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Abstract 

With the rising number of modulation types used in multi-user 
and multi-service digital communication systems, the need to find 
efficient methods for their discrimination in the presence of noise 
has become increasingly important. Here, we present a new ap- 
proach based on a recently developed pattern recognition method 
previously applied to word spotting problems in binary images [ 11. 
In this approach, a large number of spatial moments are arranged 
in a symmetric positive definite matrix for which eigendecompo- 
sition and noise subspace processing methods can be applied. The 
resultant denoised moment matrix has entries which are used in 
place of the raw moments for improved pattern classification. In 
this paper, we generalize the moment matrix technique to grey 
scale images and apply the technique to discrimination between 
M-ary PSK and QAM constellations in signal space. Invariance 
to unknown phase angle and signal amplitude is achieved by rep- 
resenting the in-phase and quadrature components of the signal in 
the complex plane, and computing joint moments of normalized 
magnitude and phase components. 

1. INTRODUCTION 

Automated detection and classification of modulation type is an 
important problem arising in non-cooperative communications en- 
vironments, surveillance, and multi-user networks. A wide variety 
of techniques have been proposed for constant and non-constant 
envelope signals such as M-ary PSK, FSK and QAM including: 
zero crossing analysis [3], likelihood ratio approximation [7, 61, 
wavelet expansions [5], higher order correlations [2], and moment 
methods [SI. 

This paper describes an alternative moment-based method 
which generalizes the approach of [SI, that was based solely on the 
eighth order phase moment, in two ways: 1) we use linear com- 
binations of a large number of different orders (more than 100) of 
joint phase and magnitude moments, 2) we give a denoising pro- 
cedure for extracting signal-alone joint moments from noise con- 
taiminated measurements. Specifically, we propose a method for 
classification of modulation types for M-ary PSK, FSK and QAM 
using eigendecompositions of moment matrices, developed in [I], 
which are highly resistant to additive noise, unknown phase angle 
and unknown magnitude. 

The paper is organized as follows. First, we introduce a set of 
rotation and scale moment invariants by mapping signal space to a 
polar representation of the IQ plane centered at the origin. After 
giving a brief review of spatial power moments and power moment 
matrices [ 11, we demonstrate how to process noise contaminated 
bandpass signals to effectively separate signal components from 
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noise background via eigendecomposition. This requires extend- 
ing the power moment matrix introduced in [ 11 to gray scale im- 
ages, which is achieved by representing the image by three coordi- 
nates (2 spatial and one grey scale) and computing a larger matrix 
of higher order pairwise correlations. To illustrate the methodol- 
ogy, we consider discrimination of noise contaminated 4-ary PSK 
and QAM signal constellations with different noise variances. 

2. MOMENT INVARIANTS IN THE PLANE 

Similar to the definition of moments from classical mechanics, the 
( p  + q) th  order spatial moment of an image irradiance destribution 
f (x, y) is defined by 

mpiq = 1 lI xpyq f (2, y) dxdy 
Li [4] showed that certain combinations of these moments are in- 
variant with respect to translation, scale and rotation. These in- 
variances are, however, ill-suited for the modulation discrimina- 
tion problem. For example, in case of 4-PSR, there are four points 
symmetrically centered at the origin of the coordinates on the com- 
plex plane whose locations are determined by Aejek, i = 1,2 ,3 ,4 .  
Changes of A and/or 0 result in changes of the magnitude and/or 
rotation of the points. Therefore, invariance under translation is 
not useful. On the other hand, Li's scale invariance is only valid 
for changes of the image size provided the image contains a finite 
area. In case of modulation patterns, the images consist of points 
and have , therefore, an area of zero. Thus this invariance is not 
useful either. Finally, the classical moment invariants do not pro- 
vide invariance with respect to changes of the magnitude in polar 
coordinates. In the following we will derive a new set of moment 
invariants that will satisfy both of the invariance requirements. 

Because of the special structure of IQ plane containing in-phase 
and quadrature components, we represent the measurements in po- 
lar coordinates of the complex plane. Define moments of phase- 
magnitude polar representation of the IQ image 

n 

= C(r(/ro)PeJ"q 
i = O  

where v0 = vi is the arithmetic mean of the magnitudes. 
Dividing r by ro provides the invariance under magnitude changes 
as the following shows: 

n 

m:?, = E [ ( T ' / r b ) P  ej'q] = C(ri/rh)Pejezg 
i=O 
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where r: = cri. Therefore, rh results in: 

r ; =  --r+--cri=cro 1 "  1 ,  

r = O  n .  r = O  

implying that m:(O = m:$. In order to make these moments 
rotation invariant, we use the magnitude squared of the complex 
moments: 

