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Abstract—This paper investigates the advantages of adaptive
waveform amplitude design for estimating parameters of an
unknown channel/medium under average energy constraints. We
present a statistical framework for sequential design (e.g., design
of waveforms in adaptive sensing) of experiments that improves
parameter estimation (e.g., unknown channel parameters) perfor-
mance in terms of reduction in mean-squared error (MSE). We
treat an time step design problem for a linear Gaussian model
where the shape of the input design vectors (one per time step)
remains constant and their amplitudes are chosen as a function of
past measurements to minimize MSE. For = 2, we derive the
optimal energy allocation at the second step as a function of the
first measurement. Our adaptive two-step strategy yields an MSE
improvement of at least 1.65 dB relative to the optimal nonadap-
tive strategy, but is not implementable since it requires knowledge
of the noise amplitude. We then present an implementable design
for the two-step strategy which asymptotically achieves optimal
performance. Motivated by the optimal two-step strategy, we
propose a suboptimal adaptive -step energy allocation strategy
that can achieve an MSE improvement of more than 5 dB for

= 50. We demonstrate our general approach in the context of
MIMO channel estimation and inverse scattering problems.

Index Terms—Channel estimation, energy management, inverse
scattering, maximum likelihood, parameter estimation, sequential
design.

I. INTRODUCTION

ADAPTIVE sensing has been an important topic of research
for at least a decade. Many of the classical problems in

statistical signal processing such as channel estimation, radar
imaging, target tracking, and detection can be presented in the
context of adaptive sensing. One of the important components in
these adaptive sensing problems is the need for energy manage-
ment. Most applications are limited by peak power or average
power. For example, in sensor network applications, sensors
have limited battery life and replacing them is expensive. Safety
limits the peak transmit power in medical imaging problems.
Energy is also a critical resource in communication systems
where reliable communication is necessary at low signal-to-
noise ratios. Hence, it is important to consider energy limitations
in waveform design problems. Most of the effort in previous re-
search has focussed on waveform design under peak power con-
straints, e.g., sensor management. There has been little effort
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in developing adaptive waveform design strategies that allocate
different amounts of energy to the waveforms over time. Our
goal in this paper is to perform waveform amplitude design for
adaptive sensing in order to estimate the set of unknown channel
parameters or scattering coefficients under an average energy
constraint. We formulate this problem as an experimental design
problem in the context of sequential parameter estimation. We
explain the methodology of experimental design, derive optimal
designs, and show performance gains over nonadaptive design
techniques. As a final step, we describe in detail how some appli-
cations of adaptive sensing such as channel estimation and radar
imaging can be cast into this experimental design setting thereby
leading to attractive performance gains compared to current lit-
erature. Next, we present a review of waveform design and se-
quential estimation literature to provide a context for our work.

Note: The term “sequential” is used in different contexts in
the literature. In this paper, “sequential” means that at every time
instant, the best signal to transmit is selected from a library that
depends on past observations.

A. Related Work—Waveform Design

Early work in waveform design focussed on selecting among
a small number of measurement patterns [1]. Radar signal de-
sign using a control theoretic approach subject to both average
and peak power constraints was addressed in [2] and [3]. The
design was nonadaptive and the optimal continuous waveforms
were shown to be on-off measurement patterns alternating be-
tween zero and peak power levels for a tracking example. In
our design, the energy allocation to the waveforms over time
are optimally chosen from a continuum of values. Parameter-
ized waveform selection for dynamic state estimation was ex-
plored in [4] and [5] where the shape of the waveforms were
allowed to vary under constant transmit power. Closed-form
solutions to the parameter selection problem were found for a
very restrictive set of cases such as one-dimensional target mo-
tions. More recently a dynamic waveform selection algorithm
for tracking using a class of generalized chirp signals was pre-
sented in [6]. In contrast to these efforts, we focus our work
in finding optimal waveform amplitudes under an average en-
ergy constraint for static parameter estimation. Sensor sched-
uling can be thought of as an adaptive waveform design problem
under a peak power constraint [7] where the goal is to choose the
best sensor at each time instant to provide the next measurement.
The optimal sensor schedule can be determined a priori and in-
dependent of measurements for the case of linear Gaussian sys-
tems [8], [9]. The problem of optimal scheduling for the case of
hidden Markov model systems was addressed in [10]. In Table I,
we compare our work with existing literature via different cat-
egories.
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TABLE I
KEY TO THE TABLE: D-DETERMINISTIC, R-RANDOM, LSD-LINEAR STATE DYNAMICS, NLSD-NON LINEAR STATE DYNAMICS, SQ-SEQUENTIAL DESIGN,

