase, the network is probed
by transmitting data packets between various pairs of probing
sites , and the sensors acti-
vated by each transmission are recorded along with the distribu-
tions on orderings . A monitoring phase begins at
time instant and continues until some final time , whereby
we observe sensor activation sets and associated or-
dering distributions for which the endpoints are
unknown.

The probing data , the
monitored data , and some prior
information about the network topology are processed to pro-
duce Monte Carlo estimates of the posterior distributions of
possible endpoints of those transmissions observed in the moni-
toring phase. We allow prior information of the form
on the logical adjacency matrix describing connec-
tions among sensors and probing sites. is some subset of the
elements of , is a fixed linear operator, and is a vector. Thus
the prior information is essentially a set of linear equalities that
the adjacency matrix ought to satisfy. The linear operator
can be expressed as an equivalent matrix if the elements of
are organized in a vector . The linear prior information is then
of the form . In general, we make no assumptions about
the structure of , so that given arbitrary and the computa-
tion of feasible solutions to the linear equation is known to be
an NP-Complete problem [1]. We consider the associated min-
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imum norm problem where and
is a quadratic norm with respect to the positive definite

matrix . It is known that combinatorial optimization problems
of this type may be successfully approximated by “lifting” them
into a higher dimensional matrix space where and

[2].
With the advent of polynomial time interior point methods

for linear programming that can be extended to semidefinite
programming [3], [4], it is convenient to consider a semidefi-
nite programming (SDP) relaxation of the higher dimensional
problem. Indeed, SDP relaxations have proven to be powerful
tools for approximating hard combinatorial problems [5]–[8].
The SDP, however, is solved over a continuous domain so it is
necessary to retrieve a 0–1 solution from the possibly fractional
SDP solution. One possibility is a branch and bound scheme
whereby certain variables are fixed and the SDP is repeated until
a discrete solution is found [1], [8]. The branch and bound al-
gorithm can take an exponential amount of time, depending on
how tight the desired bound is. A randomized rounding scheme
was developed in [6] for SDP relaxations of the maximum cut
(MAXCUT) and maximum 2-satisfiability (MAX2SAT) prob-
lems. This scheme is shown to produce solutions of expected
value at least 0.878 times the optimal value in [6]. We develop
an SDP relaxation of the 0–1 minimum norm problem and apply
the randomized rounding method in conjunction with samples
from the ordering distributions to produce a number
of network topology adjacency matrices that approx-
imately satisfy the linear prior information . We de-
rive an expression for the expected value of the squared error

of samples produced in this way. This expres-
sion depends on the solution of the SDP relaxation, but an upper
bound on the error independent of the SDP solution is also
given.

We wish to produce posterior distributions given the data and
prior information of the endpoints of transmissions observed
in the monitoring phase for .
The network topology and sensor ordering samples are used in
conjunction with prior distributions on the endpoints of mea-
surements made during the monitoring phase for

to compute Monte Carlo approximations of
the desired posterior distributions via Bayes rule. Bayes formula
for this problem essentially reduces to the expected value of a
functional of the topology and sensor ordering ; our approx-
imation of the endpoint posterior thus becomes an average of
the values of this functional at each sample topology and
ordering set . It is readily apparent that this functional re-
quires the conditionals -these path likelihood func-
tions are the conditional probabilities of a sensor activation set

given the endpoints and activation order in a topology .
We propose a path likelihood model inspired by shortest path
routing, whereby the length of a path determines its probability.
Since the model is probabilistic, it is also well suited to dynamic
algorithms, such as distance vector routing [9], which may not
always choose the same path for a single endpoint pair. With
the endpoint posterior distribution in hand, we can immediately
give the MAP estimate of (with ) or an a posteriori
confidence region of probable source/destination pairs.

The related area of network tomography has recently been
a subject of substantial research. It refers to the use of traffic
measurements over parts of a network to infer characteristics of
the complete network. Some characteristics of interest include
the following: source/destination traffic rates [10], [11], link-
level packet delay distributions [12], [13], link loss [14], and link
topology [15], [16]. For an overview of relevant tomography
problems for the Internet see [17]. In many applications, the
tomography problem is ill posed since data are insufficient to
determine a unique topology or delay distribution.

Our work is related to the internally sensed network tomog-
raphy application described in [18], [19]. These works propose
a methodology for estimating the topology of a telephone net-
work using the measurement apparatus illustrated in Fig. 1. The
data transmissions are of course telephone calls and the asyn-
chronous sensors are located on trunk lines. A simple argument
in [19] demonstrates that the number of topologies consistent
with the data measured during the probing phase is
exponential in the number of sensors. Indeed the problem is
ill-posed as the data required to provide a reasonable estimate
of the topology will never be available in practice. We sidestep
the difficulties of developing a single topology estimate by aver-
aging over many probable topologies in computing the endpoint
posterior distribution.

