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I. INTRODUCTION 

In this chapter we present representation theorems on the distribution of level crossing 

statistics for general non-stat ionary random processes and then discuss applications to passive 

arrays in underwater  acoustics. Along with some regularity conditions, a consequence of the 

first representation theorem is an asymptotic result relating the distribution of the level cross- 

ings to an inhomogeneous Poisson law. This asymptotic result is then used to model the 

occurrence of large error in t ime difference of arrival estimates across a passive sensor array. 

The distribution function of the number  of crossings of a level by a random process in a 

given interval is an important ,  but  difficult to obtain, function which has received considerable 

attention in recent years [1]. Explicit results are known only for a handful of specific random 

processes, e.g. the Markov class. Here a general representation for the probability of getting 

one or more level crossings is presented for a wide class of random processes, which allows the 

deviation of this probability from the probability of getting one or more points from an inho- 

mogeneous Poisson process to be characterized. This representation is then exploited to obtain 

a generalization of asymptotic results of Leadhetter [12] for stat ionary random processes to the 

non-stationary case. The most familiar non-precise s tatement  of Leadbetters '  result is as fol- 

lows. Define a suitable sequence of increasingly high levels {Im }. Given a stationary, almost 

surely continuous random process X which satisfies some regularity conditions, the counting 

process N m associated with the crossings by X of the increasingly high level Ira, behaves 

increasingly like a (homogeneous) Poisson process. An equivalent interpretation: if Pm and cr 2 

are the mean and variance of 3(,i,  which is one in a sequence of processes {X,n }, the Poisson 

character of its zero upcrossings, N m , is assured as P m /  ~r,n -'* +c~ .  
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Here we establish an analogous, but inhomogeneous, Poisson character for non-stationary 

processes satisfying some additional conditions to those in [12]. Specifically, we assume certain 

asymptotic conditions on the trajectories of the process such as mixing. It is demonstrated 

that  if the upcrossings of zero are made to become progressively rarer events, in a sense to be 

made clear later, then a normalized version of the number of upcrossings as a function of time 

converges in distribution to a Poisson process. 

Results of the above type are of interest in connection with maximum likelihood parame- 

ter estimation when large errors may be significant. As is well known, the Cramer-Rao- 

Lower-Bound only characterizes local error; that is, when the estimate is in the immediate 

vicinity of the true parameter [4]. When the trajectory of the so called "likelihood function" is 

predisposed to dispIay large multiple local maxima over the parameter space, or peak ambigui- 

tics~ an additional large error measure is needed. One possible choice is the probability that a 

section of the trajectory exceeds a threshold, specified by the height of the trajectory at the 

true parameter. This probability can then be expressed within the framework of level crossing 

probabilities. 

For time delay estimation in a two sensor array, the maximum likelihood estimate is 

approximately given by the location over time where the (non-stationary) cross-correlation 

function takes on its global peak. Motivated by the asymptotic result described in the first 

part of this chapter, a Poisson model for the large errors is applied to derive an approximate 

expression for the global variance of the eorrelator estimate. This expression is shown to be an 

approximate upper bound on the variance, which complements previously derived lower bounds 

for the time delay estimation problem, e.g. Cramer-Rao [10], Barankin [2], Ziv-Zakai [20] and 

others [17]. 

Section II and III present the relevant theory concerning point process representations and 

asymptotic theory. Section IV contains a discussion of the application of the Poisson model to 

peak ambiguity in two-sensor arrays. Finally in Section V we compare the Poisson variance 

approximation to the Ziv-Zakai-Lower-Bound (ZZLB), the Cramer-Rao-Lower-Bound (CRLB) 

and experimental results. 

II: A REPRESENTATION FOR THE PROBABILITY OF LEVEL CROSSINGS 

Let (A, (}, P ) be a complete probability space and define the nested sequence of ~-fields : 

q)t, t E R ,  ((I) t C (I), ~s C (I)n for s < n ). We assume the (I) t -measurable random pro- 

cess X ( t ) ,  - o¢  < t < +co ,  to have the following properties: separability, almost sure (a.s.) 

sample function continuity, existence of the bivariate densities, ft,~(Y,z), of X(t)  and X(r), 
for t # T. Additional properties will be imposed shortly. For  expository convenience we focus 

on the relevant level crossing theory for uperossings. However, the consideration of downcross- 

ings is completely analogous to the presentation to follow. 

We define an upcrossing analogously to Leadbetter in [11]. A realization of X(t), x(t), 
upcrosses zero in the interval In,u) if there exists an open interval centered at some point 
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I, E(a,t ,) ,  ( t ,  - 8 ,  t u + 5) say, over which X ( t )  < 0 to the left ot t~ and X ( t )  > 0 to the 

right of t~. We denote this occurrence by the notat ion An, t,. Symbolically 

A , , , = - - { w E A l = t t ~ e ( a , v ) , = l ~ > O ; s . t .  X t_A  < O < X i . + h , f o r O < h  < ~ }  (1} 

This definition essentially excludes any "non-regular"  upcrossings such as tangcncies or non- 

smooth intersections of zero. I t  is shown in [11] tha t  A¢,~ is ¢ , -measurab le  and tha t  non- 

regular upcrossings are of zero probabil i ty.  Hence definition (1) is sufficiently general for our 

purposes. The definition of downcrossings is analogous to (1). 

We further define the number  of upcrossings by X(r} in [~r, t~), denoted N(a, v), as the 

number of dist inct  points t~ at  which upcrossings occur. More specifically we define: 

N(a,v) ~ limsup ~ I(At,,t,+A ). Here I (A  ) is the indicator of the event t u E A and {t; } is 

an increasingly dense par t i t ion of (tr, t,) with inter grid spacing ~ .  

By the assumed continuity of the random process X ( t  ) it is reasonable to expect that  it 

can be well approximated by a piecewise linear process tied to X ( t  ) at a sufficiently dense set 

of points t ----- to, t l , . . . , t M .  That  is, let ~n( t )  denote a random process defined on an 

interval [to, t /  ] for which 

L ( t )  = 
x ( t )  t = tk 

[X(tk +t) - X(tk  )] 
X ( t k ) +  (t - t ~ )  t k < t < tk+ 1 

(t] - t  o )2-" 
(2) 

tk = to  +k2-"(t! -to ),k = 0 , 1 , 2  . . ,2"  

If N n is the number  of upcrossings of zero by ~,  ( t )  then the following is due to Ylvisaker [21]. 

Lemma 1.1 

Let N~(t ) be the number of npcrossings of zero by ~, in the interval [to, t ). Then 

N , ( t  ) is monotonically non-decreasing in n and converges to N (t ), the number of up- 

crossings of zero by X in the same interval, with probability one as n --* co. 

From the above lemma it follows by monotone convergence that  

P ( N ( t )  < k ) =  lim P ( N ~ ( t )  ~_ k ) ,  f o r k  : 0 , 1 , 2 ,  
tl , -*GO 

(3) 

Hence, as far as the computat ion of upcrossing probabili t ies is concerned, ~,. ( t )  and X ( t  ) can 

be used interchangeably in the sense of (3). 
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The following will be important for the upcoming development and are essentially 

Theorems (2.1) and (2.2) of [13]. 

Lemma 1.2 

Let [to, t/ ] have the partition {t;}~.~ 0. Then with N ( t )  the number of upcrossings 

(downcrossings) of zero by X in [to, t ) and N n (r, a) the number of upcrossings (down- 

crossings) by ~ in It, a) 

2" -1 2" -1 

E l Y ( t / )  ] =  lim ~-~P(A,,,,,+,)= lim ~P (N~( t ; , t ;+ t )  > O) 
n ~ O o  i ~O n ~ O 0  i ~O 

(4) 

Define gt.r(V,z) the joint density of X ( t )  and [X(t + r ) -  X ( t  ) ] / r .  Then by elementary 

transformations 

gt,r(Y,z) = rf t , t+,{Y,Y+rz)  (5) 

Tile following are essential to the development and are known as Leadbetter'z conditions [11, 

w h e r e  

Thm. 21 

gt,r(V,z) is continuous in t , y  for each r,z (6) 

g,,,{y,z)--* p t ( y , z )  as r--* 0 uniformly in t , y  (7} 

gt,r(Y ,z ) < I (z) for all t ,r,y ,z (8) 

o o  

f Izl  t(~)dz < ~  
-CX3 

If the above three conditions are satisfied then the following representation theorem holds for 

the probability of getting an uperossing in [t o ,t ), P {At, .t ), here denoted p {t ). 