NSQ-NON SEQUENTIAL DESIGN, EN-ENERGY, SN-SENSORS, WV-WAVEFORM PARAMETERS

B. Related Work—Sequential Design for Estimation

The concept of sequential design has been studied by statisti-
cians for many decades [17]–[22] and has found applications in
statistics, engineering, biomedicine, and economics. Sequential
analysis has been used to solve important problems in statistics
such as change-point detection [23], [24] point and interval esti-
mation [25], multi-armed bandit problems [26], quality control
[27], sequential testing [28], and stochastic approximation [29].
Robbins pioneered the statistical theory of sequential allocation
in his seminal paper [26]. Early research on the application
of sequential design to problems of estimation was limited
to finding asymptotically risk-efficient point estimates and
fixed-width confidence intervals [11], [12], [30], i.e., sequential
design was used to solve problems in which a conventional
estimate, based on a sample whose size is determined by a
suitably chosen stopping rule, achieves certain properties such
as bounded risk. For the problem of estimating the mean under
unknown variance, it was shown that a sequential two-step
method guaranteed specified precision [23], [31], [32], which
is not possible using a fixed sample. The statistical sequential
design framework assumes a fixed measurement setup while
acquiring the data and does not consider energy constraints. In
this paper, we adaptively design input parameters to alter the
measurement patterns under an average energy constraint to
obtain performance gains over nonadaptive strategies.

Another class of problems in sequential estimation is online
estimation, where fast updating of parameter estimates are made
in real time, called recursive identification in control theory, and
adaptive estimation in signal processing. For example, consider
the problem of estimating parameter in the following model

where are the sequence of inputs to the system,
are independent identically distributed (i.i.d) Gaussian
random variables with zero mean, and are the set
of received signals. The maximum likelihood (ML) es-
timate of is given by the least squares (LS) solution,

. One way of computing
the LS estimate is the recursive least squares approach (RLS)
[13] which can be written as

where . The recursive process avoids the
computational complexity of inverting the matrix.

In the above formulation it was assumed that the input
sequence remains fixed. The problem of waveform design
is relevant when input can be adaptively chosen based on
the past measurements . Measurement-adaptive
estimation has application to a wide variety of areas such as
communications and control, medical imaging, radar systems,
system identification, and inverse scattering. By measure-
ment-adaptive estimation we mean that one has control over
the way measurements are made, e.g., through the selection of
waveforms, projections, or transmitted energy. The standard
solution for estimating parameters from adaptive measurements
is the ML estimator. For the case of classic linear Gaussian
model, i.e., a Gaussian observation with unknown mean and
known variance, it is well-known [16] that the ML estimator
is unbiased and achieves the unbiased Cramér Rao lower
bound (CRB). Many researchers have looked at improving the
estimation of these parameters by adding a small bias to reduce
the MSE. Stein showed that this leads to better estimators that
achieve lower MSE than the ML estimator for estimating the
mean in a multivariate Gaussian distribution with dimension
greater than two [14], [15]. Other alternatives such as the
shrinkage estimator [33], Tikhonov regularization [34], and
covariance shaping least squares (CSLS) estimator [35] have
also been proposed in the literature. While these pioneering
efforts present interesting approaches to improve static param-
eter estimation performance by introducing bias, none of them
incorporate the notion of sequential design of input parameters.
Our adaptive design of inputs effectively adds bias to achieve
reduction in MSE.

