
Context-Specific Access Control:
Conforming Permissions With User Expectations

Amir Rahmati
University of Michigan

rahmati@umich.edu

Harsha V. Madhyastha
University of Michigan

harshavm@umich.edu

ABSTRACT
Current mobile platforms take an all-or-nothing approach

to assigning permissions to applications. Once a user grants
an application permission to access a particular resource, the
application can use that permission whenever it executes
thereafter. This enables an application to access privacy
sensitive resources even when they are not needed for it to
perform its expected functions.

In this paper, we introduce “Context-Specific Access Con-
trol” (CSAC) as a design approach towards enforcing the
principle of least privilege. CSAC’s goal is to enable a user to
ensure that, at any point in time, an application has access
to those resources which she expects are needed by the ap-
plication component with which she is currently interacting.
We study 100 popular applications from Google Play store
and find that existing applications are amenable to CSAC
as most applications’ use of privacy sensitive resources is
limited to a small number of contexts. Furthermore, via dy-
namic analysis of the 100 applications and a small-scale user
study, we find that CSAC does not prohibitively increase the
number of access control decisions that users need to make.

1 Introduction
Applications running on mobile devices such as smart-

phones, wearables, and tablets can access private informa-
tion from a range of sensors (e.g., GPS, camera, microphone)
and from several sources of user-generated data (e.g., emails,
photos, call history). However, not all applications need ac-
cess to all sources of private information. Therefore, oper-
ating systems (OSes) for mobile platforms enable users to
control an application’s access to these resources.

Recognizing the need to limit the number of access control
decisions that a user needs to make, so as to prevent decision
fatigue [9], mobile OSes do not notify the user every time
an application requests access to a resource. Instead, for ev-
ery resource, OSes require the user to decide only once per
application as to whether to grant the application access to
that resource. In Android, the user makes this decision at
application install time, and in iOS, the user decides whether

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SPSM’15, October 12 2015, Denver, CO, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3819-6/15/10.$15.00
DOI: http://dx.doi.org/10.1145/2808117.2808121

Permission Use
Camera Take picture of individuals

to search for a match in database
Location Record location of suspect sighting
Photos Look up individuals

from previously taken photos
Device identifier Associate purchases with user ID

Table 1: JailBase’s need for various permissions.

to grant an application access to a resource when the appli-
cation attempts to access the resource for the first time.

We observe that this current status quo of access control
on mobile platforms—once an application is granted access
to a resource, it has access to it forever thereafter—violates
the principle of least privilege. Even when applications have
valid reasons for using privacy sensitive resources, they sel-
dom need to have constant access to it. Since much of the
private data available on mobile devices change over time
(e.g., location, video, stored photos), it is necessary to not
only limit which resources an application can access, but
also when it has access to those resources.

Mobile environments are especially well-suited for imple-
menting finer-grained access control. Unlike traditional desk-
top environments, where multiple applications are concur-
rently active and in view, user interactions in mobile envi-
ronments typically focus on a single active application and
interaction with background applications are limited to noti-
fications and alerts. Furthermore, each mobile application is
intrinsically divided into isolated components using Activity
in Android and UIViewController in iOS. Each application
can have at most one Activity/UIVuewController active at
any given time.

As a case study, consider the JailBase app. JailBase, one
of the top news applications in Google Play store, allows
users to search through public arrest records. To implement
its functionalities, JailBase requires use of camera and access
to location, photos, and device identifier. Table 1 describes
how each of these permissions are legitimately used by the
application.

While a user has a legitimate reason for allowing Jail-
Base to access each of these resources, the all-or-nothing
approach of current permission systems provides no mean-
ingful privacy assurances if the application either mistak-
enly or intentionally misuses its permissions.1 For example,
while the user is searching for information, the application
can capture video without his knowledge; or, it can continu-
ously track the user’s location and transmit data to a server

1We are using JailBase as a potential example and are not
implying that it is misusing user data in practice.