Theorem 1.1 

Suppose X(r} has continuous sample functions with probability one and let the condi- 
tions (6) through (8) hold. Then the expected value of the number of ~tperossings o/zero 
by X {r) in any finite interval It o ,t/ ) is finite and given by 

t l  

E [N(t o ,t! )] = fp(r)d r 
to 

(g) 
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p(r) = f z p~(O,z )dz 
0 

Furthermore the probability of getting at least one uperassing of zero by X(r )  in [to ,t ), 
p (t),  satisfies the relation 

t 

p ( t )  = fp(r)(1 - p (r)ld r + Q ( t )  (1o) 
t° 

where 
2 s - |  

Q(t)----  lira ~ q( t l )  

q (t;) = P (N.  (t: ,t: + , )>0 ,  N.  ( t : )=o)  - P (N.  (t~ ,t: + ~ ) > 0 ) e  (N.  ( t~)=0)  

(11) 

(12) 

Here ( t; },'2'--o is a partition of [t° ,t ] 

The probability of downerossings satisfies an analogous Theorem, the only difference being 
0 

the particular form of the intensity p in (9). For downcrossings p(v) ~-~ f I z I p~(O,z)dz. 

The function p[r), given as the derivative of (9), is the incremental average number of 

level crossings per unit time at time v, p(r)d ~"---- E {tiN(r)}. In the theory of point processes p 

is called the (incomplete) intensity function of the point process N .  Q (r) in (12) can be inter- 

preted as a measure of the dependency structure of the uperossing process N over disjoint 

intervals (for independent increment processes Q would be zero). 

Eq. (9) of Theorem 1.1 is obtained directly by modifying the proof of Theorem 2 of Lead- 

better for downcrossings [11] to the case of uperossings. The proof of the rest of Theorem 1.1 

depends on a particular decomposition of the event that an upcrossing of zero by ~ occurs on 

[t,,t), which we denote Bt°,t. If Nn ( t )  is finite we can define Bl ,  v : the event that the first 

instance of an upcrossing occurs in the subinterval fir,v) of [t o ,t ). That is 

B~',v ---- B~,. n E.,~ tin) 

where we read this as: ~n first upcrosses in for,v) if there is an uperossing in let,v) but none in 

It. ,~). 

We note the following two rather obvious properties of BJ,~. 

For [a,v) and [s ,t ) disjoint 
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and 

B I and B 1 ~,v °,, are disjoint (14) 

Bt~,t - -  B,°,t  , t c Its ,t ) (15) 

Eqs. (14) and (15) follow directly from the definition (13). The  following proposition is central 

to the decomposition alluded to above. 

Proposition 1.1 

Let A~, u denote an uperossinf of zero, and A ~, v the first instance of an uperossing, by 

a random process X ( t )  in [a,v), where X ( t )  has absolutely continuous distributions. 

Then if the expected number of upcrossings of zero in It o ,t ), E { N ( t  o ,t )}, is finite the 

following equivalence holds with probability one 

A , . , ,  - -  :O=o&l , , , .  ' (16) 

where {t; }.'--o is a partition of Its , t l  

Proof 

Note that  the number of upcrossings in [t o ,t ) is finite with probability one since 

s o  

P ( N ( t o , t )  > k )  <_ ~ P ( N ( t o , t  ) = i )  (17) 
i = k + l  

oo  

E i P ( N ( t o , t )  = i) 
i ~ k + l  

which must converge to zero as k --* s o  by the finiteness of the mean number  of upcrossings. 

Thus a "first  instance of an uperossing" is well defined. The  inclusion " D "  in (16) is trivial 

since any upcrossing in a subinterval of [t o , t )  implies an uperossing occurred in the entire 

interval. As for " C " ,  if there is an uperossing in [ t ° , t )  it is either interior to one of the 

Ill ,ti+l) or at one of the endpoints t i , i ~ 0, 1, . . . , 2" -1  However from the absolute con- 

tinuity of the distribution of X ( t  ), with respect to Lebesgue measure, this la t ter  event has pro- 

bability zero. Therefore the proposition follows. 

| 

Proof of Theorem 1.1 

Part i t ion [t o , t )  into 2 n -1  subintervals of length A = ( t /  - t  o)2 -n for n = 0 , 1 , ' ' '  

That  is we have intervals [ti,ti+l) with t i = t o + i A  , i = 0 , 1 , . . . ,  2 n. Define B~,~, 
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,T,u E {t; }#L,,  

tc. ((:,,,.,) > o. 
the event that the polygonal approximation, ~ upcrosses zero in 

Then from Proposition 1 and Eq. (15) for k = 2" (t k = t ) 

2" -1  2" -1 

P(B t . , t , )  = P (  , uoB t  ,t,+, l'3 ~o, , . )  ---- ~ P(B t , , t , . ,N~o, , , )  
" =  ' i ~ 0  

[a,u), i.e. 

(is) 

Here we have used the disjointness property (14). 

P(Bt,,t,+) P (~o ,t, ) from each term under the sum (18) 

where 

Now add and subtract 

2 s --1 

P (Bt. ,, ) = ~,, [P (Bt, ,,, +,)e (E,, ,,. ) + q (t;)1 

q( t i )  = P(Bt, , t ,+ , 13 Eo, t , )  - P (B t , , t ,+ , )P (E . , t . )  

the product 

(1o) 

(20) 

as in the statement of the Theorem, Eq. (12). 

Bt,,t,+t is equivalent to the event 

B,,.,.+ ~ {~ . ( t ; )  < 0 < ~. { t ;+ l )  } 

Define 

~. (t;+,) - ~° (t~) 
qn (tl) "= ~, 

(21) 

(22) 

Combining Eqs. (21) and (22) 

B,, ,t,+, = {~n (tl)  < 0 < $.n (ti)  "t- .,Xq. (t i )} 

= { L  (t;) E ( - ~ z , 0 ) ,  ~.  (t;) = z > 0} 

(23) 

Therefore by the definition of the joint density, gt,,$, of ~. (ti) and q. (t i ) 

oo 0 

P (Bt, ,t,+) = f dz f g,, ,A(z ,z )dz 
0 - A z  

(24) 

Now make a chunge of variable in the argument x of (24) and substitute the result back into 

Eq. 09) to obtain 

2 '  -1 00  0 

P(B,° , t )  = ~ IA f dzfgt,,a( A x,z}F{~o,,,}dx + q{t;}] 
i - -0  0 - z  

(25) 

By the pointwise continuity and uniform convergence conditions, (6) and (7), for A sufficiently 
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small 

0 

f a , , , ~ x ( A x , z ) d x  = z p,(O,z) , r e  [t:,t¢+d (26) 
- z  

Condition (8) asserts that  zl(z)  is integrable over the positive real line where I(z) upper 

bounds 9t,f(Y ,z ). 

of measure zero. 