In this paper, we formulate a problem of sequentially se-
lecting waveform amplitudes for estimating parameters of
a linear Gaussian channel model under an average energy
constraint over the waveforms and over the number of trans-
missions. In Section II, the problem of experimental design
[36], [37] for sequential parameter estimation is outlined and
the analogy between this problem and the waveform design
problem is explained. In Section III, closed-form expressions
for the optimal design parameters and the corresponding
minimum MSE in the scalar parameter case are derived for a
two-step procedure (two time steps). Since the optimal solution
requires the knowledge of the parameter to be estimated, it is
shown in Section IV that the performance of this omniscient so-
lution can be achieved with a parameter independent strategy.
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In Section IV-A, we describe an -step sequential energy
allocation procedure, which yields more than 5 dB gain over
nonadaptive methods. These results are extended to the vector
parameter case in Section V. Finally in Section VI, we show
the applicability of this framework for channel estimation and
radar imaging problems.

II. PROBLEM STATEMENT

We begin by introducing nomenclature commonly used
throughout the paper. We denote vectors in by boldface
lowercase letters and matrices in by boldface uppercase
letters. The identity matrix is denoted by . We use and

to denote the transpose and conjugate transpose opera-
tors, respectively. We denote the -norm of a vector by ,
i.e., . A circularly symmetric complex Gaussian
random vector with mean and covariance matrix is denoted
as . and denote the statistical expectation
and trace operators, respectively. The terms MSE and SNR are
abbreviations to mean-squared error and signal-to-noise ratio,
respectively.

Let be the -element vector of unknown
parameters. The problem of estimating in noise can then be
written as

(1)

where is an i.i.d. random process corrupting the function of
the parameters of interest and denotes the time index.
The -element design parameter vectors, can depend
on the past measurements: , where is
the th -element observation vector. In the context of adaptive
sensing, represents the response of the medium, and

denote the number of transmit and receive antennas respec-
tively, are the set of waveforms to be designed, and
are the set of channel parameters or scattering coefficients to
be estimated using the set of received signals . For the
classic estimation problem in a linear Gaussian model, we have

is
a known matrix and linear in and is a
random vector. When is linear in , we can write

. In this case is uniquely
determined by the matrices . The linear
Gaussian model has been widely adopted in many studies
[38], [39] including channel estimation [40] and radar imaging
[41] problems. The set of observations for the case of a scalar
parameter are

(2)

An -step design procedure specifies a sequence of functions
corresponding to the transmitted

signal waveforms after receiving the previous measurements.
An optimal -step procedure selects the design vectors so
that the MSE of the ML estimator,
is minimized subject to the average energy constraint,

, where is the total available en-
ergy. The ML estimator of for the -step procedure is given

by

(3)

and the corresponding MSE is

(4)

Denote , where
represents the energy allocated to each time

step . Define as the average energy
in the design parameters for the -step procedure. The average
energy constraint can be written as

(5)

Our goal is to find the best sequence of the design vectors
to minimize the in (4) under the

average energy constraint in (5).

A. Nonadaptive Strategy

As a benchmark for comparison, we consider the nonadap-
tive case where is deterministic, independent
of , and . Simpli-
fying the expression for MSE in (4), we have

(6)

where equality is achieved iff , the normalized
eigenvector corresponding to , the maximum
eigenvalue of the matrix . Note

. Furthermore,
the performance of the ML estimator does not depend on the
energy allocation. Hence, without loss of generality we can
assume all energy is allocated to the first transmission which
implies that any -step nonadaptive strategy is no better than
the optimal one-step strategy. We define as

(7)

Then the average energy constraint in (5) is equivalent
to , where .
We show in [42] that the problem of minimizing
subject to is equivalent to minimizing

. Thus, we use the two minimization
criteria interchangeably in the remainder of this paper. The
product of MSE and SNR is

(8)
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and the minimum MSE for the one-step (or nonadaptive -step)
strategy satisfies

(9)

While our goal is to find optimal input design parameters,
which achieve minimum MSE, any

suboptimal design that guarantees is
also of interest. We first look at a two-step sequential design
procedure. A word of caution: in Sections III and III-A we
develop optimal and suboptimal strategies where the solutions
require the knowledge of the unknown parameter . However,
in Section IV we present a -independent design which asymp-
totically achieves the performance of the ‘omniscient’ strategies.