The solution approach we develop is very general, and we
suspect it might have application in all sorts of networks: in-
cluding telephone networks as described in [18], the Internet,
social networks (such as command and control structures), or bi-
ological networks (such as protein-protein interaction networks)
[20], [21]. Since we allow for sensor placement on arbitrary net-
work elements, the method is equally applicable to networks
where it may be more convenient to monitor nodes (as in the
Internet) or monitor links (as in the telephone network of [18]).
Also, the ordering distributions allow for situations involving
sensors ranging from asynchronous to perfectly synchronized.
At one extreme, the sensors are exactly synchronized-in which
case the distribution reduces to a delta function with all
mass concentrated on the known ordering of sensors. A natural
source of such information would be the noisy time stamp as-
signed by each sensor to when it saw the message. Indeed, this
is an issue faced in many active probing scenarios. Methods in-
volving GPS and calibration of PC clocks have been described
in [22] and [23], respectively, for addressing asynchronous sen-
sors in active probing of technological networks. One might de-
rive the ordering distributions from some noise model for the
time stamps. In the present work, we assume the ordering dis-
tributions themselves are provided since the chronological order
in which the sensors intercept a message is the crucial informa-
tion.

Although the monitored network topology is unknown, the
linear prior information permits inclusion of reasonably avail-
able information relevant to the topology. This is a generaliza-
tion of the frequently used vertex degree prior. Vertex degree
priors are used quite often due to the fact that many real world
networks are characterized by specific degree distributions [24].
For example, studies have suggested a power-law distribution
describes vertex degrees in the Internet [25]. Such priors have
recently been applied to research involving models of social and
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biological networks [20], [21], [26]. Since the degree of a vertex
is equal to the sum over the row of the adjacency matrix de-
scribing connections to that vertex, one can easily construct a
linear operator so that expresses the degree prior
for a given vector of vertex degrees .

The approach described here might also find utility in systems
conveniently modelled by graphs, such as finite state automata.
The problem of machine identification is a classic problem in
the theory of automata testing [27], [28]. Here, we are given
a black box with an automaton inside whose transition func-
tion is unknown. Based on the response of the system to cer-
tain input sequences, we wish to reconstruct the transition func-
tion. The link to the network topology recovery aspect of our
problem is clear, since a graph provides a convenient represen-
tation for the transition function of interest. The probing sites
chosen in the probing phase of our problem is analogous to the
input sequences to the black box automaton. Similarly, link sen-
sors correspond to events in the automaton’s observable event
set. An exhaustive algorithm for solving this problem is given
in [27] and shown to have exponential run time. Our methods
might be adapted to provide a polynomial time approximation
algorithm. This would involve partitioning measurements with
cycles (whereby an observable event occurs more than once in
the same string) to satisfy the direct path assumption and se-
lecting a different conditional path likelihood since
the shortest path routing model we suggest might not be appro-
priate.

The outline of this paper is as follows. We review the problem,
describe in detail each component of the endpoint estimation
system, and analyze its complexity in Section II. In Section III,
we provide some simulations of random graphs. In Section IV
we conclude with some extensions of the method presented here
and give directions for future work utilizing feedback for adap-
tive probing.

II. MODEL AND THEORY FOR

SOURCE-DESTINATION ESTIMATION

Let be a simple graph defined by the vertex set
, edge set , and incidence relation giving

the vertices connected by each edge. We allow to be either di-
rected or undirected; however, it should be known a priori which
is the case. In our application, defines the set of links in the
network topology, defines the routers or switches connected
by these links, and determines the pair of routers/switches
connected by each link. The graph is unknown to us.

Let denote a set of sensors we place in the network. Sen-
sors are placed on some subset of graph elements; that is sensors
may be placed on vertices, edges, or both. A sensor will indicate
whenever a transmission through the network passes the ele-
ment it is monitoring. Probing sites are selected from the vertex
set . The source vertex set is the set of vertices from
which transmissions may originate, and the destination vertex
set are those vertices at which transmissions may ter-
minate. A path observed at time between probing sites

and is given by , where contains
the sensors activated by the transmission from to . We as-
sume the first measurements correspond to probes of the

Fig. 2. Example logical topology G (V ;E ) for the monitored network G
in Fig. 1. The vertex set of G consists of sensors � = f
 g and probing
sites � = f� ; � g, � = f� ; � g, so that V = � [ � [�. The edges of
G summarize logical adjacencies among sensors and probing sites with any
intervening unmonitored elements short-circuited.

network (i.e., active measurements) so that the sources and des-
tinations of these measurements are known (since we choose
them). Because the sensors are in general asynchronous, the
paths are unordered sets. However, along with each , a dis-
crete probability distribution is observed on possible or-
derings indexed by of the set ; the observation data is then

for . We assume a transmission
does not cycle in its path from source to destination, so that only
orderings of distinct elements of are considered. It follows
that if has distinct elements, then is defined over

different orderings. Note that the case of perfectly synchro-
nized sensors is easily handled in this framework: simply take

where is the known order in which the
sensors were activated.