1

Home Search Notifications Arrests Face Recog. Gallery Settings Purchase Favorite Background

Figure 1: Different contexts of the JailBase application.

Context Required Permissions
Home None
Search None

Notifications None
Arrests None

Face Recognition Camera, Location
Gallery Photos
Settings None

Purchases Device ID
Favorite None

Background None

Table 2: Minimal permission set required by JailBase
in different contexts.

even when the application is in the background. In general,
though a user may grant an app access to a specific resource
since that permission is necessary for the app to fulfill one
of the functions that it offers, the app can potentially also
use this permission when the user is interacting with the
app for other purposes. Instances of permission overuse has
been reported in several popular Android applications such
as WhatsApp, Shazam, and TuneIn Radio [16].

We propose “Context-Specific Access Control” (CSAC) to
remedy this situation. We observe that a user’s interaction
with an application can be categorized to a limited number
of contexts with different permission requirements. There-
fore, by separating an application’s states into a few mean-
ingful contexts, CSAC can ensure that an application is lim-
ited to its minimum set of required permissions at any point
of time, while requiring the user to only decide on the ap-
plication’s access to a resource once per context. Looking
back at our example application, the state space of the Jail-
Base application can be divided into ten different contexts
described in Table 2, seven of which do not require access to
any privacy sensitive resource. Figure 1 provides a snapshot
of each of these contexts.

To implement CSAC on the Android platform, we propose
dividing application contexts based on Activities. We evalu-
ate the feasibility of this approach by examining the top 100
free applications in Google Play store. In our evaluation, we
track the use of various permissions across different Activi-
ties as we explore the applications. Our results suggest that
accesses to privacy-sensitive information are limited to less
than 30% of Activities and most applications do not need
constant access to these data. Moreover, our results suggest
that CSAC significantly decreases access of applications to
privacy-sensitive data while not increasing the decision over-
head for most apps. On applications for which CSAC causes
an increase in the number of access control decisions, its
overhead is on average less than 4 decisions per application.

In summary, our contributions are three-fold:

• We introduce the notion of Context Specific Access Con-
trol (CSAC) and discuss its benefits and shortcomings.

• We demonstrate the feasibility of CSAC on the Android
platform by looking at 100 popular Android applications’
usage of permissions across different Activities.

• We evaluate decision overhead imposed on users when us-
ing CSAC by conducting dynamic exploration of 100 pop-
ular Android applications and a small scale user study.

2 Background
Before discussing CSAC, we provide a brief overview on

Android and how popular mobile OSes currently handle ac-
cess control.
Components of an Android app: Android applications
are written in Java. An application is generally delivered in
an APK (Android Package) containing compiled code, data,
resources, and a manifest. An application consists of four
components: Activities, Services, Content Providers, and
Broadcast Receivers. Activities are used to implement vari-
ous user interfaces while Services run in the background to
perform long-running operations or to perform work for re-
mote processes. Content Providers and Broadcast Receivers
are respectively responsible for managing application data
and respond to system-wide broadcasts. According to the
Android developer’s guide [1], an Activity should represent
“a single screen with a user interface.”
Access control in current mobile OSes: Both iOS and
Android take an all-or-nothing approach to permission as-
signment. In iOS, a user is prompted upon an application’s
first use of a resource.2 The user has the option to deny the
permission and continue using the application with poten-
tially limited functionality, although some applications may
block their further use until a permission has been granted
to them. When permission to a resource is granted to an
application, it can use it in the future without prompting
the user. While this approach allows a user to selectively
block an application from using certain privacy-sensitive re-
sources, it can be employed only if the application does not
need that permission at any point of time. If the application
is legitimately granted a permission for a particular task, it
can use it later regardless of the user’s desire or expectations.

Starting from iOS version 8, the user is prompted when
the application uses the location data in the background and
can selectively choose to share location with an application
only when it is in the foreground. Figure 2 shows a sample of
this alert box. While this binary context-awareness provides
an improvement over the previous all-or-nothing approach,
it still only covers one of the system resources and is not fine-
grained enough to cover all misuse scenarios. An example of
this would be a shopping application using GPS coordinates
to provide nearest store locations, but additionally tracking
a user’s movements while the user is creating a wish list.