Defining 

Therefore the limit of (26} as A --* 0 is bounded except possibly on some set 

From Lemma 1.1 and Eq. (3) P(~o , t , )  converges to P(A~. , t , )= 1 -  p(ti}. 

we have as A goes to zero 

and 

0 

a A(t i ,Z ) =" fgt, ,A( A z  ,Z )P ('Bto ,t, )dx (27) 
- z  

~A(t~,=) ~ z p, ,(o,z)(1 - p ( t , ) )  ~.~. (28) 

.A(t,,~) < zt(z) (2o) 

Hence by dominated convergence the first term of the expression {19) becomes in the limit 

2* - i  

lira ~ P (Bt, ,t, +)e (~o ,,, ) 
n ~CX:, i ~ O  

2 " - 1  o o  0 

lira A E fdz fg , , ,A(A x,zle(Bto, , ,)  
n ~ O 0  i - - O  0 - z  

t O0 0 

lira f d  v f  dzfd~ gr,~(A z ,z )P (Bto,r) 
n ---,00 to 0 - z  

t o o  

= f d T f z  p J 0 , z } ( l -  p(T})dz < oo 
f ,  0 

(30) 

This is the first additive term in Eq. (lO). 

From the expression (20) 

-P(B,,,t,+)P(Bto,t,) <_ q(t;) < P(Bt,,t,+~)P(Bto,t,) (31) 

so that the q(t;) are absolutely summable by Lemma 1.2 and the finiteness of E [N(t o ,t! )]. 
Finally Theorem 1.1 follows by performing the limiting operation in (16) as n --* 0o, taking 

account of the regularity conditions shown above, i 



103 

HI. ASYMPTOTIC RESULTS 

Theorem 1.1 gives an implicit relation for the probability of getting an upcrossing in a 

bounded interval. Although the intensity function p may he known, in general the Q ( t )  term 

in Eq. ( l l )  involves quantities which are not known. On the other band Eq. (11) can be used to 

prove certain asymptotic results for a fairly general class of upcrossing processes, which we will 

now undertake to show. To motivate these results the following argument is useful. Referring 

to Eq. (11), assume that  N'* converges to an independent increment point process N as 

m -* cx:). Then q m (t,') converges to zero for all i and by Eq. (31), Lemma 1.2 and the finite- 

ness of the mean number of upcrossings, q rn (t;) is summable over i as the t i become dense in 

[t,,t ). Dominated convergence then assures that Q [ t ) =  0 and Eq. ( l l )  becomes equivalent 

to a linear first order, homogeneous differential equation with coefficient p(r) and initial condi- 

tion p (t o ) = 0. Eq. (11) then has the solution 

t 

p ( t  ) = 1 - exp ( - f  p(r)d r) (32) 
t,  

Eq. (32) is of course valid for any semiclosed subinterval of [t o ,t ). Hence, by the independence 

of N over disjoint intervals, the nperossing process must actually be an inhomogencous Pois- 

son process with intensity p. 

Unfortunately the above argument is fallacious since, roughly speaking, for non-zero N on 

bounded intervals, the independent increment property of N is incompatible with the sample 

function continuity of X so that Theorem 1.1 does not even apply. Clearly the pointwise con- 

vergcnce of N m to an independent increment process N is an overly strong imposition on X. 

However in the following it will be shown that for a sequence of "thinned out" upcrossing 

count processes, N m (t o ,t ) associated with X, a related {time normalized) random counting 

process can be defined which converges in distribution to a Poisson random process defined on 

the ii~terval [0,I) as m ---* oo. These results will depend on additional assumptions, such 3.s 

mixing, on the distributions of X .  

The basic idea is as follows. Let X o ~ {X( t  ):t E [0,1]} be a given random process with 

upcrossing intensity {p(t ):t E [0,1]}. Define a sequence of increasingly long time intervals, I m , 

of length Tm > 1, Im ~[O, Tm]. On the interval I m let X m be a r a n d o m  process with an 

upcrossing intensity function {pm(t):t E [0, Tm]} where pm is related to p by: 

p'~{t) a Tml p(_.~m }, t E[0, T,n ]. Note, the average number of upcrossings by 

{X(/):t e [0,i]} is over [0,1] is identical to the average number by {X m (t) : /  e [0, T m ]} over 

[0,T,~], while the intensity pm is a stretched and downscalcd (thinned) version of p. In this 

way the upcrossings by X m differ from those of X only in that the average inter-event spacing 

has been uniformly increased, i.e. upcrossings by X m become "rare events" over time. As we 

increase T,+ out to infinity, the upcrossings will become approximately independent since, with 

probability close to one, the events are separated in time by an amount exceeding the "inter- 
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dependence time" (correlation time for Gaussian case ) of Xra which can be specified by a mix- 

ing condition. Then, with the aid of some additional regularity conditions, Theorem 1.1 can be 

used to give the solution (32). 

For simplicity, and without restricting the generality of the results, we set t o in Eq. (32} 

to zero. In general, when there is multiple indexing, subscripts indicate indexing with respect 

to the partition, {t; }, of the time interval under consideration and superscripts index the quan- 

tity with respect to the infinite sequences { X  m } and {In }. Thus N ~ ( t  ) denotes the number of 

upcrossin~ of zero by the polygonal approximation to X,n, ~ ,  over the interval [0,/) , 

t E Im  • Likewise N 'n is the number of uperossings associated with X m itself. Analogously to 

the development of Theorem 1.1 define ~ • the (7-field generated by X,~ on [a,u); B 'n the ffiV~ tj 7tl , 

event N~(t i , t y  ) ~ O, where t( and t i are points contained in the 2~-th order partition of Ira; 

and p~ (t) ,  the probability that X,n upcrosses zero on [0,t ) _ [0, T m ). 

Throughout the sequel of this section, we assume the intensity associated with N 'n , p~ 

exists for all m and is defined in terms of the intensity associated with N °, p, as follows 

= "~m p ) ,  m = 0 ,  1 , ' ' '  (33) 

The next section is concerned with the various conditions which will be imposed on Xm for 

asymptotic independence of widely separated segments of the trajectory and Poisson-like 

behavior of the upcrossings. While not necessarily the most compact set of sufficient condi- 

tions, the following contribute to a clear and simple proof of the asymptotic theorem. Several 

comments will be made concerning simpler sufficient conditions during the discussion. 

Asymptotic Conditions: 

A mixing condition is a statement concerning the asymptotic independence of the trajec- 

tories of a random process on disjoint intervals to,v) and [s ,r) as Is - u I --, co. For example 

X is "strong mixing" [16] if 

sup [P (A CI B )  - P (A )P (B)1 <~/~: (34) 
T 

where A and B are arbitrary events 

A 

and 

E ~ , ~ ,  B E 4~ c¢,~_ t 

lira fit ~ 0 

The major weakness of "strong mixing" is that (34) becomes vacuous if either A or B are 

of vanishingly small probability. Indeed in the present context the event A will be contained 

in the event that  an uperossing of zero occurs in an exceedingly small interval, which of course 

has exceedingly small probability. The needed condition here is the summability to zero of the 
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differences below 

2 t ~ |  

lim E IP{A~" n BI") - P(AI")P(Bim)I = 0 
m ,n  " * ~ (  ~ O  

Y t: It, 41 

lm " * c o ,  Ira : o ( Tm) as n ,  m ---,co 

{ti},2,~o , an increasingly dense partition o f  [O, Tm) 

(35) 

A sufficient condition for (35), if the quantities P ( B i  m) are summable over i ,  is the following 

form of so called "uniform mixing" [16]. 

Mixing Condition 

With dp ,n the a.field generated by the trajectories of X m in [a,v), T m a monotonic se- ajV 

qaence increasing to infinity, X m is said to be uniform-asymptotically mixing (u-a mix- 

ing) if 

IP (A, -m) - P (a;mlBd')l < a.~ ,t. 

where 

and 

with 

Ai m E ~_~.,t,_t. , B~" E ~,.~,t.+, 

lira am,t.  ----0 

irn--*co,  I ,n-- - -o(Tm) , as n , m - - * c o  

{t; } ~ o  , an increasingly dense partition o f  [0, T~ 1 

(38) 

Note that for a dense partition {t i } the conditioning in (36) will be on the zero probability 

event X(r)  = 0 at some specific point r, viewed as a limit through a horizontal window [8]. 

