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ABSTRACT 

In this paper we develop an adaptive beamsummer for di- 
rection of arrival (DOA) estimation of slow fading Raleigh 
signals, using a new design approach, termed "Adaptive 
Detection/Estimation for specific Tasks" (ADEPT). For 
DOA estimation, the ADEPT method yields a weight 
adaptation criterion which is optimized for those weights 
that minimize the Cramer-Rao (CR) lower bound on 
achievable mean-square-error of any unbiased DOA esti- 
mator constructed on the beamsummer outputs. Simu- 
lation results are provided which show that the ADEPT 
DOA beamsummer yields DOA estimates whose mean- 
squared error (MSE) approaches that of the more complex 
maximum likelihood implementation. 

1. PROBLEM STATEMENT 

Figure 1 shows an m-element linear beamsumming ar- 
ray on which impinge p signals arriving from directions 
81,. . . ,e,. At the k-th time instant a snapshot xk = 
[E;", . . . , Y;lT of the m-sensors is acquired, k = 1 , .  . . , n. 
We assume the following model for slow Rayleigh fading [l] 
in the received signals: for each signal the amplitudes are 
perfectly coherent over the array for any particular s n a p  
shot but vary randomly for different snapshots. In addition 
we assume that the ambient noise Lk = [ N f ,  . . . , N i l T  is 
spatially incoherent and temporally uncorrelated. Under 
the above assumptions we have the model for the beam- 
summer output xk: 

where = [SI,. . . , sPlT is a vector of complex signal ampli- 
tudes, and V is an m x p matrix of st.eering vectors. With 
this model the mean and covariance of the k t h  snapshot 
are: 

,uz = E [ x k ]  = - W H V b  

ff, = CO.(.) = - W H V C s V H W + W & v W  (2 )  

where CN = ( ~ $ 1  is the covariance of the array noise 

2. OPTIMAL BEAMSUMMING FOR 
DOA-ESTIMATION 

Here we review the ADEPT-DOA method of optimal 
weight design for DOA estimation using Fisher informa- 
tion and the Cramer-Rao (CR) bound [2]. 
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Figure 1: Beanisummer Model. 

Let 4 be an unknown parameter of interest. For fixed 
beamsummer weights let the N snapshots of the beam- 
summer outputs = [ X I , .  . . , xNIT have joint probability 
density function fr(x; 4 )  parameterized by the unknown 
scalar parameter 4. Define the Fisher information: 

(3) 

Note that the Fisher information is a function of both 4 
and W. Under appropriate regularity conditions, any un- 
biased estimator 6 = $(E) of 4 has variance which satisfies 
the lower bound var[d] 2 $. The methodology of optimal 
design of experiments attempts to maximize the Fisher in- 
formation &'+ = F+(W) over in order to provide data c 
which allows the most accurate parameter estimation per- 
formance. For a single signal, the Fisher information for 
the signal direction of arrival 4 = 0 can be reduced to the 
form [2]: 

where U = DfX, D is the interelement spacing, X is the 
signal wavelengt,h, and 

(5) 
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( 6 )  
21-m-1 

2 B = diag ( 3  

-P V = BE, ( 7 )  

- G = ~57:+1,c7;]hJ: ( 8 )  

I, is the m x ni identity matrix, and 

Note that 82 is monotone in CY:, which is the maximum 
signal variance to noise ratio of the output of the beam- 
summer. The maximum at is achieved by the adapted 
Frost beamsummer [3]. Also, 7: is the maximum squared 
signal mean to noise ratio of the output of the beamsum- 
mer. The maximum 72 is achieved by the adapted Ap- 
plebaum beamsummer [4]. The ADEPT-DOA method for 
beamsumming seeks to choose the weight vector & which 
maximizes the Fisher information. By maximizing Fe(W)  
with respect to we achieve an optimal compromise be- 
tween a: and y: by minimizing the CR bound on unbiased 
DOA estimator variance at  the be_amsummer outputL 