III. OMNISCIENT OPTIMAL TWO-STEP SEQUENTIAL STRATEGY

In the two-step sequential procedure, we have time
steps where in each time step , we can control input
design parameter to obtain observation . For a two-step
process, we have

(10)

(11)

The ML estimator of for a two-step procedure from (3) is

(12)

and its MSE from (4) is given by

(13)

We assume that the shape of the optimal designs, i.e.,
is the one-step optimum given by defined below (6) and
minimize the MSE over the energy of the design parameters.
Denote and . Under
the sequential design framework, we select

(14)

(15)

where and are real-valued scalars. The average energy
constraint from (5) can then be written as

(16)

We use Lagrangian multipliers to minimize the MSE in (13)
with respect to and under the energy constraint in (16).
The objective function to be minimized can then be written as

Fig. 1. Plot of the optimal and suboptimal solution to the normalized energy
transmitted at the second stage as functions of received signal at first stage.

In [42], we show that the optimal solution to depends
on only through the function , where

(17)

. Hence, we denote the solution as .
Let . Setting the
derivative of the objective function with respect to to zero
yields

(18)

where . The function that minimizes MSE is
the root of the third-order polynomial in (18), real-valued, and
greater than or equal to 1. If more than one real-valued solution
greater than 1 to the cubic equation exists, the optimal solution
to will be the root that achieves minimum MSE. The optimal

for every and is denoted by . Also
. Therefore, finding that minimizes MSE is equiva-

lent to finding that minimizes MSE. We obtain for
every and use a brute force grid search to find the optimal
that minimizes the objective function. The MSE is minimized
at , or . The optimal is given by the
relation . Since
this solution depends on the unknown parameter , we call this
minimizer an “omniscient” energy allocation strategy. For the
optimal solution, the product of is

(19)

This corresponds to a 32% improvement in performance or a
1.67 dB gain in terms of SNR for the two-step design when com-
pared to the one-step procedure for which

.
The optimal energy allocation at the second step,

as shown in Fig. 1 (solid) is a thresholding
function, i.e., is zero for . This solution implies
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that when the actual realization of the normalized noise along
in the first step is small enough, then the second

measurement becomes unnecessary. On the other hand, when
the normalized noise along exceeds a threshold, then
there is some merit in incorporating the information from the
second measurement. The solution also suggests that the higher
the noise magnitude at the first step, the more the energy that
needs to be used. However, the probability of allocating energy
greater than a particular value decreases exponentially with
that energy value. Nevertheless in applications with a peak
energy constraint, the transmission of the optimal energy at
the second stage may not always be possible. Hence, in the
following subsection we look at a suboptimal solution which
takes into account this constraint and still achieves near optimal
performance.

A. Omniscient Suboptimal Two-Step Strategy

The optimal solution in Section III is a thresholding function,
where energy allocated to the second stage is zero if the noise
magnitude at the first step is less than a threshold and increases
with increasing noise magnitudes otherwise. For the suboptimal
solution, we use a binary energy allocation strategy at the second
stage based on the noise magnitude at the first step, i.e., we
allocate a fixed nonzero energy if the noise magnitude is greater
than a threshold else we allocate zero energy. The suboptimal
solution to the design vectors and is then of the form

(20)

(21)

where is defined in (17), are design parameters inde-
pendent of and is the indicator function, i.e.,

The SNR of the suboptimal two-step procedure is

(22)

The MSE of the ML estimator under this suboptimal solution
using (13) is

(23)

Denote . Substituting
for in the expressions for and in (23)
and (22), and using the fact that and

when , the expres-
sion simplifies to

(24)

Minimizing with respect to and through
a grid search for and yields

. It follows that and .
Substituting for the optimal values of in (24) and
(22), and simplifying yields

(25)

This translates to a 28.57% improvement in MSE performance
or a 1.5 dB savings in terms of SNR. The suboptimal solution
to the energy design is shown in Fig. 1 by a dashed dotted line
indicated as Suboptimal-I. Thus, while the suboptimal strategy
limits the peak transmit power to , it is able to
achieve near optimal performance.