At time , we proceed with monitoring of the network,
that is observing activated sensor sets with unknown source
and destination. The observation data in the monitoring phase
is for . The purpose of our system
is to estimate the source and destination of an
activated sensor set . In order to estimate the endpoints of
such a measurement, it is necessary to have some idea of the
logical topology of the network. Instead of considering the log-
ical adjacencies implied by the actual network , we
are concerned with adjacency relationships among only those
elements (vertices and edges) that are either monitored with a
sensor or used as a probing site. For example, we cannot hope
to pinpoint the position of a link in the original network that
is not monitored by a sensor. We assume unmonitored elements
are essentially ’short-circuited’ in the original network . The
idea here is to assure two elements are logically adjacent even
if they are physically separated by an element (or subgraph of
elements) that is not monitored. The particular topology we con-
sider is then where is the set of
sensors and probing sites, and describes the log-
ical adjacencies among these elements. may be undirected
or directed depending upon the nature of the network . For
computational purposes, we represent by its adjacency ma-
trix where if and only if for
and otherwise. An example logical topology is
given in Fig. 2 for the monitored network in Fig. 1.
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We assume independence of measurements at different times
and utilize a Bayesian framework to produce suitable approxi-
mations of the endpoint posterior distribution

(1)

where the expression is obtained quite simply by using
the law of total probability to expand the distribution

over the random variables ,
and applying Bayes rule with appro-

priate independence assumptions to . Of
course in (1) so that we are considering the endpoint
posterior of a passive measurement. We have available linear
prior information on some of the logical adjacency elements
(a submatrix of ) of the form where is a fixed
linear operator and a prior distribution on endpoints .
It is assumed the endpoint pair of a passive measurement is
independent of the particular topology , in other words, the
parties communicating do not know the network topology
either. However, if there is no connection between a given
endpoint pair in a topology , one would expect such a
pair to have probability zero; we shall use a model for the
term multiplying to ensure the product is zero in this
case. Here represents all measured data
( for and for

), and is the ordering of the sensors activated in
measurement . The conditional expectation is therefore taken
over all logical adjacency matrices and sensor orderings for
all measurements . We introduce a shortest path routing
model for the conditional path probabilities . The
conditional expectation in (1) is approximated in a Monte
Carlo fashion by summing over the argument evaluated at a
number of adjacency matrix and sensor ordering samples. The
sensor orderings are drawn independently from observed
distributions for . These are used in
conjunction with the solution to a semidefinite programming
relaxation that incorporates the prior information
to produce adjacency matrix samples that are likely given
both the data and the prior information. With the approximate
endpoint posterior distribution in hand, we can provide MAP
estimates of the endpoints of the passive measurement and
compute appropriate error measures.

In the following, we first elaborate on probing of the net-
work and the characterization of measurements obtained. Then
we describe the distribution and
how it may be efficiently sampled using the given ordering dis-
tributions and a semidefinite programming relaxation. Next we
discuss how the samples are used to approximate the endpoint
posterior and produce MAP estimates. Finally, we analyze the
complexity of our algorithm.

A. Probing the Network and Taking Measurements

The set of all available measurements is partitioned
into two disjoint sets. The measurements for
correspond to a training phase for the probing sites , . For

each , we select a probing pair and pass
a transmission between this pair to observe the sensors acti-
vated and a distribution on the possible orderings of
the activated sensors. The measurement data therefore consists
of both the endpoints and the activated sensor set/ordering distri-
bution for . Such a measurement
is referred to as an active measurement. The remaining measure-
ments are due to monitored transmissions so that the endpoints
are not available: for . These
are referred to as passive measurements since they were not due
to active probing of the network on our behalf. It is assumed
that the endpoints of these measurements are realizations of a
random probing site pair described by the known distribution

defined on . We desire to estimate the particular
probing site pair between which a transmission was passed re-
sulting in a given passive measurement.

B. Generating Topology and Sensor Ordering Samples

In order to produce a Monte Carlo estimate of the conditional
expectation in (1), we need to specify and sample from the dis-
tribution . We first expand this dis-
tribution as

(2)

where independence over the measurement time index is used
to write the second term in product form. We now note that each
measurement contains a distribution over orderings
for the activated sensor set. Since these distributions are obser-
vations, it is reasonable to suspect that all topological consid-
erations are folded into them. We therefore assume that given
the ordering distributions, the particular orderings are inde-
pendent of the linear prior on topology. Equation (2) therefore
becomes

(3)

The factored form of the distribution in (3) suggests the first
thing we should do in generating our samples is to select or-
derings independently from the distributions for each

. This is a simple matter since each is a
discrete distribution defined over a finite number of orderings.