Thus in the limit of dense partitions, although the conditional probability may not be well 

defined in the conventional sense, (36) is well defined. We state the following lemma [5] which 

generalizes the uniform mixing condition to multiple events. 

Lemma 2.1 

Assume that X m (t ) is uniform mixing in the sense of (86). Fix I > 0 and for r > 1 let 

E l ,  E2, . . . , E r be disjoint intervals indezed in increasing order, that is, 

sup {rG E;_l} < inf { r G  E; } for i : I, 2 . . . . .  r ,  and separated by at least l. Then 
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}" r 

IP (  ("1 t Ai m) - H P(A,-")I < am,t. ~ P(A~')  (37) 
"= "= i=2  

For Gaussian processes Xm a sufficient condition for mixing is a rate of decay on its auto- 

correlation function: Rx. ( t , t+lra) log i  m ~- a m ( t  ) --* 0 as m,!  m ---* oo uniformly in t [14]. In 

order to make the upcrossings exceedingly rare events as m ~ oo the following "rarefaction" 

condition is used 

Rarefaction Condition 

With N~(a,v) the npcrossings 

[~r,v) C [0, T,~ ) N ~  satisfies a rarefaction condition if for I m ~ oo, l m = o (Tm } 

lim ~ P(N~(t~,ti+,) > o, N ~ ( t i - I  m ,tl) > o) = o 
n ,m ~ O 0  f, ~lm 

of zero by the polygonal approximation ~ in 

{t i 2' };=o , an increasingly dense partition o f  [0, Tin) 

(3s) 

The above condition is a strong condition on the trajectories similar to, but  possibly more 

restrictive than, the condition D;  used in [12] for the stationary case. Eqn. (38) guarantees 

that the probability of more than a single level crossing over any o ( T  m } intervM be exceed- 

ingly small as m --* oo. The condition {38) is somewhat stronger than the property of 

a-regularity for a ----- 2 (see Lemma 2.3). {35) can be shown to hold if the hazard function, 

h ~ ( n , r )  a • 1 = 2,mo-~ P ( N " { u , n + r ) = o l N m { u - h , u ) > O ) ,  r > O  (39) 

satisfies 1 - h m (u ,lr~ ) = o (__~_1 T .  ) for all u e [0, T,~-l. ,  ]. 

An additional condition needed is the following which is analogous to condition (4.8) in 

I12] 
P (N~( t  ,t +h } > O) 

E [ N . ~ ( t  , t  + h  )l 
..o 1 as n , m  --* o o  (40) 

{ t i } ~ o  , n = n ( m }  , an increasingly dense partition o f  [0, T,n } 

for some ho , 0 <  h < ho and for all t E[O,T,~}.  

Condition (40) is stronger than a well known necessary condition for a process to be 

(asymptotically) Poisson: for infinitesimal intervals the probability of getting a point is 
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proportional to the expected number of points in the interval (linear in the length of the inter- 

val for stat ionary processes). The condition can be interpreted as an extension of this neces- 

sary condition to certain finite intervals. 

We state here two easily verifiable conditions on the average number  of crossings by X 0 

over I 0 = [0,1), E {N(1)}, which are particular to the nonstat ionary situation. These proper- 

ties guarantee that  the behavior of the upcrossing process N r" be sufficiently uniform over 

time to exclude degeneration of the upcrossing probabilities to either probability 0 or probabil- 

ity 1 events over any o ( T m ) interval. 

Uniform Denseness Condition 

Let N be the number of ttpcrossines by X o on I o = [0,1). Choose an interval A ,  a sub- 

set of [0,1). The uniform denseness condition is satisfied if for any E,K, 

> O, 1 < K < oo, there exist K subintervals of A ,  {Ji }i;= =K, whose closures are 

disjoint, such that 

IE IN(J , . ) ] -  E [N(Jt)]l < e ,  i=#l, i , l  = I , . . .  , K  (41) 

Asymptotic Uniform Negligibility 

Let N be as in the condition above and let {r i }i=oK be a uniformly spaced partition of 

I 0 = [0,1) of size K. Then with Nr~ ~- N ( r  k,rk+l),  the number of uperossings within 

the k-th partition element, the uniform negligibility condition is satisfied if for all 

I - = l , . . . , K  

E IN,,] 
lim - -  0 

{42) K---.oo E E [N,, ] 
k~l  

Loosely speaking (41) implies that  the uperossings are lean enough so that  "similar" inter- 

vals, of similar order with respect to I 0, have associated with them a "similar" expected 

number of upcrossings. This will imply a continuity property on P(N"* (r,a) > 0) viewed as a 

function from the sets Jr, a). Condition (42) guarantees that  in no case will the total number  of 

uperossings over I 0 be dominated by uperossings in small subintervals of I 0. The reader may 

be interested in the similarity between Asymptotic Uniform Negligibility and Feller's sufficient 

condition for a non-stationary Central  Limit Theorem [22]. If the process X 0 were stationary, 

these two conditions, {41) and (42), would be trivially satisfied since the expected values of 

N ( J )  and N ( [ )  are identical if J and I are intervals of equal length. For non-stationary X0, 

a sufficient condition for (41) and (42) is that  the (incomplete) intensity, p = P0, satisfy 

0 < p < M for some finite M.  
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Main Theorem 

With  the above conditions we are prepared to s ta te  the main result concerning the conver- 

gence of a certain normalized uperossing process, associated with X,. (t),  to a Poisson process. 

Theorem £.1 

Let the a.s. continuous processes X,~ ( t )  have absolutely continuous distributions for 

m = 1, • • • . Assume each X,~ satisfies Leadbetter's conditions (6) through (8), with, 

in addition, l,~(z)---- O(T,~ 1) in (8), u-a mixing o/ the form (36) and conditions sur- 

rounding Eqs. (38) through (g2). Also assume that the (incomplete) intensity, pm , of the 

zero upcrossings by Xra over [O,r) , r E  [O, Tm], N~a(r), satisfy (33). Then if the time 

normalized count process N "  is defined: N "  (r) ~ N 'n (~ ' r " ) ,  r E [0,q, we have 

/ ~ "  (r) --* N "  (r) in distr ibution (43) 

where N* (r) is a non-stationary Poisson random process on [0,1) with intensity p. 

We will need the following proposit ion in order to use Theorem 1.1 for the proof of 

Theorem 2.1. 

Proposition £.1 

Let _)t~ (t ) be a random process which satisfies the conditions in Theorem ~.1. Let 

N n~ (a,r) and Nnm(o',r) be the number of upcrossings of zero within [o',T) by Xra and the 

approzimalion to Xrn , ~a m, respectively. Further assume that T m pm (rT" ) = p(r). 

Then for pro(t) the probability that /~"(0, t )  & N"(O, tT . )  exceeds zero and p*(t ) 
the probability that a Poisson count process with intensity function p exceeds zero in the 

interval [0,t ) E [0,1]. 

2 '  -1 t 

[ p n ~ ( t ) -  p *( t ) l  _< lira y]. [q"( t l )  [ exp{-fp(r)dr) (4.1) 
n ~ 0 3 i  = 0  0 

w h e r e  

q m (t; } = P (B:,~t, +1' B~,,t, ) - P (Bt~t, +, ) P  (B~,, , , )  (45) 

B "~ a= {Nm(tl ,t i ) > 0}. for an increasingly dense partition, {t i }~-o I of the interval 

[0,7",.]. 