2An application’s access control settings can later be
changed in the system privacy settings.

2

Figure 2: iOS background location usage alert. The
binary context awareness protects user’s location
when application is not in-use.

A1

A2

A3

A4

{P1,P2}

{P2}

{P3}

{∅}

Background {P2}

Figure 3: Example of permission enforcement with
CSAC. Each circle represents an Activity, with an
associated permission set. Edges represent inter-
Activity transitions. CSAC divides the application
into 5 contexts (4 Activities + Background) and asks
users to make a one-time decision upon first use of
each permission in a context.

In contrast, in Android, every application includes an
“AndroidManifest.xml” that defines all of its required per-
missions. During install time, the package installer prompts
the user to grant permissions to the requested resources.
An application can only be installed if these permissions are
granted. No further clarifications are sought from the user
while an application is running. So an application is either
granted a particular permission when installed, and can use
that feature as desired, or the permission is not granted and
any attempt to use the feature fails without prompting the
user (even when the app does need to use the permission in
order to fulfill the functionality expected by the user) [1].

More recently, Google has announced that starting with
Android M, they will not only adopt iOS’s “prompt on first
use” policy but also allow users to later modify the permis-
sions granted to an application [3].

3 Context-Specific Access Control
Threat model: CSAC’s goal is to enable fine-grained con-
trol over permission access by differentiating between the
various contexts in an application’s execution. Using this
approach, a user can select contexts within which an applica-
tion can access any particular resource and stop applications
from broad usage of resources. An example of this would be
an application that only requires access to the user’s location
in one of its contexts but continuously monitors and records
the user’s location even when in other contexts. This sce-
nario could be the consequence of either deliberate (e.g. an
application that has been maliciously modified) or inadver-
tent (e.g. a bug in the application such as Apple hotspot
database cache [2]) overuse by an application of permissions
granted to it. In contrast to traditional access control sys-
tems, which make the user unable to protect himself against
such privacy leaks, CSAC raises the bar for permission mis-
use and limits usage of system resources by applications to
the limited contexts that match user expectations.

Envisioned implementation: With CSAC, we envision
that the user will be prompted to make one-time access con-
trol decisions when a permission is used for the first time in
a context. This decision can be recorded and reused later.
Figure 3 presents an example of how this will work. Each
application consists of a set of Activities {A1, A2, . . .}, with
each Activity accessing a set of permissions during its execu-
tion. Instead of allowing an application all-or-nothing access
to privacy-sensitive resources, CSAC can associate each ac-
cess control decision to the Activity that is active when the
request for access is made. If none of the application’s Activ-
ities are active, the application is in the background and the
access control decisions made for it will be associated with
its background context. The request to access a resource
does not necessarily have to be made by an Activity and
can be made by Services that are running simultaneously.
Permission to access a resource in a Service can be evalu-
ated based on the Activity that is active at the time of the
request, or—to support asynchronous tasks—the Activity
the Service has initiated in.

To augment CSAC to Android’s permission system, mech-
anisms used to validate system calls (which are generally
responsible for access control enforcement [8]) have to be
modified to take into account the current active Activity
when making access control decisions. In our example, us-
ing CSAC will help enforce the principle of least privilege
by limiting the application to 33% (5

15
) of the (Activity,

permission) pairs that are possible with the all-or-nothing
approach currently in use in Android and iOS.

Starting from Android 3.0, Google has introduced the no-
tion of “Fragments” to enable better modularization of code,
more sophisticated user interfaces, and GUI scaling for ap-
plications that target different screen sizes. A Fragment,
which is always embedded in an Activity and represents a
portion of the user interface, can be either combined with
other Fragments in a single Activity or be reused across
Activities. CSAC does not limit the use of Fragments or
prohibit code reuse but ensures that permissions available
to a Fragment depends on the Activity, as part of which it
is being executed. Thus, a Fragment can potentially have
permission to access a resource in Activity A1 but is not
allowed to do so in A2.