Consider now what a measurement equipped with an or-
dering implies about the adjacency matrix . Let de-
note the ordered sensor activation set where, if is an active
measurement, the source probing site is taken as the first ele-
ment followed by the ordering of the activated sensors and
the destination probing site is taken as the last element. If is a
passive measurement, is simply the ordering of the acti-
vated sensors. The fact that the transmission passes from the th
element of , given by , to implies there must be
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a logical connection between and . Thus if we select
an ordering for each measurement (i.e., for ),
then every adjacency element in the set must be 1, where

is defined by

(4)

Once we draw orderings as previously described, the ad-
jacency matrix elements in are immediately fixed at unity
by these. It remains, however, to select the remaining adjacency
elements. In drawing these, we must account for the prior infor-
mation . Since is a linear operator, we may re-ex-
press this information as where is now understood to
be a matrix and is a vectorized version of the adja-
cency elements . For arbitrary , finding a 0–1 vector that
satisfies the equation is an NP-Complete problem [29].
We will shortly discuss how randomized rounding of a semidef-
inite programming relaxation may be used to find approximate
solutions. The randomized rounding will induce a distribution
on , the remaining factor in (3).
The induced distribution will have the desirable property that it
assigns high probability to samples that approximately satisfy
the linear constraint .

Consider the matrix equation equivalent to the linear
prior information . Producing vectors that satisfy
this equation amounts to finding several solutions to the problem

find

such that (5)

Unfortunately, the problem in (5) is NP-complete for an arbi-
trary, unstructured matrix [29]. We consider an equivalent re-
statement of (5)

minimize

such that (6)

where is a (symmetric) positive definite matrix that may be
chosen to emphasize the relative importance of the different
constraints. Obviously any optimal solution of the problem in
(6) with zero value solves the feasibility problem in (5). The
problem in (6) is no easier than the original statement, however,
it has been shown that problems of this type (0–1 quadratic pro-
grams) can be approximated quite well using a semidefinite re-
laxation [7].

We now proceed to derive the SDP relaxation of (6). Our re-
laxation is similar to the one derived in [6] for MAX2SAT. First
note that the optimization in (6) is equivalent to

minimize

such that (7)

where and . This is easily seen by
expanding the objective in (6) and dropping the constant term.
Now note that since ; this fact this allows
(7) to be re-expressed as

minimize

such that (8)

We now introduce variables for each
for along with an additional so that
the change of variables is given by

(9)

The identities in (10) follow from this change of variables:

(10)

If we introduce a negative sign in the objective, then the opti-
mization in (8) becomes

such that (11)

where is a vector of ones and matrices , are given by

(12)

In order to obtain a semidefinite program, define the matrix
. It is simple to show that for some

vector if and only if (i.e., is positive semidefinite)
and . We drop the nonconvex rank-1 constraint
to obtain the SDP relaxation

maximize

such that (13)

where indicates the trace operation and the constraint
is added to enforce . The equivalence

of the objective functions in (13) and (11) can be seen easily
by replacing with and dropping constant terms.
The SDP in (13) may be solved in polynomial time using a
primal-dual path following algorithm [4]. The result of this
optimization will in general be a non-integer symmetric
positive semidefinite matrix. In [6], a randomized rounding
methodology is proposed to recover a ,1 vector from the
SDP solution . The strategy is to first perform the Cholesky
factorization . A random hyperplane through the
origin with normal vector is then chosen by selecting from
the uniform distribution on the surface of the unit hypersphere

. The value of is then deter-
mined by whether the corresponding column of lies above
or below the hyperplane, i.e., if and
if . The th element of the vectorized adjacency sample

is then given by

if
if .

(14)

This result can be seen by applying the rounding method and
then using the change of variable formula given in (9).
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We now proceed to derive the mean squared error
of the sample adjacency in (14) and thereby

quantify how close the samples produced in this way come to
satisfying the linear prior information on average. First note
that the rounding scheme used implies the following identities:

(15)

where is a random vector from the uniform distri-
bution on as previously defined. We may evaluate
the probabilities in (15) quite easily via the observation
in [6]. Note that symmetry of the distribution implies

.
And if is the angle between the vectors
and then it follows since the
distribution of is uniform on . A similar argument applies
to the case of matching sign. The results are summarized below

(16)

If we define the matrix such that where
is the solution of the SDP relaxation in (13) and note that the

objective function in (11) is exactly equal to ,
then we may take the expectation of the objective in (11) and
apply the identities in (15) and (16) to obtain the mean squared
error as

(17)

where is a vector of ones.
We may obtain a bound on the expected value of the squared

error in (17) independent of the solution to the SDP. As in [6],
define the constant

(18)

From this definition of , the following identities follow imme-
diately:

(19)

We take the expected value of the objective function in (11) and
apply the identities in (19) with to give

(20)

Now suppose the equation has at least one feasible
solution . Let be the corresponding ,1 vector and

. We then have

(21)

But since solves the SDP in (13), it follows:

(22)

We may now combine the inequalities in (20) and (22) and re-
arrange to obtain a bound on the expected value of the squared
error that is independent of the SDP solution

(23)

In practice, the bound in (23) tends to exceed the true expected
value in (17) by a large amount. However, it is of theoretical
interest since it gives a general idea of how close samples pro-
duced in this way will come to satisfying the linear prior infor-
mation, given the matrix and vector specifying this infor-
mation. One must be careful to apply this bound only when all
elements of and are nonnegative (such as when a vertex de-
gree prior is used). A similar bound can be derived when some
elements of or are negative, but we will omit it here.