Proof 

Since X,.  satisfies the assumptions of Thm. 1.1 and p ( N m ( t T m ) >  O)-----pm(t), 

t e [0,Tm] 
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t T .  2" - 1 

p r o ( t ) =  f p a ( r } ( l - p m ( r / T m ) ) d , - t -  lim ~.~ qr~(ti} , rE[0,1] (46) 
0 n --*OO i ~ l  

With a change of variable r / T  m --*r, and the identity relatin~ p to Pm (33} 

t 2 '  - 1 

pro(t) = J p{r)(1- p,~{r))dv+ lira ~ qm(t;) (47) 
0 n ~ O O  i ~ l  

t 

p " is a Poisson probability measure having the form p *(t) ~ ezp (-fp(r)d r) hence p * satis- 
0 

ties the integral equation 

p " ( t )  = f p ( r ) ( l  - p * ( r ) ) d r  (48) 
0 

An application of the triangle inequality to the difference: (47) minus (48), yields 

t 2" - I 

l p , ~ ( t ) - p * ( t ) l < f p [ r ) l p { r ) - p * f r ) l d r +  lim E I q " ( t ; ) l  , t' E[0,t  I (49) 
0 n ~ c o  i - - 1  

Let the last term in (49} be denoted r{tT~) .  Then r is monotone non-decreasing in t E [0,1] 

and replacement of r{tTm) by r(  T m ) can only weaken the inequality (40). Subsequent appli- 

cation of the Bellman-Gronwall inequality [18] to (49) finishes the proof. 

II 
The following generalization of Lemma 2.2.3 in [12] is proven in [5]. 

Lemma 2.2 

Let X,n satisfy (6) through (8), be u-a mixing and satisfy (38) and (40]. Then given 

> 0 ,  integers r > 0 ,  K > 0 ,  positive quantilies I, l----o(T re~K) and t ,  

K < t < T,, ,  we have for m sufficiently large 

r 1 P { N ~ ( t - l , t ) > O , N ¢ ( t - l ) ~ - O ) < ( - ~ l  ) - - ~  + ( 2 r -  l)otm, | " ~  (50) 

With Lemma 2.2 and Proposition 2.1 we can easily prove the following weak form of the Pois- 
son convergence result. 

Proposition 2.2 

If the a.s. continuous processes {Xra i t )} satisfy the conditions stated in the premise of 
Theorem 2.1 then for any interval I contained in [0,1] 

p ( N m ( I }  > O) ~ 1 - exp(-fp(r)dr) (51) 
I 
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Proof 

Firs t  fix l greater than zero and K a positive integer. We reproduce Eq. (45) here for 

clarity. As in Eq. (12) of Theorem 1.1, for the sequence Xm, m = 0, 1, • - • we have the 
2" 

quantities q ~ (t i ) on the 2" point grid {ti }i=0 

q'+ (t , . )  = P ( B , :  ~7 ~ . . . . .  t,+~, 0,,, ) -  P(Bt"t.~)P(B~.+ ) (52) 

Par t i t ion  the interval [0, T,n ) into K parts  so tha t  the sum on the right of Eq. (44) of Proposi- 

tion 2.1 can be represented as 

2" -1 

tq'~(ti)l  = ~ i [ q m ( / i ) l  + + ' "  + ~-~Klqm(ti)[ (53) 

where )-~k denotes summation over the intersection of the grid {t i };=0 and the k - th  part i t ion 

element, k ----- 1, 2, . . . , K .  

Fix ~ :> 0 and let m be sufficiently large so tha t  Lemma 2.2 holds. Consider the final 

K - I  terms in (53) 

E21q~ (ti)l  + ' ' ' +  E K l q ' ~ ( t , ) l  (54) 

Now for each q'n (l i ) in (54) we add and subtract  terms so as to isolate the mixing dominated 

quantities of the form (36). Tha t  is we obtain via the triangle inequality 

[q (t;)l  --< I P (Bt,,t,+,, B0,t,-t ) - P (Bt, ,t,+l)P (Bo,,,-J )1 (55) 

+ IP (B,, ,t,+,)P (Bo, t,-t ) - P (Bt ,t,++)P (Bo,t,)l 

-I- [P  (Bt, ,t . . . .  B0,t, ) - P (Bt, ,t, +t, B0,t , - l  )l 

where we have suppressed dependencies on m for notat ional  simplicity. Using the mixing con- 

dition (36) on the first term to the right of the inequality (55) and using simple set identities 

for the other two terms we have 

[q(/ ;) l  --< P(B,,,t,+,) [am,I + P(Bt,-t,t , ,  B0,t,-/)] -I- P(Bt,, t  .... Bt,-t,t,, Bo,t,-t) (56) 

Finally applying Lemma 2.2 to the second term in brackets  [ ] in (56) and noting tha t  by 

monotonicity the third term in (56) is hounded 

,Bo, t_l) < P ( N ~ ( t i ,  t i+l)  > O, N ~ ( t i - I  , t l)  > O) (57) p (Btmt,+z ,Btmrl,t+ - -m  - -  
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we get by subst i tut ing the inequality (56) in (53) 

2 '  - !  

Iq~(t;)l 
i f f i 0  

( r }r 1 2"-1 
<Edq"(t;)l+t2r'~t + r + l  ~ + , ] ~ P ( B , ~ , , . , )  

2 s - 1  

+ E  
i - - f  

P(N~(tl,t~+ 0 > O, N~(t~-l,ti) > O) 

(58) 

2. T~ 
here t~ E {tl }~'=0 is the rightmost point contained in the first partition element, [0,---~- ), of 

the K-th order partition. Now applying the relation (31) and Lemma 1.2 to the first term to 

the right of the inequality {58) for n sufficiently large 

m N m E~lq  (tl)l < E t P ( B , ~ , , + , ) _ <  E[ , , ]  + e (59) 

where N ~  is as defined in Eq. (42}. Likewise 

2" -1 2" - I  

~P(Bt:t,+.) < 2P(Bt,,t,+) __ E [ N " ( T . , ) I  + ~ (601 
i = ¢  i ~ 0  

which gives via Eq. (58) 
2 m - |  

lira ~ l q m ( t  i)l 
n ~ Co i ~ 0  

N "  [ 2 r a ~ j  r ), 1 < lim E [ rt I + + (-;-~-i 7 7 i  + '  l{E IN '~ (Tin)]} (611 
rl ~ O 0  

+ 
21-1  

lim ~ P ( N ~ ( t l ,  ti+l) > O, Nn~ti-l ,  t~) > O) 
n . - . * 0 0  i=ffif 

Therefore taking the limit as m ,i --~ oO , i ~--- o (Tm }, the first term to the right of (61) goes 

to zero by Uniform Negligibility, (42), and the finiteness of 
1 

E [N m ( T  m )] ~-~ E [.~(1)] ----- fp(r)d r. The second term converges to a quant i ty  not exceeding 
0 

1 [ r  -I- ~ ] E IN( l ) ] .  I towever as m becomes unbounded r can he made arbi trar i ly large and c 

can be made arbi t rar i ly  small, by Lemma 2.2, thus the second term is negligible. Finally the 

rarefaction condition, Eq. (38), asserts tha t  the third term vanishes. Hence by Proposit ion 2.1, 

for I ---- [0, t] 



112 

t 

p,~(t) - -~  p ' ( t )  ~--- 1 - cxp ( - fp ( r )dr )  , t e [0,1) 
0 

(62) 

| 

Proposition 2.2 asserts that  the probabili ty that  the normalized upcrossing process /~m is 

greater than zero in any interval  contained in [0,1) is the same as the corresponding probability 

for a Poisson counting process N *  in the limit as m --* c<9. To show the stronger result that 

/~m actually converges in distribution to a Poisson process we will follow Leadbet ter  [12] in 

making use of a theorem in [O]. Using the nomenclature in [O] a point process N is a -regular 

if for every collection of intervals [ contained in T{0jI , the Borel sets on [0,1], there exists some 

array {Imk } C TIojI of finite covers of I (one for each m = 1,2, • • • ) such that  

lim l imsnpEP ( g "  (I .}) > a ) ----- 0 (63) 
11--*00 m ~ O 0  k 

We state the following special case of Theorem 4.7 in [9]. 

