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ABSTRACT

We give a method for determining a set of images
which are consistent with measured projections data and
error bounds on the projections noise� The error bounds
can account for both statistical noise uncertainty and
model uncertainty� e�g� due to a mismodeled or un	
calibrated system matrix� If one knows the statistical
distribution of the projections errors� then one can se	
lect the error bounds to give a consistency set which is
a 
� � ��� con
dence region on the true image given
the measured data� This region is a �set estimate� of
the image which can be used to study con
dence levels
of popular image reconstructions such as 
ltered back
projection� weighted	least	squares� and maximum likeli	
hood� Alternatively� the set estimate can be used as a
feasibility region from which particular image estimates
can be selected based on additional criteria� We pro	
vide some numerical results for parallel ray projection
geometries with Poisson projection statistics�

I� INTRODUCTION

Tomographic reconstruction can be stated in terms of
estimating an image intensity � � IRp from N measure	
ments y � A�� e where A is an N �p tomographic sys	
tem matrix and e represents errors in the linear model
y � A� due to noise or system mismodeling� A point

estimator of � is a point �� � ��
y�� The maximum like	
lihood via EM 
MLEM�� weighted	least squares 
WLS��
algebraic reconstruction technique 
ART�� and 
ltered
back projection 
FBP� are examples of point estimation
strategies� While some of these point estimators may
derived based on some heuristic or statistical optimality
criterion� for a given realization a point estimator does
not provide any information about its statistical con	

dence or about its consistency with properties of the
projection noise distribution� Such properties may be
strongly parametric characterizations� e�g� known Pois	
son or Gaussian noise statistics� or they may be weaker
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non	parametric characterizations� e�g� upper bounds
on the � and � � � quantiles of the noise distribution

� � ��� ���� The quantiles can be used to develop a
con
dence region on the true image given the measured
data set� and they have the advantage of less sensitiv	
ity to the accuracy of the assumed noise model than a
detailed parametric description� Non	parametric char	
acterizations may be especially useful for cases where a
statistical model for noise and modeling errors are dif	

cult to specify� e�g� due to calibration errors� detector
latent response� randoms correction or detector dead	
time�

This paper develops methods to obtain sets of con	
sistent images based on the quantiles of the projection
noise distributions� Using our methodology we can spec	
ify a set estimator which corresponds to a statistical con	

dence region� e�g� a ��� region� for the true image� A
point estimator which is selected from this con
dence
region on the basis of other criteria or other constraints
has the property of being consistent with ��� of the
projection noise variations� We present an ellipsoid par	
allel cuts 
EPC� algorithm for constructing con
dence
regions for PET images� The EPC algorithm acts it	
eratively on each row 
projection� of the system ma	
trix A� The algorithm generates a set of PET images
which is consistent with� i� the measurements� ii� and
upper and lower error bounds� A typical PET system
has a sparse A matrix with a large number of rows� e�g�
� ���� is typical� Due to this structure we can signif	
icantly accelerate the EPC algorithm by performing a
QR decomposition on the A matrix and implementing
the EPC algorithm on the non	zero rows in the upper
triangular system matrix that results from QR� Using
this modi
ed EPC algorithm and a variance stabilizing
transformation on the projections data� we can gener	
ate con
dence regions for PET images� We numerically
implement QR	EPC to generate a consistency set which
corresponds to a ��� con
dence region for a simple PET
phantom� We determine that the MLEM� the minimum
MSE MLEM� and Llacer�s stopped MLEM� all lie within
the ��� con
dence region� We also conclude that the
negative	truncated centroid of the ��� consistency set
is a point estimator whose quality is competitive with
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the 
unregularized� MLEM reconstruction while requir	
ing only a 
nite number 
p� of iterations� Finally we
plot the columns of the ellipsoid concentration matrix
as a graphical method to investigate the structure of
the high dimensional EPC con
dence region�

II� EPC ALGORITHM FOR TOMOGRAPHY

Set estimation has a long history in systems identi
	
cation ��� ��� robust estimation and prediction ���� state
estimation and 
ltering ���� and signal processing ����
The general framework for bounded error estimation is
the following ���� Assume a nominal linear measurement
model�

y
k� � �T 
k��� k � �� ���� N 
��

where y
k� is the model output� �T 
k� is a vector spe	
ci
c to the system� e�g� the k	th row of the tomographic
system matrix A� � is the parameter vector to be esti	
mated� e�g� �� and k is the measurement index� Let the
noisy 
actual� measurements be y
k�� k � �� ���� N � then
the measurement error is

e
k� � y
k� � y
k�� k � �� ���� N 
��

If the error e
k�
is bounded within �emin
k�� emax
k��� k � �� ���� N � the
set of all values of � consistent with the actual measure	
ments is given by the intersection of the following N
double	inequalities�

y
k� � emax
k� � �T 
k�� � y
k� � emin
k�� k � �� ���� N

��

Each of the double	inequalities above de
nes a hyperslab
Hk within two parallel hyperplanes in the � space� and
the intersection of these N hyperslabs describes a com	
plicated polytope �� which we call the consistency set�
The Ellipsoid Parallel Cuts 
EPC� algorithm ��� �� 
nds
a sequence of successively smaller ellipsoids fEkgNk��
containing ��

Ek � E
�k��k� �
�
� � 
� � �k�

T���k 
� � �k� � �
�


��

where �k is the centroid and �k is a positive de
nite
concentration matrix de
ning principal and minor axes
of the ellipsoid� At the 
rst iteration of EPC the inter	
section of the hyperplanes de
ned by an initial ellipsoid
and the 
rst inequality 
k � �� in 
�� is found� The min	
imal spanning ellipsoid E� for this intersection is then
determined and the process is repeated for k � �� ���� N �
As long as N � p� after N steps the EPC yields the
minimal volume ellipsoid containing ��
The following form of the EPC algorithm is given in

����
INITIALIZATION� �� � �� � Ip�p� � � ��

FOR k � �� � � �N �

��k �
y
k� � �T 
k��k�� � emax
k�q

�T 
k��k���
k�

��k �
�T 
k��k�� � y
k� � emin
k�q

�T 
k��k���
k�

IF ��k � � or ��k � �� 
null intersection�
THEN ignore y
k�� or adjust emin
k�� emax
k� and
restart EPC�
ELSE ��k � max
��k � �� and ��k � max
��k � ��
IF ��k �

�

k � �	p
THEN Ek � Ek�� ELSE

�k � �k�� �
�k
�

�
k � ��k �

�
q
�T 
k��k���
k�

�k���
k�

�k � 
k
�k�� � �k

�T 
k��k���
k�
�k���
k��

T 
k��k���

where


k �
p�

p� � �

�� 
��k �

� � 
��k �
� � �k	p

�
�

�k �
�

p� �

p�

�


��k � ��k �
�

� � ��k �

�

k � �k	����

�k �
q
�
�� 
��k �

��
� � 
��k �
�� � p�

��k �

� � 
��k �
������

COMPUTATIONAL CONSIDERATIONS

The EPC algorithm requires on the order of �p�

�ops column of A for the centroid update �k�� � �k�
and on the order of �p� �ops column for the ellipsoid
matrix update �k��� �k� Adding up all �oating point
operations we come up with a 
gure of N 
�p����p����
�ops to complete all N iterations of EPC� This can be
reduced to N 
�p� � ��p � ��� �ops if one exploits the
symmetry property of �k�

The principal bottleneck in EPC is the sequence of
N matrix	vector multiplies of the form �k�
k�� k �
�� � � � � N � Since N is usually much larger than p� this
motivates the idea of performing a QR decomposition
A � QR of A which puts A in an upper triangular form
R� This decomposition has the matrix form�

�
����� A

�
����� �

�
����� Q

�
�����

�
�������

� � �

� R

� �
� � �

� � �
� � �

�
�������
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where Q is an N �N orthogonal matrix� i�e� QTQ � I�
Q can be obtained via a composition of Householder
re�ections of the columns of A ���� By applying QT to
both sides of the measurement equation y � A� � e we
obtain�

!y � QTy � QTA� �QT e�

or equivalently�	
!y
p

!y
N�p



�

�
R
O

�
� �

�
!ep

!eN�p

�

Notice that QT rotates components of the noise e ly	
ing outside the range space of A into the lower N � p
elements of QT e� hence reducing the number of non	zero
rows �T

k
from N to p� Discarding the last N � p zero

rows of the above measurement equation� we obtain the
p� p system�

!y
p
�

�
R
O

�
� !ep

Thus the QR	EPC algorithm converges in p steps in	
stead of N steps to the 
nal ellipsoid� One must weigh
this savings against the cost of additional o"ine prepro	
cessing 
A � QR� and online processing 
y � QTy�

emin � QT emin� and emax � QT emax�� The cost
of o"ine computation of Q and R for a given A is
�p�
N � p	�� �ops if Householder re�ections are used�
This may be signi
cantly reduced by using Given�s ro	
tations instead of Householder re�ections if the A ma	
trix is very sparse� In the Householder case� the on	
line preprocessing cost is 
�Np � �p�� �ops if symmet	
ric noise bounds are used 
emin � emax�� We con	
clude that the total online cost of QR	EPC becomes

�p� � ��p� � ��p � �Np� �ops� Since the matrix Q is
needed� there is also an increase in the memory stor	
age requirements for QR	EPC as opposed to regular
EPC� Storage of the matrix Q requires O
Np� Bytes
if Householder re�ections are used� whereas it requires
only O
�Np� bytes if Given�s rotations are used� where
� � ��� �� is the sparsity factor of A�
For comparison the general 
no exploitation of sparse

A� MLEM algorithm needs N 
�p� � �p� �ops per iter	
ation and may in some cases require several thousand
iterations to converge� If N is twice as large p� the time
to compute all p iterations of QR	EPC will be compara	
ble to the time to compute a single iteration of general
MLEM�

CONFIDENCE REGIONS

When emax and emin are selected to correspond to
speci
c quantiles of the projection noise distribution
the consistency set can often be manipulated to yield

a 
�� ��� con
dence region for �� If a point estimator
�� is outside of the consistency set the Euclidean distance
between �� and the set Ep is simply�


 � 
�� � �p�
T���p 
�� � �p� � � 
��

The distance 
 � � is called the EPC distance� which is
a weighted distance between �� and the centroid �p of

Ep where the weight matrix is equal to ���p � When the
EPC algorithm is implemented on the noisy projections
data� this distance measure can be used as a measure
of consistency of an image reconstruction �� with a ���
con
dence region for �� For example� it could be used
as a stopping rule for ML	EM or other iterative recon	
strution algorithm much in the same manner as the H
function of Llacer ���� Alternatively� one can run the
EPC algorithm on the noiseless data y to obtain an el	
lipsoidal region� called the centered consistency set� cen	
tered at the true �� This region indicates the natural
variations which can be expected of a good unbiased
image reconstruction which are induced by variations in
the projection noise�

III�NUMERICAL STUDIES

A phantom with intensity � sampled over �� � ��
pixels 
Fig� �� was projected onto �� detector bins
at �� equally distributed angles using strip integrals
to form ���� mean projections A�� Using these mean
projections as Poisson rates� the projection data was
generated as ���� independent Poisson random vari	
ables� Using the square root variance stabilizing trans	
formation on the projections data y it can be shown

that �
py � pA�� is approximately distributed as a
vector of i�i�d� N 
�� �� 
standard normal� random
variables� Let Z� denote the �� quantile of the
N 
�� �� distribution� Using this fact� and assuming
that