A naive procedure for generating the necessary samples using
these procedures would be to first draw the ordering variables

then fix the adjacency elements in corresponding to
the draw. One could then reduce the system by elim-
inating elements in and proceed to formulate and solve
the SDP for use in randomized rounding. This approach is com-
putationally prohibitive, however, because it requires solving a
new SDP for every single sample. Instead, we prefer to solve
a single SDP and use its solution to generate all samples. The
single SDP is derived from the system where the
eliminated variables are those whose probability of being in
the set exceeds a threshold. The probability
is computed from the ordering distributions as

(24)

Note that by fixing the variables that are likely to be in and
eliminating them from the prior constraints , we are
throwing away some prior information. Provided the threshold
is fairly high, the eliminated variables will most often be set
to unity anyway due to the ordering samples. In the interest
of keeping down computational costs, this is a reasonable ap-
proach.

There may be adjacency matrix elements that are not
in and have zero probability of being in . Define

; then denotes
the adjacency matrix elements that we have no information
about. We adopt the principle of parsimony and assume all
elements in are zero. A summary of our procedure for gen-
erating sample adjacency matrices and orderings follows.

• Compute for all as in (24).
• Eliminate from and adjust

the system with these variables fixed at 1.
• Solve the SDP corresponding to for the op-

timum .
• Compute and store the Cholesky factor of the SDP so-

lution .
• For .

— Draw from for .
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— Determine as in (4) and set for all
.

— Draw from the uniform distribution on .
— Take inner products of the Cholesky factors with to

determine that are organized in the vector
as shown in (14).

— Set all remaining adjacency elements to 0.
We may now write down the conditional distribution

from which the SDP rounding
method is sampling. First define the set as

if
if

(25)

where is the surface of the unit hypersphere and is the ap-
propriate column of the Cholesky factor corresponding to the
variable as defined earlier. Since the only random elements
of given , and are those in , the
desired conditional distribution is given by

(26)

The expression in (26) is a rather complicated distribution
shaped by the prior data and through the solution of the
SDP in (13) formulated from this data. Luckily, we do not
need to evaluate it. The crucial point is that samples from this
distribution will approximately satisfy the prior information

. In order to investigate the quality of individual
samples, define the sublevel set of adjacency matrices as
follows:

(27)

where we have resumed the operator notation for and
is a matrix of ones used to coincide with the vectorized no-
tation in (23). It follows from the definition that if
then . Ideally we would prefer samples from so
that the prior linear equalities are exactly satisfied, however we
settle for adjacency samples from the larger set for some
tolerance . For , we can apply the
Markov inequality along with the bound in (23) to give the fol-
lowing general result for sample adjacencies produced using
this method:

(28)

Although the method is capable (in principle) of producing any
adjacency matrix in , a lower bound for the proportion of
samples falling in the tolerance set is given by (28). One
might investigate further the shape of the sampling distribution
in (26) in order to determine the relative likelihood of different
adjacencies, however we will conclude our analysis here.

C. Approximating the Endpoint Posterior

We use the topology and sensor ordering samples obtained in
the previous section to derive an approximate endpoint posterior
distribution of a passive measurement indexed by as given in
(1). If are the topology samples and are
the sensor ordering samples (for each measurement), then the
strong law of large numbers suggests a Monte Carlo estimate of
the conditional expectation given by

(29)

where is a normalization constant inserted to ensure the total
mass of the approximate posterior is unity. Since we are given a
distribution on the endpoints of the passive measurement ,
we need only specify a model for the conditional path proba-
bility in order to approximate the posterior as in
(29). Routing mechanisms and traffic data might figure promi-
nently into such a model. We propose a simple model whereby
the length of a path determines its probability (as in shortest path
routing). If denotes the length of the ordered path , and

denotes the shortest ordered path between endpoints in
topology , then the conditional distribution is given by

if
if
if .

(30)

The model basically says that the shortest path between end-
points in topology is chosen with probability , and all other
valid paths (that is, paths of finite length) have probability .
If a path does not connect the endpoints in the given topology

, then naturally it has zero probability. Note that for arbitrary
, we need to run Dijkstra’s algorithm (or some other shortest

path routing algorithm) for each topology sample in order
to compute the conditional path probability in (30) [1]. This is
not necessary, however, in the case that .

We may give maximum a posteriori (MAP) estimates of the
endpoints of a passive measurement after computing the
posterior distribution estimate in (29). Indeed, the MAP esti-
mate is simply given by

(31)

Recall that , thus MAP estimates of or individ-
ually may be obtained by maximizing the appropriate marginal

or , respectively.
We use as an error measure the ratio below for the

estimated endpoints

(32)
It is also useful to compute the corresponding ratios associated
with the marginalized distributions and , as it may
be the case that either the source or destination of a passive
measurement is more accurately determined individually than
are both collectively. These are defined exactly as in (32), except
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is replaced with or throughout (so that the appropriate
marginal distribution is considered). It is clear that the ratio in
(32) must lie in the interval . Larger values of this ratio in
a sense indicates more ’confidence’ in the MAP estimate since a
value of 1 is achieved only when all of the mass of the estimated
posterior distribution is concentrated at the MAP estimate.