Lemma 2.3 

Let ~r~ be a sequence of point processes and N* a Poisson process both defined on 

[0,1). Then ~,n  converges in distribution to N*  if and only if N ra is e-regular and 

lim P ( N m ( U }  = 0) = P { N ° ( U )  = O) 
r ~ O O  

for all U of the form 

for r > 1, and 

U = U k _ l T i  , T i  C TI0,1 ] 

(84) 

for I C Tl0j] 

iimsupE [N~ ( I l l  < E { X ' ( l ) ]  < oo  (65} 
rtL -- .*~ 

We now proceed to the  proof of Theorem 2.1 which at this point only involves showing 

that  ~ , n  of the theorem satisfies the conditions in Lemma 2.3. 

Proof of Theorem 2.1 

Without  loss of generality we assume that  the collection of intervals I in the a-regularity 

condition and in {85), and the T in (64) are sets of disjoint intervals. For  each m ,  

m = 1, - - • , define the increasing set of disjoint covers of 1: {Jmk }, k ~-- 1, 2, - - - r m , with 

each J ~  of length lm / T,~ (recall Ir~ ~- o (Tr~ }}. Assume for definiteness that  Jmk are 

ordered such that  the left endpoints are strictly increasing as k increases. With N m as in 
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Theorem 2.1 a n d / ~ m  (r) = N m (rTra) we have 

r m rm 

~ P ( / ~ m ( J ~ k )  > 1)----- ~ p ( _ ~ m ( j , ~ )  > l ) + p ( N m ( j m l ) >  1) (66) 
k ~ l  k ~ 2  

< 
r~ 

lira E E P(N:(t,k,t~+,)>O,N.~(t~-im,t?)>O)+ElN'(Jm~)] 
n ---~(20 k - - 1  t, E J , .  T .  

where t,kx n~ t-i  s , '=t  are increasingly dense parti t ions of Jmk, for k ---- 1, • • • r m respectively. The 

first term on the right of the inequality (66) is hounded by the expression in the Rarefaction 

condition, Eq. (38) while the second term converges to zero by Uniform Negligibility, (42), 

and the finiteness of E [~rn ]. Taking the limit of Eq. (66) as m --* ~ we have that ~ m  is 

2-regular in the sense of (63). 

Fix r :> 0. Because of the absolute continuity of the distributions of Xm the intervals T ;  

in (64) can be taken as having no common boundary points. Therefore by mixing, Lemma 2.1, 

for any collection of disjoint intervals TI ,  T2, . . . , T r contained in [0,1] 

• r 

' " = - "'" - - - - - - ' [ P ( I f - I I N ' n ( T ' ~ T i ) > 0 ) - , H 1 P ( N m ( T m T i ) > 0 } I - * 0 ' ' -  as m .--~c~ (67) 

where we have adopted the operator notation for Tin: T,,[a,u)=[Tma, Tmu) for 

0 < a < u < 1. Eq. (67) and Proposition 2.2 thus imply that  

r 

P( ,~IN m (Tin T,) ---- O) ~ exp(- ~ f p(r)d r) (o8) 
i ~ l  T, 

Since, furthermore, /~m and N*  have identical intensity (recall (33)) the assumptions stated 

in Lemma 2 3 are valid fo r /~m and Proposition 2.1 establishes Theorem 2.1. 
| 

While the asymptotic theorem, Theorem 2.1, is an interesting result, Lemma 2.2 is more 

useful in applications. Let N be an upcrossing count  process, on [0,1], with (incomplete) inten- 

sity p. Lemma 2.2 states a bound on the "approximation error" of the Poisson model, 

p*(t) ~ P(N*(t )  > 0) and p(t) ~ P(N( t )  > 0). 
1 1 

I P ' ( t ) - P ( t ) l  <_/[q(r) ldrexp(fp(r)d~) (60) 
0 0 

where the abstract integral has been defined 

1 2 '  - 1  

fq(T)d~= lira ~ [ q ( t ; ) [  (70) 

Along with definition (12} for q, (70) asserts that  as uperossings become rare over time, q --* 0 

and there is progressively smaller error involved in the Poisson approximation. Since 
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q (r) <_ p(r) a uniform decrease in the intensity over time is sufficient for rarefaction. In the 

next section level crossings will correspond to large errors in an estimation problem involving 

signals and noises. In that context it can be shown that p is monotone decreasing in signal-to- 

noise-ratio. Thus a practical interpretation of Theorem 2.2 is that a Poisson model for large 

error is accurate for moderately large SNR and above. Furthermore, it can be shown that, for 

large p, p * ( t )  > p ( t) .  This establishes p * as an upper bound for p under large or small 

SNR conditions. 

IV. APPLICATION TO PASSIVE ARRAYS 

The performance of the eorrelator estimate of time delay in a two sensor passive array has 

received much attention in the past decade [2,20,10]. As is typical in non-linear estimation 

problems, exact expressions for the variance of any estimator are difficult to derive except 

under restrictive small error regimes [17]. In this section we will develop a global variance 

approximation which is directly motivated by a level crossing interpretation for large errors. In 

this context the asymptotic result presented in the last section has an interesting interpreta- 

tion. For low probability of large error, the level crossings form a point process over the a 

priori region which have nearly Poisson statistics. While for large probability of error the Pois- 

son model is conservative, i.e. P ( N > O )  is larger for a Poisson N than for the actual level 

crossing process N .  This observation suggests building a conservative global variance esti- 

mate, via Poisson modeling, to complement the lower bounds such as the Ziv-Zakai and 

Cramer-Rao bounds. 

Our observation model for the outputs of a two-sensor passive array is as follows. The 

outputs of two sensors, z l ( t  ) and z2(t ), are observed over a finite interval of time t E [0, T] 

z l ( t  ) -~- s( t )  + nt(t ) 
(71) 

z2( t  ) -~- s(t - D )  + n2(t ) 

The signal components, s ( t )  and a delayed version s ( t  - D ), and the noises, n l(t ) and n2(t ), 

are zero mean, uncorrelated, stationary Gaussian random processes. The delay D is restricted 

to an a priori region of possible delay [-DM, DM]. The signal auto-correlation, 

R,,  (r) = E Is ( t ) s  (t +~)], is assumed to be essentially zero for Irl > T c , where T e ---- k / B  is 

the correlation time, k is an integer and B is the baseband bandwidth of the signal. As in 

most cases of interest, we assume that  the uncertainty region [-DM,DM] is large enough to 

make the time-bandwidth product BD M >>1 .  

For fiat signal and noise spectral densities, the correlation estimate of time delay, / ) ,  is 

the location in time, within [-DM,DM}, at which the global maximum of the sample cross- 

correlation function occurs. 

r E l-Du ,Du I 
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12(T) is the sample cross-correlation function. 

T 
- -~  f =l(t )xe(t +r}dt 

0 
(TO) 

The correlator estimate is known to be asymptotically equivaleat to the maximum likeli- 

hood estimate for D as BT--* o0110]. In [15] a simple small error approximation, the 

Cramer-Rao-Lower-Bound: a~RLB, was derived for the variance o f / ) .  The CRLB is an accu- 

rate approximation to the true variance when ] D - D  ] < ~ with high probability, where b is a 

small constant dependent upon the signal and noise spectra. An exact expression for the global 

variance results from direct application of the "law of total probability" to var {D }: 

~ r  {b  } = ~o~ (1 - p. ) + 0:p~ (74) 

In (74) alo c = min{a~RLB, --~ ]} and a 2 ---- E {(/~- D)2 I ( b  - D)  ~ [- ~f,~} are the conditional 

expectations of the squared error given small (local) error and large error respectively, and 

P,  = P (D D ~ [- ~,$]) is the probability of large error. The rest of this section deals with 

suitable approximations to the large error probability and the squared error a2pe. 