Although designing an appropriate user interface to as-
sign and later change permissions for each Activity remains
a challenge, migration of Android OS to “prompt on first
use” access control policy opens up the path for implementa-
tion of CSAC with minimum modifications to the platform.
Instead of recording access control decisions per application,
these decisions need to be recorded and used based on ap-
plication and Activity pairings.
Benefits: In general, basing access to privacy-sensitive data
on the user’s context provides several unique benefits, com-
pared to how access control is enforced on existing OSes.

• CSAC conforms the permissions used by an application
with users’ expectations: Prior work [12, 13] has high-
lighted the benefits of including users’ expectation in con-
figuring access control. Using CSAC, users can control
the resources an application can access in any particular
context and prevent applications from misusing broadly
assigned permissions.

• CSAC allows the OS to define different levels of access for
each resource: For example, a restaurant finding applica-

3

tion can be given access to coarse-grained location when
identifying relevant ads and to fine-grained location when
listing nearby restaurants.

• CSAC can provide high privacy assurances to the user
without compromising application functionality: As long
as the user correctly grants an application the permissions
it needs in each context, we believe that the application
can operate without significant performance overhead or
reduction in its functionality. Once the user grants a per-
mission in a particular context, the OS can remember that
decision and reuse it without prompting the user again
when the application enters the same context.

• CSAC does not break the current application model or
limit developers: CSAC does not force any changes on
applications or make legacy applications unusable. Fur-
thermore, unlike systems such as ACG [15], CSAC does
not force application developers into using any specific
GUI components.

Limitations: While providing many improvements to users’
privacy, CSAC is by no means without limitations. Most no-
ticeably, CSAC imposes a higher decision overhead on users
as they potentially have to make access control decisions
to a particular resource multiple times in an application.
Furthermore, although CSAC moves us toward realizing the
principle of least privilege, there are cases where it can still
be coarse-grained, e.g., an application uses location informa-
tion for nearby restaurants but continues to track the user
when he is inspecting the results. CSAC also does not pro-
vide any benefits if an application is condensed into one or
very few Activities (which we show later is rare among pop-
ular applications) or if an application chooses to terminal
itself when a particular permission is not granted. Privacy-
sensitive data, in particular data that is static (e.g. IMEI) or
semi-static (e.g. contact list), can also be stored and reused
by the application in other contexts. Mitigating information
leakage would require data-flow analysis techniques such as
taint tracking that impose a large overhead. In Section 5, we
discuss how CSAC can be combined with data-flow analysis
techniques to decrease their overhead.

4 Feasibility Study
While CSAC offers the potential for various privacy ben-

efits, as described above, the feasibility of using CSAC and
its utility in practice is contingent on several criteria:

1. Applications need to have been implemented such that
different functionalities offered by an application are sep-
arated out into separate Activities; benefits of CSAC are
only attainable if applications are appropriately modular.

2. The set of permissions used by an application should dif-
fer across Activities; if an application uses the same per-
missions in all of its Activities, then the current model of
“grant permission upon first use” suffices.

3. The number of additional access control decisions that
users have to make should not significantly increase. A
disproportionate increase in the number of decisions can
cause decision fatigue and result in users making incorrect
(and potentially harmful) decisions.

In this section, we evaluate all of these criteria on 100
popular applications from Google Play store. We down-
loaded these applications from the “Top Free in Android

Figure 4: CDF of number of Activities per applica-
tion.

Apps” list. After manually discarding applications that re-
quired an account to perform their main functionality (e.g.,
banking and mail apps), we conducted a dynamic analy-
sis of these applications using the A3E dynamic exploration
tool [5]. We modify Android 4.4 to extract information on
when Activities start and stop executing, and on the use of
privacy-sensitive resources. We use the PhoneLab [14] An-
droid ROM as our base code as it provides various logging
instrumentations that assist our evaluation. We collect logs
of these interactions that we later use in our analysis.