Define the normalized vectors = VJllIfll and = 
- V p / ~ ~ ~ p ~ ~ .  In [2] we show that the optimal weight vector 
that maximizes Fe is given up to a complex scale factor 
by : 

where 

The following interpretations follow directly from these 

The optimal weight vector consists of the sum_of the 
two unity normalized orthogonal components v and 

. It is easily seen that = gives a beamsummer 
which maximizes mean array gain in the direction 
of the signal. On the other hand, = Ep. gives a 
beamsummer which is a "signal nuller" - it mimmizes 
mean array gain in the direction of the signal. 

e For 6: 5 7212, up to an arbitrary scale factor, spt = zp, i.e. the optimal weight vector places 
a null exactly at the signal angle 6. This suggests 
that for this case, the best 6-estimator performance is 
achieved by trying to null out the signal, e.g. by min- 
imizing beamsummer response. On the other hand, 
when the signal energy is concentrated in the sig- 
nal variance (a: >, 72) the Fisher information indi- 
cates that the optimal weights must pass some signal 
energy - adding or subtracting a y  from zp accom- 
plishes this. 

results: 

-P 

KPt given in (12) is uniniplementable since it requires 
knowledge of 8 and the SNR-dependent constant a. We 
develop a direct implementation method in [2] which shows 
that maximization of Fe(VJ) is equivalent to maximization 
of the function FDOA(LV): 

where 

and B1 and B2 are the following m x m complex matrices: 

(21 - m - l ) / 2  
B1 = diagt,,, ,m 

m(m2 - 1)/6 

B2 = diag (&) 
Note that F L I ~ A ( V V )  can be used for weight adaptation 

by substituting sample means and covariances for EN and 
c o v m  and maximizing over &. An iterative algorithm for 
this maximization is given below: 

Eigenmaximization Algorithm 
- 

{ In i t ia l i ze :  W(0) = init. weights, Y = tol, E = 1. - 
while I]@(* + 1) - w(i)ll > Y 
{ 

@(z + 1) = max [Gih;(%(i)) + GzK2(%(i))] 

t = i + l  
e-vector 

1 
- w = cov-+g %(a + 1) 

1 
This algorithm requires finding the square root factors 

COVZ W and cov-2 m, e.g. by Cholesky decomposition, 
and finding the eigenvector ass_ociated with- the largest 
eigenvalue of the matrix G~f i ' l (W)  + G z h i ( E ) .  A steep- 
est descent algorithm can also be derived which reduces 
the computational load but only guarantees convergence 
to a local maximum of FDO 4(w) [5]. A block diagram of 
the DOA-optimal beamsuminer is shown in Figure 2. 

1 1 

3. NULL PICKING FOR D O A  ESTIMATION 

We use a very simple gated null picking method to estimate 
the DOAs from the adaptive weights given by the above 
eigenmaximization algorithm. We begin by computing the 
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Figure 2: DOA-optimal Beamsummer Block Diagram. 

Simulation 7; 

I 60 
I1 6 

discrete fourier transform (DFT) of the adapted DOA- 
optimal weight vector LV, which yields an antenna gain 
pattern for the adapted weights [2,5]. Nulls in this beam- 
pattern represent possible signal DOAs. To determine 
which nulls represent signal DOAs, we begin by imple- 
menting a signal detection-optimal (D-optmal) beamsum- 
ming method which is developed in [2,5], called ADEPT- 
D. The D-optimal beamsummer maximizes the function 
Fn(lV) over the weight vector E: a$ e 

6 .22 radians 
60 .22 radians 

where 

K2(w) = Q ,  

The D-optimal beamsummer is implemented using the pre- 
viously described eigenmaximization algorithm. The re- 
sulting D-optimal weight vector produces peaks in the D- 
optimal antenna gain pattern near the DOAs of the incom- 
ing signals. We search the DOA-optimal beampattern for 
nulls which lie within 1 beamwidth "gates" of these peaks. 
The deepest null within each of these gates is used as a 
DOA estimate. This process is illustrated in Figure 3. 