3. SPATIAL POWER MOMENTS 

Let f = f(g) be the density function of a random point in an n 
dimensional space R". It is well known that f(:) can be specified 
by its set of higher order moments of mixed orders. Define the gray 
scale IQ plane representation by the three variables(: = ( r ,  6, z ) ) ,  
where r,6 are polar coordinates of each pixel and z is the gray 
level of this pixel. Observe that this involves an extra variable z 
as compared to the case of binary images treated in [ 11. We define 
spatial power moments (PM) ( p ,  q, s) of (integer) order p ,  q ,  s 
of positive integer random variables T ,  8 and z as: 

It is well known that the set of L3 power moments 
{pr ,O ( p ,  q ,  s)}:,~,~=~ completely characterizes the density in the 
limit as L + CO. However, in many applications the pairwise 
higher order moments of the form E[rp@], E[f!Iqzs] and E[rPzS] 
are sufficient to perform pattern discrimination whereby a signifi- 
cant part of the time consuming computation can be reduced. 

4. POSITIVE DEFINITE POWER MOMENT MATRICES 

The (3L + 1) x (3L + 1) power moment matrix (PMM) 
for a three dimensional random vector ( T ,  8 ,  z )  that con- 
tains only the pairwise higher order moments, as intro- 
duced in the last section, is defined as the expectation over 
T ,  8,  z of the dyadic outer product of m* where = 
[I,T,T', . . . , T ~ ,  ej', ej", . . ., ejLO, z ,  2,.  ..,zLIT, or more 
explicitly it is the expectation over 

1 T ... T~ e- jO . . .  e-jLO z . . .  z L  
r T~ ... rL+l r e - j e  . . .  re- iLe rz  . . .  rzL 

. .  . .  . . .  . - .  _ .  . . . .  . . . .  - . .  
T L  TL+l . . .  T Z L  TLe-j O.. .TLe-jLO T L %  ... T L Z L  

z T Z  . . .  T L Z  ze-i' . . .  ze- jL0  2 2  ... zL+1 
. .  . .  . . .  . . .  e . .  - .  . . . .  . . .  

zL  T Z ~  . . . T ~ z ' ~  z L e - j O . .  .zLe-jLO zL+l . .  . z Z L  

This moment matrix is obviously non-negative definite. How- 
ever, the moment matrix we will be using consists of the magni- 
tude squared of the moments and is created by an element by ele- 
ment multiplication of this matrix with its conjugate. It can easily 
be shown that this product is also non-negative definite which is a 
prerequisite for our following considerations. 

5. DENOISING VIA EIGENDECOMPOSITION 

Let M, M, , and M, denote the signal plus noise, signal alone, and 
noise alone moment matrices). Using the mixture model gives: 

M = PM, + (1 - p ) ~ ,  

Now let C be the known Cholesky factor of the positive deknite 
noise-alone moment matrixM,, i.e. M, = CCT, and define M = 
C - l M C T .  Then we have: 

M = pMs + (1 - P)I (1) 

where I is the (3L + 1) x (3L + 1) identity matrix, and M, = 
C-'MCdT is the whitened moment matrix of the signal pattern. 
Consider the eigendecomposition: 

where ya and & are eigenvalues (rank ordered) and eigenvectors. 
Then the eigenvectors of M and Ms are identical, and from (1) we 
have 

a 20+1 

i=l i=q+l  

where are the non-zero eigenvalues of MsL Thus only 
the q largest eigenvalues yi = 0r;B + (1 - p) of M are related 
to the signal pattern and the rest are pure noise eigenvalues { (1 - 
p) . . . , (1 - p)}. In particular, Ms can be exactly recovered from 
the eigendecomposition of M via 

Since the (1 , l )  element of M, is equal to 1, and grC& = g:ia = 
Eil, 

6. SCALING THE POWER MOMENT MATRIX 

When a variate, e.g. r ,  is contained in the interval [r,in, T,,,], we 
can improve the conditioning of C by centering and scaling r into 
the interval [-1,1]. This is done by making the transformation r" = 
r-. The same transformation must be accomplished 
for 6 and z in order to reach the best stability behavior. 

3286 

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 12, 2009 at 11:43 from IEEE Xplore.  Restrictions apply.