In the previous section, we addressed the problem of
minimizing MSE subject to an average energy constraint,

. An average energy constraint implies
that the total allocated energy averaged over repeated trials of
the two-step experiment is constrained to be less than or equal
to . This is less restrictive than the strict energy constraint

, as any solution satisfying this constraint
satisfies the average energy constraint but not vice versa. The
problem of minimizing the MSE in (13) under this strict energy
constraint was addressed in the context of radar imaging in
[43]. We show in [42] that the optimal two-step design under
the strict constraint is given by

where , and . The
minimum MSE is then given by .
The optimal solution satisfies the strict energy constraint with
equality but the average energy used is

. The solution to the two-step strategy under this strict
energy constraint can also be derived by imposing an additional
constraint, to the suboptimal design problem de-
scribed earlier in this section. In the following section, we de-
sign a -independent design strategy that achieves the optimal
performance asymptotically and allows for any peak power con-
straint in the design.

IV. PARAMETER INDEPENDENT TWO-STEP DESIGN STRATEGY

Consider the optimal design for the two-step procedure

(26)

We showed that by designing and optimally we can
gain up to 32% improvement in estimator performance. But
the “omniscient” solution (26) depends on the parameter to be
estimated. Here, we prove that we can approach the optimal
two-step gain by implementing a -independent energy allo-
cation strategy when is bounded, i.e.,

. We describe the intuition behind the proposed
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Fig. 2. Plot of reduction in MSE versus percentage error in the guess of param-
eter � for various SNR.

solution in this section. The details of the proof can be found in
[42]. Since we do not know the value of the actual parameter,
we replace by a “guess” of , say , in the optimal solution
to the design at the second step given in (26). The resulting
suboptimal design is

(27)

(28)

where

(29)

and , which is defined in (17) is . Substi-
tuting the above suboptimal solution in the expression for

in (8) and simplifying, we obtain

(30)

Fig. 2 shows in (30) as a function of the percentage error
in the guess of for varying . The
plot indicates that when , the optimal performance of
the adaptive two-step strategy is achieved for all SNR. At high
SNR, for certain values of , the two-step strategy de-
fined by (27) and (28) performs worse than a single step strategy
with signal-to-noise ratio . This is because the solution
presented in (27) and (28) in terms of scalar and thresholding
function were optimized for , i.e.,

when . When , the following happens:
, and the design parameters and ,

which were found optimally for are
no longer optimal. When is large, in (29) is a large
constant and hence is a negligible term compared to with
high probability. In other words, can be made arbi-
trarily close to with high probability as tends to infinity.
This implies that the strategy becomes equivalent to a two-step
nonadaptive strategy with a specific nonadaptive energy distri-
bution between the two steps whose performance is given by

from Section II-A. Thus, we observe that
the performance of the two-step strategy tends to 1 for large

.
The optimal solution to is achieved

when . There are two ways that drive . If ,
then and we have

, the optimal two-step performance. Since is arbitrary,
; the two-step design is not optimal and therefore

. The other way to achieve the
optimal solution is to make as small as possible. Note that
if is sufficiently small approaches its
minimal value. Since , driving the to
zero, drives the to infinity. To overcome this problem,
we propose an -step procedure to allow the to be
fixed while driving . The -step algorithm is outlined
in Fig. 3. Any peak power constraint can also be satisfied using
the -step strategy by choosing a sufficiently large . The
most important information in Fig. 2 is the performance of the
two-step strategy under the low SNR regime since each 2-step
procedure in the -step strategy works at th of the
total SNR. Hence, as becomes large, SNR in each experiment
is very small and the lack of knowledge of plays a negligible
effect on the performance as is made close to zero through the
SNR factor.