p
yi � �

�Z���������N � a � � � con
dence rect	

angle for A� is obtained as �
p

i����min
i�� �max
i��

where �min
i� �

p

yi � �
�Z���������N

��
and �max
i� �
p

yi �
�
�Z���������N

��
� From this we obtain a 
�����

con
dence region for ��

���� �
�
� � emin � y � A� � emax

�

��

where

emin
def
� y � �

max

emax
def
� y � �

min
�

This is in a form suitable for application of the QR	EPC
algorithm�

We implemented the QR	EPC algorithm for a ���
con
dence region by setting � � � � ���� in 
��� The
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algorithm was initialized with a spheroid E� of radius
��	� The MLEM algorithm was also implemented� with	
out regularization or smoothing� to produce a sequence
��
i
of image estimates converging to the ML estimate�

The EPC distance 
��
i��p�T���p 
��

i��p�� the Euclidean
distance MSE � 
��

i � �o�
T 
��

i � �o�� and Llacer�s H	
distance for feasible images ��� have been plotted as a
function of MLEM iteration i in Figs� �� � and � for ���
million counts� Note that the EPC curve is monotone
decreasing from iteration � to iteration ����� Since the
EPC curve falls below the threshold of ��� at iteration ��
the MLEM iterates are within the ��� con
dence region
thereafter� This monotonicity indicates that MLEM is
converging into the vicinity of the centroid image� The
MSE curve decreases to a minimum at the ��	st itera	
tion� at which point the MLEM iterate is closest to the
phantom in Euclidean distance� and sharply increases
thereafter� The H curve decreases to a minimum at
the ��	th iteration� at which point the likelihood that
a Poisson mechanism could have produced the projec	
tions data is maximum� and increases in a jagged man	
ner thereafter� If adopted as stopping rules� Llacer�s
H function would stipulate that the MLEM be stopped
at iteration �� while the EPC distance function would
stipulate that MLEM be iterated beyond ����� For ���
million counts the Euclidean distance and Llacer�s H
have been plotted in Figs �	�� The minima of these two
functions are less pronounced than in the lower count
regime and they occur at a larger iteration index� As
in the ��� million count case� the behavior of the EPC
distance is monotone decreasing and the plot has been
omitted�

In Figures � and � minimum MSE� Llacer�s stopped
MLEM� 
��� iteration� MLEM� and EPC centroid im	
ages are displayed for the cases of ��� and ��� million
counts� respectively� A non	negativity constraint was
imposed on the centroid images by truncating negative
values to zero� Note that the visual quality of the con	
strained EPC centroid image is comparable to that of
MLEM� Both the EPC and the MLEM algorithms were
run on a Stardent ���� machine� MLEM required ��
mins� of CPU time for ���� iterations while QR	EPC
required � mins� of CPU time� including the setup time
for rotating the vectors y� emax� and emin� to run�

The concentration matrix �p characterizes the cou	
pling among the pixels in the ��� con
dence region in	
duced by the shape of the 
nal ellipsoid� The coupling
between a particular pixel and the rest of the image pix	
els is indicated by a column of �p and can be represented
as a coupling map shown in Fig� � for � representative
pixels in the phantom image� These pixels have been
selected as the center points of the three hot spots in

the phantom image and are the bright pixel in each of
the three coupling images in Fig� �� The brightness of
this pixel is the variance� i�e� the extent of the con
	
dence interval� in that pixel�s intensity� The brightness
of other pixels in the parameter coupling maps repre	
sent the degree to which the bright pixel is coupled to
the other pixels through the shape of the consistency
set� For example� a delta function in any of these pa	
rameter coupling maps would indicate that the bright
pixel varies independently of the other pixels within the
��� con
dence region�
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Figure �� Phantom Image
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Figure �� Llacer�s H Curve for ���M Counts
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Figure �� Min MSE� Llacer stopped MLEM� unstopped MLEM� constrained EPC centroid� for ���M counts

Figure �� Min MSE� Llacer stopped MLEM� unstopped MLEM� constrained EPC centroid� for ���M counts

Figure �� Coupling image for various pixels
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