Algorithm Complexity

We now analyze the complexity of the source/destination es-
timation scheme developed here. The two fundamental quanti-
ties that determine the size of the problem are denoted by
and ; is the total number of sensors plus probing sites, so
that , while is the maximum number
of activated sensors in any measurement, so that for
all . The maximum number of hops may be
a function of , depending upon the type of network consid-
ered. For networks that obey the small world effect, as many
real world networks do, will remain approximately constant
with increasing [20], [30]. The number of measurements
and the number of Monte Carlo samples also affect the com-
plexity; however, we shall see the complexity dependence on
these is always linear.

First note that we must store the ordering distributions
for all measurements. Since each distribution is defined over

orderings, this requires space. The adjacency
matrix considers all logical connections among sensors and
probing sites, so that has elements. In the worst case,
the linear prior information will constrain all el-
ements of this matrix so that . It will therefore take

time to compute for all .
Now in the worst case, thresholding these probabilities will pro-
duce a negligible reduction in the size of the system
, so that we still have to contend with variables in

solving the SDP relaxation. Typically interior point methods
are used to solve SDP’s to within of the optimal solution.
These are based on Newton’s method; therefore at each iter-
ation it is necessary to solve a linear system of equations for
the Newton directions ( for a system of size ). An al-
gorithm given in [31] is shown to take iterations
for a problem of size -this performance is typical for all inte-
rior point algorithms. Our problem has dimension , thus
solving the SDP takes or time. A Cholesky
factorization is then performed on the SDP solution, which takes

or time.
After solving the SDP, the topology and ordering samples

may be produced relatively quickly. For each sample, we need
to draw an ordering for each of the measurements, thus re-
quiring time to produce the ordering samples. Given
the orderings for a single sample, may be generated in

time. Finally, we may draw the vector and take inner
products to determine the remaining elements of the topology
sample. Since the time required for each inner product is linear,
it takes a total of time to produce the
topology samples.

The final step is to compute the Monte Carlo approximation
of the endpoint posterior distribution of a passive measurement.

A quick inspection of (29) reveals that we need to determine the
conditional path probabilities for every endpoint
pair -there are such pairs. Also, computing each path
probability for a given ordered path requires tracing this path
through the topology , which takes time. Now, if

we must take time to run a shortest path algorithm
on each sample [1]. Therefore, it takes to
produce the approximate endpoint posterior for ; this
reduces to for .

The factors that give some cause for concern in this algorithm
are the in considering all possible orderings and the in the
SDP solution complexity. If we are dealing with small world
networks, then might be around four or five so that is still
manageable. And if this is not the case, one would hope that
the ordering distributions are nonzero only over a rea-
sonable number of orderings since we need only consider with

. In practice, the actual SDP complexity is likely to
be significantly less than the worst case bound of after
reducing the system , especially if the original prior
only constrains some small subset of the adjacency elements.
Our algorithm would still benefit from speedy SDP algorithms
as solving the relaxation takes the most time in the worst case. A
parallel implementation of an interior point algorithm for SDP’s
might reduce the time requirements if multiple processors are
available [32].

III. SIMULATIONS

We performed some numerical simulations to demonstrate
the utility of the method described in this paper. We generated
undirected random graphs with 25 nodes to serve as test net-
works. The number of edges in each graph was fixed at 40 by
randomly selecting 40 of the possible 300 vertex pairs and con-
necting the selected pairs by an edge. We randomly chose 12
of the 25 nodes to serve as probing sites-this set was then parti-
tioned in half so that both the source set and destination set
each had 6 distinct elements. Sensors were placed on links in the
network for two cases: 100% sensor coverage (in which all 40
links were monitored by a sensor) and 75% sensor coverage (in
which 30 of the 40 links were selected at random for hosting a
sensor). In the 75% coverage case, networks were generated in a
rejection sampling manner so that every measurement (whether
passive or active) activated at least one sensor.

In order to probe a network, we randomly selected 18 of
the 36 distinct pairs in to serve as endpoints for ac-
tive measurements. This set of 18 endpoint pairs is denoted

; the remaining pairs are denoted by .
Sensor activations in response to transmissions between all pairs
in were observed in the monitoring phase. All trans-
missions were routed through the network using shortest path
routing, and activated sensor sets were observed. Thus for
each network we had data points: ac-
tive measurements and 36 pas-
sive measurements . For each data
point , a distribution on the order in which
sensors were activated was generated as follows: first
the true ordering of sensors was noted, then noise was
drawn independently from the distribution for
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, finally the distribution was generated
by normalizing the corrupted delta function distribution as

(33)