4.1 How modular are Android apps?
In order for CSAC to enforce different permissions for an

application in its different Activities, the application needs
to be divided into multiple Activities that can be used to dif-
ferentiate between contexts. While this means that CSAC
does not provide much benefit for applications that make
extensive use of native code, where the application is con-
densed mostly into a single Activity, Figure 4 shows that
this is not the common case. From the figure, which plots
the CDF of Activity count in the 100 popular applications
used in our dynamic analysis, we see that we encounter 9
Activities on average per application. This shows that most
applications are sufficiently modular for CSAC to be useful.

The coverage of our dynamic exploration tool is not per-
fect; for most applications, we visit a subset of the appli-
cation’s Activities. There are different factors that cause
A3E’s coverage to be incomplete, some of which include use
of native code and complex gestures, social network inte-
gration, and requiring an account or purchases to enable
features [5]. However, previous work has shown that, on
average, A3E covers twice the number of Activities as com-
pared to human subjects [5].

4.2 How does permission usage vary across
Activities?

CSAC works by assigning permissions on an Activity ba-
sis. In the example JailBase application discussed in Sec-
tion 1, we described how most of the Activities do not re-
quire access to privacy sensitive resources. CSAC benefits
from this usage pattern as it can limit the application’s ac-
cess to a specific resource to a limited number of Activities.

Privacy-sensitive resources can be generally broken down
into four categories: (1) Static values such as International
Mobile Station Equipment Identity (IMEI); (2) semi-static
data such as photos, messages, and contacts list; (3) commu-
nication channels such as Bluetooth and NFC; and (4) sensor
data such as GPS. In our evaluation of top 100 applications,
we focus on a selected number of privacy-sensitive resources

4

Resource ID Camera Location Bluetooth Photos
Usage
(/100)

89 38 55 9 23

Table 3: For each tracked permission, number of
apps in the set of 100 evaluated applications that
use it.

Figure 5: Use of permissions in applications’ Activi-
ties. Most Activities do not require access to any of
the tracked privacy-sensitive resources.

that are most widely used by the applications. Namely, we
evaluate applications’ use of camera, photos, location, de-
vice identifiers and Bluetooth. These resources account for
more than 85% of privacy sensitive resources that are re-
quested in these applications. Table 3 presents the usage of
these permissions by 100 popular applications used in our
evaluation according to their manifest.

In our analysis of dynamic exploration data, we observed
that various device identifiers were frequently fetched across
different Activities in many of the applications. Because
these values are static and can be recorded and reused, al-
lowing one time access to them in an application can be
considered equivalent to giving the application lifetime ac-
cess to it in all of its Activities. Hence, we only consider
access to device identifiers once in our evaluation of permis-
sion usage across different Activities.

Figure 5 presents the number of Activities that require
one or more of the permissions compared to the total number
of Activities. Our results show that more than 70% of Ac-
tivities in applications do not use any of the tracked privacy
sensitive resources that was requested by the application.
This result shows that a realization of CSAC that considers
different Activities in an application as separate contexts can
limit an application’s access to privacy-sensitive resources to
a (typically small) subset of the application’s execution.

4.3 What is the decision overhead of CSAC?
Lastly, we consider the concern associated with CSAC

that it can increase the decision load that is imposed on
the user as the result of finer-grained access control. Both
Android and iOS platforms assign each permission once per
application. This approach results in low decision overhead
for the user but enables an application to access privacy-
sensitive resource at all times. Using CSAC, the decisions
to allow access to a resource are assigned on a per-Activity
basis. This can result in as many as (#Permissions ×
#Activities) decisions to be made by the user.

Using the dynamic analysis data, we calculate the number
of decisions required to be made by the user when CSAC is in
use and compare it against scenarios in which access control

Figure 6: Comparison of the number of decisions user
has to make for each application under “grant per-
mission during install time”, “grant permission on
first use”, and CSAC model. CSAC does not in-
crease the number of required decisions for most
applications.

decisions are made at install time or on first use. Similar to
Section 4.2, we count decisions regarding device identifiers
only once as they are static values which can be saved and
reused by applications.