A. Design of -Step Procedure

In Sections III and IV, we derived the omniscient optimal
two-step design to minimize the MSE and proved that the op-
timal performance can be achieved asymptotically using an

-step strategy. But the -step strategy is a specific case of
a -step design. In this subsection, we generalize the subop-
timal solution from the 2-step case to the -step case as follows:
we assume that the shape of the design vector is fixed and look at
the energy allocation among the various steps. The set of obser-
vations are as defined in (2). Let the shape of the design vector

be and the energy at step , i.e.,
. Then

(31)

where are design parameters. This approximate solu-
tion is motivated from the suboptimal thresholding solution to
the two-step case derived in Section III-A. Note that the defi-
nition of the amplitudes at each stage is recursive, i.e., the am-
plitude design depends on past inputs which
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Fig. 3. Description of the N� two-step procedure.

Fig. 4. Plot of gains obtained through suboptimalN -step procedure as a func-
tion of N through theory and simulations.

in turn depends on . To simplify our analysis, we
make the assumption . Then

(32)

where are i.i.d
random variables. Following the same procedure, a general ex-
pression for can be written as

(33)

where . This form states
that the stopping criteria at time step is when the magnitude of
the average noise, drops below the threshold . The goal
is to minimize of this -step proce-
dure with respect to and .

Since there is no closed-form solution to this dimensional
optimization [42], we evaluate the performance of suboptimal

solutions to the design vectors and . For our simulations,
we choose . Further-
more, we choose as ,
where are optimal values from the suboptimal solution
presented in Section III-A and is chosen to satisfy the average
energy constraint. The intuition behind this choice of and
is motivated through an asymptotic result derived in [42]. We
evaluate the performance of the -step procedure with these
parameters through theory and verify the theory using simula-
tions. Performance gains, (in dB) are presented in Fig. 4.
By designing this -step procedure, we are essentially altering
the Gaussian statistics of the measurement noise to obtain im-
provements in performance. In Fig. 5, we illustrate how the dis-
tribution of the estimation residuals changes with the number
of the steps. We see that in 50 steps, we are able to achieve
gains of more than 5 dB. In Section IV, we showed that the
two-step gain can be achieved using an -step strategy,
i.e., in steps. The basic motivating factor was to reduce the
SNR in each experiment and achieve the diversity gain by in-
creasing the number of steps. For the general -step strategy,
progressive reduction in SNR of each experiment implies that
as the number of steps increases, the error of guessing has a
reduced effect on the overall performance. We demonstrate the
achievability of performance for any -step design through the
following theorem.

Theorem 4.1: For an -step procedure, we need to design
a sequence of input vectors optimally under an av-
erage energy constraint to minimize the MSE in (4). Let

be any design of the input parame-
ters satisfying the following conditions.

• Average energy constraint:
.

• Continuity: the design vector is a
continuous function of or can assume the form
of a thresholding function in (31).

Then there exists a -independent strategy whose performance
can come arbitrarily close to which assumes the
knowledge of parameter .

Proof: The proof is similar to the -step strategy pre-
sented in Section IV, where the actual value of in the optimal
solution is replaced with a guess of . Refer to [42] for details.
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Fig. 5. Distribution of noise versus number of steps.

V. SEQUENTIAL DESIGN FOR VECTOR PARAMETERS

A general -step procedure for the case of unknown pa-
rameters can be written as

(34)

where is an -element vector, , and
is a matrix. For the multiple parameter case, MSE is
no longer a scalar. Various criteria such as trace, minmax, de-
terminant of the MSE matrix can be considered as measures of
performance under the multiple unknown setting.