The linear prior information was generated from degree in-
formation on the logical topology . Indeed vertex degree in-
formation is a commonly used special case of the more general
linear prior specified by [21], [26]. The sensor de-
gree, that is the number of sensors to which the th vertex in
the logical topology is adjacent, was known for all . In
addition to knowing the sensor degrees of vertices in the logical
topology , a random subset consisting of no more than 60%
of the sensors not adjacent to a given vertex were also known.
For the th vertex, the th row of the operator therefore
sums over the elements of for which adjacency to vertex
is uncertain, and the th element of , , is simply the known
sensor degree of vertex . As an example, consider vertex of
the logical topology in Fig. 3. Vertex is adjacent to sensors

, therefore its sensor degree is two. Since there are two
sensors not adjacent to , sensor, say , is se-
lected at random from the set . Let denote the set of
sensors known to be nonadjacent to vertex , so that
in this example. The row of the prior corresponding
to is then given by . The remaining
rows are constructed in a similar fashion.

Given the sensor degree prior information and the ordering
distributions, we eliminated those adjacency elements whose
probability of being in the set exceeded 1/2 from , where

was computed as in (24). The reduced system
was then used to formulate the SDP relaxation in (13)

for the minimum norm solution with the weight matrix taken
as the identity. The relaxation was solved with a predictor-cor-
rector path following algorithm given in [4]. A publicly avail-
able C implementation of this algorithm was used [33]. The SDP
solution was used along with the ordering distributions to
produce samples of measurement orderings and
adjacency matrices for computing the Monte Carlo estimates
of the endpoint posteriors.

We assumed the endpoint priors were uniform over
for all 36 passive measurements .

Also, the parameter in the conditional path probabilities of

Fig. 3. Example endpoint posterior distribution P̂ (u jx ;Q( �A) = b) for a
passive measurement at time k � K with endpoints u = (s; d) = (6; 3). The
probabilities are grouped by source, with each of 6 bars in a group corresponding
to a different destination (noted above the individual bar). The largest and second
largest values of the posterior are indicated—it is these values that are used in
computing the resolution ratio � of (32), calculated as � (k) = 0:60. It is
clear in this example that the endpoints of this transmission will be correctly
estimated by the joint MAP estimate.

(30) was taken as 1/2 so that it was not necessary to run a shortest
path routing algorithm on every sample topology. The 500 or-
dering and topology samples were then used to compute the
approximate endpoint posteriors for all passive measurements
as given in (29). These were used to produce joint MAP esti-
mates of the transmission endpoints and to compute the resolu-
tion measures . An example endpoint posterior is given
in Fig. 3, for which the correct endpoint pair is source no. 6
and destination no. 3. It is clear that the MAP estimate will re-
sult in the correct pair in this case. Also indicated in the figure
is the second most likely pair ; this is used in com-
puting the resolution measure as in (32)- for
this case. Marginal distributions are obtained by summing the
approximate posterior over either source or destination. These
were used in individual MAP estimation of source and destina-
tion. It is clear that the individual estimates will match the joint
estimate for this case; the resolution measures were a bit lower
though with and . This completes
the simulation process for a single graph.
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Fig. 4. Plots of proportion of endpoint estimates correct for a given set (L orL ) versus the resolution ratios of (32) averaged over the corresponding set for the two
simulation cases: 100% sensor coverage in the first column and 75% sensor coverage in the second. Circles indicate averages over paths from set L and pentagrams
indicate averages over paths from set L . The first row (� ) is for joint MAP estimation of u = (s ; d ) from joint distribution P̂ (u jx ;Q( �A) = b). The
second row (� ) is for individual estimation of s from marginal distribution P̂ (s jx ;Q( �A) = b). The third row (� ) is for individual estimation of d from
marginal distribution P̂ (d jx ;Q( �A) = b). Some reference lines are also plotted: a horizontal line indicating the chance line for randomly selecting endpoints
(1/36 for joint estimation and 1/6 for individual estimation), and a vertical line at 0.68. Note that above �(k) = 0:68, an approximately linear behavior is observed.
This behavior is somewhat washed out for the marginalized estimates, however marginalizing tends to increase the percent of correct estimates. It is not surprising
that there appears to be some degradation in the quality of the estimates when only 75% of the links are equipped with sensors. A: � , 100% coverage. B: � ,
75% coverage. C: � , 100% coverage. D: � , 75% coverage. E: � , 100% coverage. F: � , 75% coverage.

We repeated the simulation procedure for 30 networks with
100% sensor coverage and 30 networks with 75% sensor
coverage. The SDP randomized rounding algorithm was
quite effective for producing topology samples that approx-
imately agree with the sensor degree prior information. We
computed the normalized squared topology sample error

averaged over the
samples along with the normalized expected squared

error as in (17) for each
graph. When averaged over all graphs with 100% coverage,
these agreed at 0.022 with two significant figures. For 75%
coverage, the expected and observed errors agreed at 0.013
with two significant figures. The bound derived in (23) assures
the expected squared error can never exceed . We
see that graphs with 75% sensor coverage tend to have lower
error values.