Tile occurrence of a peak equal or greater in magnitude than the local maximum of the 

correlator within [-5,8] is called a peak ambiguity, since it confounds the estimators search for 

the location of the local max occurring near the true delay D.  A useful interpretation is that 

each peak ambiguity gives rise to a candidate for D.  In the exact model the candidates are 

the locations over the a priori interval where the peak ambiguities occur. From these candi- 

dates a single member is then selected f o r / ) ,  the one which corresponds to the largest of the 

ambiguous peaks. We use the above interpretation to develop a different set of candidates, 

each of which corresponds to a level crossing location associated with each peak ambiguity. /) 

is then modeled as equally likely to take on the identities of any of the candidates. With little 

loss of generality it will be assumed that D = 0  in the sequel [5]. 
^ 

A maz RI2(u) and the "ambiguity process" Define the random level m5 -- u eb~.61 

AR(r) ~ R12( r ) -m~.  m~ is the magnitude of the desired local peak of the sample cross- 

correlation, while AR (r} must be negative over [-DM,DM]- [-~f,~f] for no large error to occur. 

Next define the level crossing count process N ~ {N(v):r E [-DM,DM]} associated with the 

ambiguity process 

I N X (-D M ,r) r E [-D M ,- (~} 
N('r) ~ N u (-D M , -  6) r E [- &,O'] (75) 

N,(-DM,-~) q- Nd(6,r ) , rE  (6,DM] 

where N~ (t l , t2) is the number of up-crossings of zero by AR (~} over r E [tvt2)C[-DM,-~), 

and N~(tl.t:) is the number of down-crossings of zero by AR(r )  over r E  [tl,t~]C{&Du]. 

The process N is merely the running sum, over time, of the total number of up-crossings to 
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the left of the true delay plus down-crossings to the right of the true delay. 

With the above definitions, no large error occurs, i.e. /) E [-8,5], if and only if 1). 

AR (-DM) < 0 and AR (DM} < 0 and 2). N(DI~t) = 0. Hence the probability of large error 

P, ---- I - P ( N ( D M )  = O, A R ( - D M )  < 0, A R ( D M )  < O) (76) 

Define the left continuous probability distribution function F ( z )  ~= P ( A R  (-DM} < z).  The 

probability of large error (76) can be shown to have the form [6] 

,DM 

Be ---- 1 - exp{- I ~, (0dr} Fz(0) 
-Ou 

(77) 

Where ~ is the conditional (incomplete) intensity of N ,  )'c (r}dr & P(dN(~') > 0 1 N(~)=0,  

AR (-DM) < 0) And dN(O is the infinitesimal increment in time of N at time r. 

Equation (77) is an exact representation of the probability of large error in terms of the 

level crossings N .  However, while the presence of level crossings is (conditionally) equivalent 

to the presence of ambiguity, the level crossings alone do not uniquely specify the location of 

the global maximum. Hence one cannot expect the level crossings to be sufficient, by them- 

selves, to give an exact expression for variance. As an approximation, we will use the following 

conditionally uniform model for the location of the global maximum given a particular 

sequence of level crossings. Let {w 1 . . . . .  °an } be the ordered set of points in [-D M,DM] where 

N(z) increases. Conditioned on the occurrence of a large error, we will mode l / )  as follows:/9 

takes values in the set { V l , . . . ,  wn } with equal probability if N(DM)- -~  n and both 

AR(-DAf ) ,  A R ( D M )  < 0; while D takes values in one of the sets: {wl, . . . , w n , ± D M }  , 

{~l, . -  . , w , , - D M , D M }  , with equal probability if N ( D M )  ---- n and either: A R ( - D M )  > O, 

AR (D M) > 0; or both, respectively. 

Assume for simplicity that  N ~ ( ~ , D M ) = O  while N u ( - D m , - 6  ) > 0. The conclusions 

drawn for this case apply to the more general situation with no additional conceptual diffi- 

culty. Define {a I . . . . .  aN} ~= {argmaxAR(r)  , . . . ,  argmaxAR(r}} the ordered set of [~,,~} [~N,-~) 

peak ambiguity locations. Since ] a~. I --< ] wl I ,  i = 1, . . . , N ,  and the largest ambigui- 

ties tend to cluster in the vicinity of the high amplitude sidelobes of R m, the signal autocorre- 

lation, occurring close to the true delay, the proposed model entails, at worst, a pessimistic 

estimate of the mean squared error of D .  

Under the conservative model described in the preceding paragraphs, the following ine- 

quality can be derived [6]. 
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vat{l)} > at2o, exp{- f )'c(r)dr} + f ~p(r) g(r)dr÷OM% (TS) 
-ox -Du 

In (78) p is the unconditional (incomplete) intensity of N ,  as defined in Section II, Eq. (9}, and 

a is a small quantity given in [5] which is not significant in this discussion. The function # (r) 

is defined- as 

g (r) =~ .--E~ k--, a,_~,._~ (r) (7o) 

and we have defined the bidirectional Palm measure 

a t_ , , . _ .   imo- P ( g ( r )  -~ k - l ,  N(DM) = n [ dY(r,h) > O) (80) 

The bidirectional Palm measure corresponds to the probability that, given the occurrence of a 

(crossing} point at r, this point is the k-tit occurrence in a sequence of n points occurring over 

[-D M,DM] (see [3] for a discussion of Palm measures}. 

The expression (78) consists of three factors. The first factor is the small error contribu- 

tion to the global variance. The second term is the contribution of peak ambiguities which 

generate level crossings in (-Dm ,Din ), and the third term is the contribution of any peak ambi- 

guity which does not generate a level crossing (i.e. corresponding to our conservative assign- 

ment ]) = =l=D M ). 
The asymptotic results cited in the previous sections suggest the feasibility of applying a 

Poisson approximation to the level crossing process N as these crossings become increasingly 

rare, i.e. for small p (Recall discussion at the end of Section HI}. Here we give more quantita- 

tive results concerning the actual error committed by the approximation. Let N* be an inho- 

mogeneous Poisson process with intensity p(r) and define the signed difference 

A ~ P{N'{a ,u)> 0 ) - P ( N ( a , u ) >  0). While sharp bounds on the deviation of A from 

zero can be derived for AR a nonstationary Gaussian process, using Theorem 1.1, we will con- 

centrate on the following non-parametric bounds derived in [6]. 

{ E ' { N }  _ e - E { N } } < A < E { ~ + I } _ e _ E { N }  (81) 
max I + E  {N } ' - -  - -  

Where, for compactness, N is shorthand for N(cr, u ). Note that all terms in the left and right 
1 

hand inequalities of (81) depend on only the first moment of N(a,u ), except for E {-~-~ }. 

This latter term can be upper bounded, however 
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1 G {N } (82) 
s {W-Vi } -- ~+ C{N} 

G { N }  ~ var{N} 1 (83) 
E 2 i N }  + E{N----~ 

The mean and variance of N(#,u ) can be computed from the seeond and fourth order distribu- 

tions of X if Leadbetters conditions are satisfied [11]. Thus if the variance of N(a,u) 
increases only as rapidly as o (E Z{N(a,u)}) the bounds (81) and (82) guarantee that the error 

incurred in the Poisson approximation is near zero whenever exp{-E {N(a,u)}} approaches 

either I or 0. In any case, for these extremal conditions the left hand inequality in {81) implies 

A is lower bounded by a small magnitude negative quantity, i.e. the Poisson model conserves 

the inequality (78) to a good approximation. 

The application of the Poisson model to the level crossing process N gives the following 

simple relations for the probability of large error and the bound on the variance (78) 

P, = 1 - e- E'iN(Du)}F2(O) (84) 

Dx 

var{D } <_ atoe(l-Pe) + f r~ b(r)dr (I- e -B{N(D'I})+D~o (85) 
-D. 