A. Trace Criteria

For the multiple parameter case, the MSE is a matrix and
we consider the trace as a measure of performance, i.e.,

. The problem of multiple param-
eter estimation is more complicated than estimation of a single
parameter for the following reason. We showed in Section II-A
that independent of the shape of , any nonadaptive energy
allocation strategy is to assign all energy to the first step, i.e.,
a one-step strategy with energy . But this is not true for
the multiple parameter setting. Let us consider a simple ex-
ample of estimating two parameters in the model

, where

(35)

,
and . Then for a one-step process, we have

and . Mini-
mizing over the

energy constraint , we obtain
and . Now consider the following two-step
nonadaptive strategy

Minimizing the
over the energy constraint, we obtain

and . This translates to a
3 dB gain in SNR for the two-step nonadaptive strategy over
the one-step approach. We control the shape of the input

such that we have different energy allocation for each
column of the matrix . By specifically designing the two-step
nonadaptive strategy given in steps 1 and 2, we have reduced the
estimation of the vector parameter to two indepen-
dent problems of estimating scalar parameters and respec-
tively. For each of these scalar estimators, we design two -step
sequential procedures ( steps in total) as in Section IV-A for
scalar controls and to obtain an improvement in perfor-
mance of estimating . Applying the -step design to both
and , we have for the first
steps and for the next steps.
Hence, , where is defined
below (33). In other words, the MSE gains of the -step proce-
dure carry over to the vector parameter case as well.

B. Worst Case Error—Min Max Approach

The component wise MSE for estimating specific pa-
rameters is given by the diagonal elements of the matrix
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. We seek to find the op-
timal energy allocation between the two design vectors,

that mini-
mizes the worst case mean-squared error of the
unknown parameters, where is any unit norm vector inde-
pendent of past measurements, e.g., is chosen to minimize
the one-step MSE. The ML estimate for a one-step process with
energy and its corresponding MSE are given by

(36)

where

(37)

Define . Then

(38)

where is an -element vector with all zeros except for 1 in
the th position. Then for a one-step process

(39)

where indicates the and

(40)

The set of observations for the two-step process are

(41)

(42)

For a two-step procedure, we need to design and to
minimize - . We show in [42] that

(43)

where

(44)

is a random variable. The error in (43) when mini-
mized under the constraint is exactly the
same minimization derived for the single parameter case in Sec-
tion III. It follows that the optimal and suboptimal solutions to

and will hold for the multiple parameter case. In other
words . It follows that

(45)

and this performance can be achieved using a -independent
strategy along similar lines to the derivation for the scalar pa-
rameter case in Section IV [42]. The reduction in MSE in (45)
holds for any , the number of unknown parameters, as , the
index of the worst case error, can always be computed from (39)
and (40) for any . A similar result can be derived for the

-step procedure.

VI. APPLICATIONS OF SEQUENTIAL ESTIMATION

A. MIMO Channel Estimation

It has been shown that multiple-input and multiple-output
systems (MIMO) greatly increase the capacity of wireless sys-
tems [44]–[46] and hence MIMO has become an active area of
research over the last decade [47], [48]. One important compo-
nent in a MIMO system is the need to accurately estimate the
channel state information (CSI) at the transmitter and receiver.
This estimate has shown to play a crucial role in MIMO com-
munications [49]. A recent and popular approach to channel es-
timation has been through the use of training sequences, i.e.,
known pilot signals are transmitted and channel is estimated
using the received data and the pilot signals. A number of tech-
niques for performing training based channel estimation have
been proposed: maximum likelihood training method [50], least
squares training [51], minimum mean squared estimation [52].
Recently, [40] proposed four different training methods for the
flat block-fading MIMO system including the least squares and
best linear unbiased estimator (BLUE) approach for the case of
multiple LS channel estimates.

1) Problem Formulation: In order to estimate the
channel matrix for a MIMO system with transmit and
receive antennas, training vectors
are transmitted. The corresponding set of received signals can
be expressed as [40], [53]

(46)

where is an matrix,
is the matrix of sensor noise, is

the complex vector of transmitted signals, and is
the complex zero mean white noise vector. Let be
the transmitted training power constraint, i.e.,

indicates Frobenius norm and
denote the variance of receiver noise. Though is random,

we estimate for a particular realization corresponding to the
block of received data. The task of channel estimation is to
recover the channel matrix based on the knowledge of
and as accurately as possible under a transmit power con-
straint on . The standard LS solution and the corresponding
estimation error can then be written as

(47)