7. EXAMPLES 

In this section we will illustrate the moment matrix discrimination 
technique for two different noise contaminated digital modulation 
types: 4-PSK and 4-QAh4 with similar signal constellations. The 
IQ detector block diagram is shown in Fig. 1. A signal is carrier 
modulated at carrier frequency fo to produce a transmitted signal 
s ( t ) .  The transmitted signal passes through an ideal bandpass ad- 
ditive Gaussian noise channel producing a received bandpass sig- 
nal ~ ( t )  = s ( t )  + n(t) .  The in phase (wz) and quadrature (WQ) 

baseband components are detected separately by two orthogonal 
frequency mixers, each centered at frequency w, = 27rf0, each 
followed by an integrator. These components are each periodi- 
cally sampled to produce the sequence of complex measurements 
y ~ ( t i )  + j ~ ~ ( t ; ) ,  i = 1 , .  . . , N, which can be represented as a 
point cloud of N points in the complex (IQ) plane, inhabited by 
the complex signal constellation. For the experiments reported 
here N = 25. It is in the IQ plane that we implement the moment 
matrix techniques described in the previous sections. Note that the 
channel noise produces a spatial blurring of the signal constella- 
tion in the IQ plane, i.e. the noise in the IQ plane is not spatially 
homogeneous and is signal dependent. For the experiments be- 
low we fixed an assumed signal modulation (4-PSK at unit power) 
and noise variance (a2 = 25) and generated the Cholesky factors 
of the associated moment matrix. This Cholesky factor was then 
used to “whiten” the empirically calculated moment matrices for 
each of the measured signal types. Note that in each of the experi- 
ments described below this whitening is mismatched to the actual 
noise distribution in the IQ plane. Nonetheless, we will show that 
an improvement in modulation discrimination results even with a 
moderate amount of mismatch. 

COS(W$) 

w(l’ i 

Figure 1: Coherent IQ receiver for bandpass carrier modulated sig- 
nal w(t) at carrier frequency w, = 27r fa. 

Figures 2 and 3 illustrate the IQ images and moment matrices for 
the cases that s ( t )  is a 4-PSK signal with noise power of a2 = 5 , 
while Figs. 4 and 5 are for 4-QAM with U’ = 5) .  The first column 
of each of these figures are, from top to bottom: the signal alone 
represented in the IQ plane, the unwhitened power moment matrix 
of the signal, the whitened power moment matrix of the signal, and 
the assumed spatial distribution of the noisy measurements used to 
calculate the Cholesky factor of the moment matrix. The second 
column of these figures are, from top to bottom: the noise contam- 
inated signal in the IQ plane, the unwhitened moment matrix es- 
timated from the N noisy measurements, the estimated whitened 
moment matrix, and the resultant cleaned power moment matrix 

By comparing the signal alone unwhitened moment matrix to 
that of the noise contaminated signal it is evident that the raw mo- 
ments are quite sensitive to additive noise (compare left and right 
panels in the second rows of Figs. 2-5). On the other hand, by 
comparing the left and right panels in each of third rows of the 
figures, it is evident that the prewhitened moment matrices are 
much less sensitive to noise. This can be explained by the fact 
that, as the variables a: = (r,  8, z )  are prenormalized to the in- 
terval [-1,1], the higher order moments E[rPB‘], E[BPzS]  and 
E[rPzs] are exponentially decreasing to zero as p, q, s become 
large. The prewhitening of the moment matrix via Cholesky de- 
composition rescales all of these moments to produce entries of 
comparable magnitudes and thus all high and low order moments 
are put on equal footing. This matrix rescaling can be interpreted 
as a generalization of variance normalization, such as those used to 
produce correlation coefficients and spectral coherence functions, 
which have been widely used to study dependencies in two or more 
random variables of greatly different average magnitudes. 

It is noteworthy that even with noise mismatch the whitened 
and cleaned moment matrices provide a stable representation of 
any specified noise’contaminated modulation (note similarity of 
3rd rows of Figs. 2 and 3 for 4-PSK with two different received 
noise powers) while they provide a good degree of discrimination 
power between different modulation formats (note dissimilarity of 
3rd rows of Figs. 2 and 4). Note also that, by construction, the 
moment representations are invariant to rotation and scale of the 
signal constellation due to unknown carrier phase angle or signal 
amplitude. Figure 5 shows the moment matrices for the case of 
4-QAM where the exact constellation noise distribution, shown 
in the lower left hand panel, is used to construct the Cholesky 
decomposition. We are currently running extensive Monte-Carlo 
simulations to quantify the improved discrimination probabilities 
suggested by the experiments reported here. 
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~i~~~~ 2: First row: signal alone (left) and noise 
IQ images for 4-PSK, second row: unwhtend PMM~,  third row: 

distributuion ofthe noise(left) 
and the denoised. whitened PMM. 

Figure 4: First row: signal alone (left) and noise contaminated IQ 
images for 4-QAM, second row: unwhitened PMMs, third row: 
whitened PMMs, fourth row: spatial distributuion of the noise(1eft) 
and the denoised, whitened PMM. Note that the wrong cholesky 

P M M ~ ,  fourth row: 

factor is used, i.e. the cholesky factor corresponding to 4-PSK. 
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