Figure 6 presents the results of our evaluation. On the
one hand, for most applications, the number of decisions
necessary with CSAC matches the number of decisions that
had to be made in other approaches, so CSAC imposes no
decision overhead on the user. There is also no direct rela-
tion between the number of decisions that needs to be made
and the total number of Activities an application has.

On the other hand, even for applications that require
more decisions when using CSAC, we expect the actual num-
ber of decisions required to be made by the user to be less
than those presented in Figure 6. This is because previous
work [5] has shown that the amount of coverage provided by
the A3E tool is on average twice those of normal users.

To test this hypothesis, we conducted a 5-user study on
the five applications requiring the most number of decisions.
Our five users were all CS-major graduate students with
prior experience in using Android OS. Each user was given
a description of each application’s function and no time limit
was imposed on the user during experiments. We asked the
participants to explore the applications and use them as they
normally would and tracked activation of Activities and us-
age of privacy-sensitive data across the applications. Table 4
presents the results of this experiment. Even when consid-
ering the union of users’ exploration of the applications, the
number of decisions that users had to make dropped com-
pared to our experimental results as typical users explored
fewer Activities and features.

5 Related Work
In this section, we discuss some of the other notable access

control augmentations and examine how they compare and
combine with CSAC.
Data-flow analysis: There is a large body of research on
approaches and methods that can augment permission sys-
tems by using data-flow analysis. TaintDroid [7] enabled
dynamic taint analysis in Android systems and uncovered
many cases of potential misuse of permissions by follow-

5

Decision Count
Dynamic Exploration User Study

Application
Install
time

First
use

CSAC Union
User
#1

User
#2

User
#3

User
#4

User
#5

Dictionary 3 2 15 6 4 4 3 3 4
Flipagram 4 3 8 2 2 1 2 1 1
GasBuddy 3 1 10 5 3 3 3 3 3

WeatherBug 3 3 6 6 3 2 3 2 2
Yelp 4 3 15 5 4 3 3 2 3

Table 4: Number of access control decisions needed to be made using three different systems for the 5 most
decision-intensive applications. Results suggest that CSAC’s use will not significantly increase the number
of access control decisions that the user will need to make.

ing the dynamic data flow of sensitive data in applications.
Tripp et al. [17] improved the accuracy of TaintDroid by
quantifying the amount of information leakage at any use.
AppFence [10], MockDroid [6], and TISSA [18] suggested
replacing private data that the user is not willing to share
with fake data.

While data-flow analysis techniques are great tools for un-
derstanding where and how information leaks are occurring,
they still have shortcomings that make them inapplicable
for typical users. First and foremost, while taint tracking
can provide detailed data on when and where private data
is being used, current systems do not provide an approach to
reason about the legitimacy of each request. This results in
taint tracking to either be used solely for offline analysis or
to be naively used for coarse-grained augmentations such as
faking device identifiers. These systems also generally suf-
fer from noticeable overhead (14% for TaintDroid [7]) and
limited capability to detect implicit flows of private data.
While CSAC’s approach of assigning permissions per Activ-
ity is more coarse-grained compared to data-flow analysis,
it provides its improvements with no computationally heavy
analysis and minimum decision overhead.

Secure GUI: Howell et al. [11] and Roesner et al. [15]
have examined incorporating standard predefined GUI com-
ponents in applications to extract implicit case by case ac-
cess permissions from the user (e.g. clicking on a button in
the shape of a camera implicitly grants camera permission
to the application for a session). The main shortcomings of
these approaches is that they only work for specific privacy
sensitive data (e.g., camera, mic) and confine app developers
into limited GUI options. It also only provides a start point
for when a permission is granted and does not provide an
end limit for the access. Using CSAC can limit the scope of
each permitted access to the particular Activity it has been
granted in and stop an application from continuous use of
that permission in other Activities.