Assuming co-located transmitter and receiver arrays [54],
[55] and multiple training periods available within the
same coherency time (quasi-static) to estimate the channel,
the set of received signals at the time steps given by
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, can be rewritten in the
following form:

(48)

where
denotes the column-wise concatenation of the matrix, and

is a linear function of the input ,
which is the same model described in (34). In [40], a method
of linearly combining the estimates from each of the stages
was proposed and the MSE of the stage estimator was
shown to be , where is the total
power used in the steps, i.e., . If there
are enough training samples, we could completely control the
matrix through the input and make orthog-
onal. In this case (48) along with the average power constraint

can benefit from adaptive energy allocation
designs in Sections IV-A and V-A, where the problem is then
separable into independent estimation problems of scalar
parameters. Having steps in the training sequence suggests
an -step energy allocation strategy. Hence, it follows that
using our strategy we are guaranteed to achieve the optimal
error given by , which we have shown
to be at least 5 dB (in 50 steps) better than any nonadaptive
strategy.

B. Inverse Scattering Problem

The problem of imaging a medium using an array of trans-
ducers has been widely studied in many research areas such as
mine detection, ultrasonic medical imaging [56], foliage pene-
trating radar, nondestructive testing [57], and active audio. The
goal in imaging is to detect and image small scatterers in a
known background medium. A recent approach [58] uses the
concept of time reversal, which works by exploiting the reci-
procity of a physical channel, e.g., acoustic, optical, or radio-fre-
quency. One implication of reciprocity is that a receiver can re-
flect back a time reversed signal, thereby focusing the signal
at the transmitter source [59]. Furthermore, with suitable pre-
filtering and aperture, the signal energy can also be focused on
an arbitrary spatial location. This analysis assumes the noiseless
scenario. For the noisy case, ML estimation of point scatterers
was performed for both the single scattering and the multiple
scattering models in [41]. We apply our concept of designing a
sequence of measurements to image a medium of multiple scat-
terers using an array of transducers under a near-field approxi-
mation of the scatterers in the medium.

1) Problem Setting: We have transducers located at po-
sitions , that transmit narrowband signals with center
frequency rad/s. The imaging area (or volume) is divided into

voxels at positions . The channel, denoted , be-
tween a candidate voxel and the transducers is given by the
homogeneous Green’s function as

(49)

where is the speed of light and . This channel
model is a narrowband near-field approximation, which ig-

nores the effect of multiple scattering and has been widely
adopted in other scattering studies, e.g., [60]. Each voxel can
be characterized by its scatter coefficient, e.g., radar cross
section (RCS), , which indicates the proportion of the
received field that is re-radiated. Thus, the channel between the
transmitted field and the measured backscattered field at the
transducer array is , where

, and denotes a diagonal
matrix with as its th diagonal element.

The probing mechanism for imaging of the scatter cross sec-
tion follows a sequential process, generating the following se-
quence of noise contaminated signals

(50)

where . The noises are i.i.d
random vectors. The goal is to find estimates for

the scattering coefficients under the average energy constraint
to minimize the MSE. If is a square matrix, then we can
condition to have a single non zero component on
any one of the diagonal elements, which translates to isolating
the th column of for any . As in Section V-A, we can
perform independent -step experiments to guarantee the

-step gains of at least 5 dB over the standard single step ML
estimation for imaging [41]. If we are interested in optimally
estimating any linear combination of the scattering coefficients,
then the sequential strategy proposed in Section V-B can be
used to achieve improvement in performance.

VII. CONCLUSION

In this paper, we considered the -step adaptive waveform
amplitude design problem for estimating parameters of an un-
known channel under average energy constraints. For a two-step
problem, we found the optimal energy allocation at the second
step as a function of the first measurement for a scalar param-
eter in the linear Gaussian model. We showed that this two-step
adaptive strategy resulted in an improvement of at least 1.65
dB over the optimal nonadaptive strategy. We then designed a
suboptimal -stage energy allocation procedure based on the
two-step approach and demonstrated gains of more than 5 dB
in steps. We extended our results to the case of vector
parameters and provided applications of our design to MIMO
and inverse scattering channel models.
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