Plots of proportion of passive measurement endpoint esti-
mates correct for a given set ( or ) versus the resolution
ratio from (32) averaged over the corresponding set are given

in Fig. 4. Plots are shown for joint estimates of via the joint
distribution as well as for individual estimates of and from
the marginals. We observe an approximately linear relation be-
tween the proportion of correct estimates and the appropriate
ratio when the ratio exceeds 0.68. In this regime, the ratio
might be used as a measure of confidence in the endpoint esti-
mates. Also note that transmissions in set tend to have higher

ratios (and are correct more often) than those in set be-
cause it is the transmissions in set that are used in training
the probing sites. We see that marginalized MAP estimates are
often better than joint MAP estimates. Marginalization certainly
blurs the linear relation in the higher confidence regime. We also
observe some degradation in the quality of the estimates when
only 75% of the links are equipped with sensors; this is to be ex-
pected though. Recall that these results are obtained with com-
pletely random placement of sensors and random choices for the

pairs to use in the probing phase. These two factors will
clearly affect the estimates of passive measurement endpoints,
and therefore provide an interesting direction for future work.
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IV. SUMMARY AND EXTENSIONS

In this paper, we have developed a methodology for esti-
mating the endpoints of a transmission in a network using link-
level transmission interceptions. The estimation is done using
Monte Carlo simulation in a Bayesian framework. A semidefi-
nite programming relaxation is used to generate logical network
topology samples that approximately agree with linear prior in-
formation. It is possible to envision applications of the method
in all sorts of networks, or systems with key features modeled
by networks. We have displayed simulations of its utility on
some random networks. We now discuss some extensions of the
theory presented here and possibilities for future work on this
problem.

It is possible to extend our algorithm for source/destination
estimation to the cases of noisy sensors and sensor excitation
due to multiple transmissions without much trouble. Consider
first when the sensors are noisy: then the observed set of acti-
vated sensors may not match the true set of sensors passed
by a particular transmission. Suppose that each sensor
has an associated miss probability
and false alarm probability . The
probing mechanism then repeats the data transmission from
to times for each . These measurements are used to
construct a maximum likelihood estimate of each path ac-
cording to the following model. Along the lines of a generalized
likelihood approach, the measurement mechanism passes along
the maximum likelihood path estimates for each for use in
approximating the endpoint posterior. Note that we will likely
have to settle for for passive measurements.

Define the path indicator vector whose elements are given
by for all where

is the usual indicator function. If we assume sensor errors
are independent across paths and measurements, then the joint
probability mass function of the observed path vectors for a
given source/destination pair is

(34)

where and . If we define
the likelihood function as the logarithm of the expression
in (34), then it may be written explicitly as

(35)

where and . Since
only the second term in (35) depends on and , the
maximum likelihood path estimate may be written quite com-
pactly as

(36)
As another extension, suppose that for passive measurements

the activated sensor set is due to transmissions passed be-
tween source/destination pairs for where

is known. The strategy here is to introduce a random vari-
able for each passive measurement that represents a partition
of the activated sensor set into sets for ,
where the sensors in each are activated in response to a single
transmission. We may then split the single measurement into

different passive measurements according to the value of
the partition variable and proceed with the previous theo-
retical development. In this case, the endpoint posterior of (1)
becomes

(37)

where we must now also take the expectation over partition
variables of all passive measurements. The first step of
the Monte Carlo sampling would then be to draw a partition
variable for each passive measurement from some (presumably
available) distribution . Given the partition variable, ap-
propriate orderings may be drawn and so on as before.

One can similarly account for the case of random linear prior
information . Suppose that instead of being given a
fixed operator and vector , we are given a distribution on
these . This might occur, for example, when we know
that the vertex degrees follow a power-law distribution [25]- in
which case a distribution on is induced. We must now also
take the expectation over and , so that the endpoint posterior
becomes

(38)

A Monte Carlo approximation of (38) would therefore require
drawing and then proceeding as before. Unfortunately, a
new SDP must be solved for every and in order to produce
topology samples . If the SDP relaxation is not too large, this
might be reasonable. If the size is prohibitive, one might approx-
imate the expectation by selecting only a few of the most likely
realizations of and solving the SDP for these. The distri-
bution is then restricted to be nonzero only at elements
of this preselected dictionary so that the Monte Carlo simula-
tion selects those only those values for which we have already
solved the SDP.

An interesting direction for future work would be to develop
an adaptive probing scheme. It is obvious that the quality of end-
point estimates for suspect transmissions will depend on which
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endpoints were used in the probing phase. The idea here is to
use the approximate endpoint posterior distributions to suggest
additional active measurements that should be made in order to
improve the estimates. One can hypothesize criteria for deter-
mining the new probing pairs. For example, nodes that tend to
have similar posterior probabilities over several suspect paths
might be selected for probing so as to distinguish them more
explicitly in the constraints. The question of efficient online im-
plementation naturally arises in this context. A forgetting factor
could be used in conjunction with existing topology and or-
dering samples so that an entirely new batch would not be re-
quired at each probing cycle.
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