Other approaches: Many user studies have also been
conducted on users’ interaction with permission systems.
Lin et al. [13] studied users’ expectations of privacy and
suggested a crowdsourcing scheme for assigning appropriate
permissions to an application in Android. Agarwal et al. [4]
implemented a similar crowdsourcing scheme for iOS. Using
crowdsourcing is especially beneficial to CSAC as it can re-
move the limited decision overhead imposed on the user as
the result of finer level control.

Based on another user study, Jung et al. [12] suggested
rate limiting sampling of sensor data as a possible method to
enhance privacy. Using CSAC alongside such an approach
will allow users to adjust both the frequency and accuracy
of access to privacy sensitive data in each Activity.

6 Conclusion
In this paper, we introduced Context-Specific Access Con-

trol as a design approach for achieving the principle of least
privilege in mobile platforms. We evaluated the feasibility
of using the Activity abstraction in Android to achieve finer
granularity of access control. Our results show that most
applications’ use of privacy-sensitive data is confined to a
few Activities, thus allowing for CSAC’s use without signif-
icantly increasing the number of access control decisions.

7 References
[1] Android developer’s guide.

https://developer.android.com/guide/.

[2] Apple Q&A on location data - April 27, 2011.
http://www.apple.com/pr/library/2011/04/
27Apple-Q-A-on-Location-Data.html.

[3] Google I/O 2015. https://events.google.com/io2015/.

[4] Y. Agarwal and M. Hall. ProtectMyPrivacy: Detecting and
mitigating privacy leaks on iOS devices using crowdsourcing. In
MobiSys, 2013.

[5] T. Azim and I. Neamtiu. Targeted and depth-first exploration
for systematic testing of Android apps. In OOPSLA, 2013.

[6] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan. MockDroid:
Trading privacy for application functionality on smartphones.
In HotMobile, 2011.

[7] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P.
Cox, J. Jung, P. McDaniel, and A. N. Sheth. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In TOCS, 2014.

[8] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android permissions demystified. In CCS, 2011.

[9] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android permissions: User attention,
comprehension, and behavior. In SOUPS, 2012.

[10] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.
These aren’t the droids you’re looking for: Retrofitting Android
to protect data from imperious applications. In CCS, 2011.

[11] J. Howell and S. Schechter. What you see is what they get:
Protecting users from unwanted use of microphones, camera,
and other sensors. In W2SP, 2010.

[12] J. Jung, S. Han, and D. Wetherall. Enhancing mobile
application permissions with runtime feedback and constraints.
In SPSM, 2012.

[13] J. Lin, N. M. Sadeh, S. Amini, J. Lindqvist, J. I. Hong, and
J. Zhang. Expectation and purpose: Understanding users’
mental models of mobile app privacy through crowdsourcing. In
UbiComp, 2012.

[14] A. Nandugudi, A. Maiti, T. Ki, F. Bulut, M. Demirbas,
T. Kosar, C. Qiao, S. Y. Ko, and G. Challen. Phonelab: A
large programmable smartphone testbed. In SenseMine, 2013.

[15] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan. User-driven access control: Rethinking permission
granting in modern operating systems. In IEEE S&P, 2012.

[16] M. Sheppard. Smartphone apps, permissions and privacy. In
Office of the Privacy Commissioner of Canada, 2013.

[17] O. Tripp and J. Rubin. A Bayesian Approach to Privacy
Enforcement in Smartphones. In USENIX Security, 2014.

[18] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming
information-stealing smartphone applications (on Android). In
TRUST. 2011.

6

https://developer.android.com/guide/
http://www.apple.com/pr/library/2011/04/27Apple-Q-A-on-Location-Data.html
http://www.apple.com/pr/library/2011/04/27Apple-Q-A-on-Location-Data.html
https://events.google.com/io2015/

	Introduction
	Background
	Context-Specific Access Control
	Feasibility Study
	How modular are Android apps?
	How does permission usage vary across Activities?
	What is the decision overhead of CSAC?

	Related Work
	Conclusion
	References