In (85) we have defined the normalized intensity 

Ds 

b(r] ~= PO')/ f t'(" )d,~ 
-Dx 

(86) 

and a is given by 

Here 

[ 1 
[ ~3 {N(DM) } "I~ ~{-N(-~M)-}" (I-F2(0))]  

c~ 2 .1 e -E{N(Dx)} 1 -  e -E°(N(DH)} 

DN D~ 

E~ {N(DM)} = f vo (~)d~, E {~(Du)}  = f p(~la~ 
-D~ -D~ 

(sz) 

are the conditional mean of N(D m) given AR (-D,~) > 0 and the unconditional mean o[ 

N (D M ) respectively. 

The Poisson approximation (85) indicates that, as the intensity of peak ambiguities, p, 

increases, one must discount the small error variance, a~¢ by Pe, adding an increasingly large 

quantity: the mean-square deviation of the locations of peak ambiguities overtime. In the fol- 

lowing section we will explicitly calculate the intensities in (87) under a Gaussian assumption, 
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and analyze the resulting form of the Poisson variance approximation for simple bandpass sig- 

nals. 

V. NUMERICAL COMPARISONS 

The intensity functions Pc and p in (87) can be derived under the following assumptions: 

a). /~ 1~ is a Gaussian random process with non-stationary mean and differentiable covariance 

function; and b). maz f112{u ) --~/~ 12(0). The Gaussian model is reasonable for large BT [5]. 
e F L,~I 

Since the exceedance of/~,2(0) by /~12(r} for some r e  [-DM,DM]-[-6,6I does not necessarily 

imply a peak ambignity, assumption b). is pessimistic at worst. 

Using the assumptions a). and b). the results are 

oo 

pc(T) ---- K!  f y (I)(a0Y-~t-ai) ¢(y-[-a2)dY (88) 
0 

p(T} = K 2 ¢(a3)[¢(a4) + a4¢(a4)  ] 

IIere K i,K~,ao . . . .  , a 4 are functions of r given [fil- The functions 4) and ¢ are the standard 

Gaussian distribution and density functions respectively. 

In [6] a simple explicit forms for (88), (84) and (85) wa~ derived for flat Iowpass signal and 

noise spectra. For these simple bandpass spectra the small error region over which the CRLB 

is accurate [-~,5] is given by ~----1] 4 / 0 .  Here we only discuss numerical results for flat 

bandpass spectra. In Fig. 1 the intensity surface, is displayed for a bandpass signal at center 

frequency fo  ~-- 500Hz, with bandwidth B ~- 200Hz, and T ~-- 8.0sees. Here the time win- 

dow extends from the first zero crossing of the auto-correlation function of the signal at 

6 ----- 1 / 4 / o ,  to approximately the fifth sidelobe away from the origin. In Fig. 1 the location of 

the global maximum of the autocorrelation is just beyond the rightmost point on the t axis. A 

distinctive feature of Fig. 1 is the SNR difference between the point, SNR I where a rapid rise 

in the intensity of ambignity first begins, i.e. in the region of the first sidelobe, and the point, 

SNR 2 where a uniform increase of the ambiguity, over time, is in evidence. This implies the 

existence of at least three separate SNR thresholds which is consistent with studies of the Ziv- 

Zakai-Lower-Bound (ZZLB) for this problem [20 I. 

We numerically evaluated the integrals in (88) and (85) for a flat bandp~s signal with 

center frequency to bandwidth ratio fo/B----lO, and BDM-----25. The results are plotted in 

Figs. 2 and 3, along with plots of the CRLB and ZZLB, for BT-----200 and BT~--80 respec- 

tively. The Poisson approximation behaves similarly to the ZZLB in Fig. 2, both indicating 

the presence of three distinct SNR thresholds {e.g. SNRtl ,  SNRt2 and SNRt3 in Fig. 2) of per- 

formance. For SNR < S N R t l  the Poisson approximation becomes a much better predictor of 

variance than the CRLB. [SNR t 2, SNRt l] is a region where, with high probability, large errors 

are concentrated in the interval D E [-Te ,T¢ ], the small error region for the envelope of the 
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bandpass signal. When SNR <SNRt2 the error approaches that  of a uniform random variable 

over [-D M ,DM]: the estimate D is useless. For B T = 8 0 ,  in Fig. 3 the Poisson approximation 

has moved away from the ZZLB relative to the ease of BT~-200. Indeed it appears to hit an 

asymptote with increasing SNR, i.e. the eorrelator commits large errors even as the SNR 

approaches infinity. This behavior of the Poisson approximation corroborates the reported 

sub-optimality of the eorrelator estimate for small BT [7]. 

Finally the results of a simulation of eorrelator performance for a bandpass signal spec- 

trum appears in Fig. 4. The relevant parameters are: f o/B ----- 2.5, BT = 50 and BD M = 8 

and the vertical dimension of the " ~ "  characters indicate approximate 9 5 ~  confidence interval 

for the actual variance {obtained by simulation). Plotted for comparison are the CRLB, ZZLB 

and Poisson Approximation. The combination of the overly optimistic ZZLB and the overly 

pessimistic Poisson approximation jointly specify an admissible region of estimator variance. 

However, on the average, below a SNR of 5dB the Poisson approximation is significantly closer 

to the true variance than the ZZLB. Note in particular that  at a SNR of -SdB the Poisson 

approximation is within the 95% confidence interval while the ZZLB is more than 5dB below 

this interval. 

VI. CONCLUSION 

Two results were derived in the context of level crossing probabilities. First,  a representa- 

tion of the probability of getting one or more upcrossings in an interval by a general random 

process was presented. This representation in effect isolates bhe portion of the upcrossing pro- 

bability due to the intensity function of the upcrossings, from a correction term, which charac- 

terizes the deviation of the upcrossing probability from an associated inhomogeneous Poisson 

probability. The correction term depends on the degree to which the upcrossings can be 

modeled as an independent increment process. By identifying conditions which asymptotically 

force the correction term to zero a second result was made possible: that  a certain time normal- 

ized version of tile upcrossing process can be made to converge in distribution to the inhomo- 

geneous Poisson law. 

Future investigations of the of the correction term, Q (t) ,  associated with the probability 

representation of Theorem 1.1, should lead to useful expressions for the approximation error 

incurred by using such simple first moment approximations. For the asymptotic result, Thm. 

2.1, the asymptotic conditions rarefaction and mixing play an important role. In particular, 

rarefaction could be replaced by conditions involving probability statements about the max- 

imum process over the interval I ,  ~ a f  X(r),  analogous to [12]. For specific probability models 

of the random process X ( t )  of interest, e.g. Gauss-Markov or Rayleigh as in [12], one would 

expect the replacement condition to be more easily verified, than the conditions used here. 

An application of the Poisson model to a problem in underwater acoustics, time delay esti- 

mation, yielded an approximation to the global variance of the estimate. Numerical results 

indicate the fidelity and conservativeness of this performance approximation relative to the 

Ziv-Zakai lower bound for bandpass spectra. Yet to be investigated is the feasibility of Poisson 
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approximations to large error in multiparameter estimation problems~ In these situations the 

maximum likelihood procedure involves a search for a global maximum over an ambiguity sur- 

face. Thus the concept of level crossing becomes more difficult due to the lack of inherent 

directionality over the parameter space {points in the space are not well ordered}. While this 

would not preclude the application of a Poisson spatial model for the locations of peak ambi- 

guity, bounds on the approximation error, analogous to the one dimensional case, are not as 

simple to derive. 
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FIG. 1 
Intensity surface, X, for bandpass signal over time and SNR. 
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FIG. 2 
Comparison of Poisson approximation with ZZLB and CRLB for bandpass signal 
spectrum, f o / B  = 10, ED m = 25 and B T  = 200. Variance, vat(D}, normal- 
ized with respect to standard uniform distribution. 
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FIG. 3 
Comparison of Poisson approximation with ZZLB and CRLB for bandpass signal 
spectrum, f , / B  = 10, BD m = 25 and B T  = 80. 
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FIG. 4 
Comparison of Poisson approximation with ZZLB and results of simulation, ¢ ,  
for f,,/B = 2.5, BD,,, = 8 and BT : 50. 