4. SIMULATION RESULTS 

An i.i.d. Gaussian sequence of zero mean noise variates 
was generated with variance CT; = 1, as was an i.i.d. Gaus- 
sian sequence of signal variates with prescribed mean 
and variance U:. From the signal and noise sequences, 
1000 realizations of groups of 100 snapshots of the output 
of a six element uniform linear array were synthesized. 
For Simulation I, we set 7% = 60 (eq. 9), (YE = 6 (eq. 

WAdptiml Beampattem 1 1  

I 1  
I 1  1 
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Figure 3: DOA Estimation v ia  Gated  Null Picking for 
a Signal Arriving at 0 = .25 Radians. 

Table 1: Simulation Signal Parameters 

11). For simulation I1 we set 78 = 6, a: = 60. A sum- 
mary of the signal paramet,ers used for the simulations 
is given in Table 1. Figure 4 shows a typical realiza- 
tion of adaptive beamsummer beampatterns for Simula- 
tion I and varying numbers of snapshots for the Apple- 
baum and DOA-optimal beamsummers. Also shown are 
the ensemble average beampatterns. The vertical dashed 
line represents the true DOA. Note the sharpness of the 
null in the DOA-optimal beampatterns near the true sig- 
nal DOA. Figures 5-6 show the MSE of the DOA-estimates 
for the Applebaum peak picking and DOA-optimal gated 
null picking estimators. For comparison purposes, a clair- 
voyant maximum-likelihood (ML) DOA estimator was im- 
plemented, operating on the raw array data. This estima- 
tor was implemented by maximizing the array likelihood 
function f(l'Ib, CS, U%,  e )  over assuming that the true 
values for E ~ , C S ,  and 6% are known without error. The 
MSE of DOA estimates obtained using the ML estima- 
tor is included in Figures 5-6. Finally, we plot the min- 
imum beamsummer CR-bound l /mazwFe(LV) on MSE 
for any unbiased estimator. Note that the clairvoyant ML 
MSE falls below the beamsummer CR bound, as expected. 
However, since the ML MSE is only slightly below the CR 
bound, only a small loss in estimator performance is in- 
curred by restricting ourselves to a beamsummer based 
estimator implementation. Also, note that the MSE in 
the DOA-optimal estimates approaches that of the clair- 
voyant ML estimator and the beamsummer CR bound as 
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Figure 4: Typical Beampatterns for a Single Realiza- 
tion. 

the number of snapshots n becomes large. The improved 
estimation performance of the DOA-optimal beamsummer 
over the Applebaum beamsummer can be attributed to the 
DOA-optimal beamsummer’s being based upon minimiz- 
ing the CR bound. 

CONCLUSIONS 

We have introduced a new method of beamformer design, 
(ADEPT), which adapts the beamformer weights to pro- 
vide the minimum CR bound for DOA estimation based 
on the beamsummer outputs. Our simulations show that 
when implemented with a very simple post-beamsumming 
DOA estimation technique, the DOA-optimal beamsum- 
mer approaches the CR bound on MSE for any unbiased 
DOA estimation technique implemented at  the beamsum- 
mer output. In [2,5], we introduce other optimal beam- 
summers designed using the ADEPT method for the pur- 
poses of signal detection and estimation of constant mod- 
ulus signal parameters. More extensive simulation results 
can be found in [5] for multiple signals and wideband 
beamsummer arrays. 

REFERENCES 

[l 1 J. I. Marcum and P. Swerling, “Studies of target detec- 
tion by pulsed radar,” IRE Trans. on Inform. The- 
ory, vol. IT-6, pp. 59-308, April 1960. 

[2 ] A. 0. Hero and R. A. DeLap, “Task specific crite- 
ria for adaptive beamforming with slow fading sig- 
nals,” in Recent Advances rn Array Sngnal Processing, 
S. Haykin, ed., Prentice Hall, (to be published 1994). 

A p p I e ba um 

DOAGpW” 

Ideal ML ... -5 

0 20 40 60 80 1W 
N u A r  of Snqshou 

Figure 5 :  MSE In DOA Estimates: Simulation I. 
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Figure 6: MSE In DOA Estimates: Simulation I1 
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