
LIFEGUARD: Practical Repair of Persistent Route Failures

Ethan Katz-Bassett
Univ. of Southern California

Univ. of Washington

Colin Scott
UC Berkeley

David R. Choffnes
Univ. of Washington

Ítalo Cunha
UFMG, Brazil

Vytautas Valancius
Georgia Tech

Nick Feamster
Georgia Tech

Harsha V. Madhyastha
UC Riverside

Thomas Anderson
Univ. of Washington

Arvind Krishnamurthy
Univ. of Washington

ABSTRACT
The Internet was designed to always find a route if there is a policy-
compliant path. However, in many cases, connectivity is disrupted
despite the existence of an underlying valid path. The research
community has focused on short-term outages that occur during
route convergence. There has been less progress on addressing
avoidable long-lasting outages. Our measurements show that long-
lasting events contribute significantly to overall unavailability.

To address these problems, we develop LIFEGUARD, a system for
automatic failure localization and remediation. LIFEGUARD uses
active measurements and a historical path atlas to locate faults, even
in the presence of asymmetric paths and failures. Given the ability
to locate faults, we argue that the Internet protocols should allow
edge ISPs to steer traffic to them around failures, without requir-
ing the involvement of the network causing the failure. Although
the Internet does not explicitly support this functionality today, we
show how to approximate it using carefully crafted BGP messages.
LIFEGUARD employs a set of techniques to reroute around failures
with low impact on working routes. Deploying LIFEGUARD on the
Internet, we find that it can effectively route traffic around an AS
without causing widespread disruption.

Categories and Subject Descriptors
C.2.2 [Communication Networks]: Network protocols

Keywords
Availability, BGP, Measurement, Outages, Repair

1. INTRODUCTION
With the proliferation of interactive Web apps, always-connected

mobile devices and data storage in the cloud, we expect the Internet
to be available anytime, from anywhere.

However, even well-provisioned cloud data centers experience
frequent problems routing to destinations around the Internet. Ex-
isting research provides promising approaches to dealing with the
transient unavailability that occurs during routing protocol conver-
gence [18, 22–24], so we focus on events that persist over longer
timescales that are less likely to be convergence-related. Monitor-
ing paths from Amazon’s EC2 cloud service, we found that, for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’12, August 13–17, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1419-0/12/08 ...$10.00.

outages lasting at least 90 seconds, 84% of the unavailability came
from those that lasted over ten minutes.

We focus on disruptions to connectivity in which a working policy-
compliant path exists, but networks instead route along a different
path that fails to deliver packets. In theory this should never happen
– if working paths exist, the Internet protocols are designed to find
them, even in the face of failures. In practice, routers can fail to
detect or reroute around a failed link, causing silent failures [35].

When an outage occurs, each affected network would like to re-
store connectivity. However, the failure may be caused by a prob-
lem outside the network, and available protocols and tools give
operators little visibility into or control over routing outside their
local networks. Operators struggle to obtain the topology and rout-
ing information necessary to locate the source of an outage, since
measurement tools like traceroute and reverse traceroute [19] re-
quire connectivity to complete their measurements.

Even knowing the failure location, operators have limited means
to address the problem. Traditional techniques for route control
give the operators’ network direct influence only over routes be-
tween it and its immediate neighbors, which may not be enough to
avoid a problem in a transit network farther away. Having multiple
providers still may not suffice, as the operators have little control
over the routes other ASes select to it.

To substantially improve Internet availability, we need a way
to combat long-lived failures. We believe that Internet availabil-
ity would improve if data centers and other well-provisioned edge
networks were given the ability to repair persistent routing prob-
lems, regardless of which network along the path is responsible for
the outage. If some alternate working policy-compliant path can
deliver traffic during an outage, the data center or edge network
should be able to cause the Internet to use it.

We propose achieving this goal by enabling an edge network to
disable routes that traverse a misbehaving network, triggering route
exploration to find new paths. While accomplishing this goal might
seem to require a redesign of the Internet’s protocols, our objec-
tive is a system that works today with existing protocols, even if it
cannot address all outages. We present the design and implemen-
tation of a system that enables rerouting around many long-lasting
failures while being deployable on today’s Internet. We call our
system LIFEGUARD, for Locating Internet Failures Effectively and
Generating Usable Alternate Routes Dynamically. LIFEGUARD
aims to automatically repair partial outages in minutes, replacing
the manual process that can take hours. Existing approaches of-
ten enable an edge AS to avoid problems on its forward paths to
destinations but provide little control over the paths back to the AS.
LIFEGUARD provides reverse path control by having the edge AS O
insert the problem network A into path advertisements for O’s ad-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

fr
ac

tio
n

Duration of outage in minutes

Events
Total unreachability

Figure 1: For partial outages observed from EC2, the fraction of out-
ages of at most a given duration (solid) and their corresponding frac-
tion of total unreachability (dotted). The x-axis is on a log-scale. More
than 90% of the outages lasted at most 10 minutes, but 84% of the total
unavailability was due to outages longer than 10 minutes.

dresses, so that it appears that A has already been visited. When the
announcements reach A, BGP’s loop-prevention mechanisms will
drop the announcement. Networks that would have routed through
A will only learn of other paths, and will avoid A. Using the BGP-
Mux testbed [5] to announce paths to the Internet, we show LIFE-
GUARD’s rerouting technique finds alternate paths 76% of the time.

While this BGP poisoning provides a means to trigger rerouting,
we must address a number of challenges to provide a practical solu-
tion. LIFEGUARD combines this basic poisoning mechanism with a
number of techniques. LIFEGUARD has a subsystem to locate fail-
ures, even in the presence of asymmetric routing and unidirectional
failures. We validate our failure isolation approach and present ex-
periments suggesting that the commonly used traceroute technique
for failure location gave incorrect information 40% of the time. We
address how to decide whether to poison; will routing protocols
automatically resolve the problem, or do we need to trigger route
exploration? We show empirically that triggering route exploration
could eliminate up to 80% of the observed unavailability. When
it reroutes failing paths to remediate partial outages, LIFEGUARD
carefully crafts BGP announcements to speed route convergence
and minimize the disruption to working routes. Our experimen-
tal results show that 94% of working routes reconverge instantly
and experience minimal (≤ 2%) packet loss. After rerouting, LIFE-
GUARD maintains a sentinel prefix on the original path to detect
when the failure has resolved, even though live traffic will be rout-
ing over an alternate path. When LIFEGUARD’s test traffic reaches
the sentinel, LIFEGUARD removes the poisoned announcement.

2. BACKGROUND AND MOTIVATION
2.1 Quantifying Unreachability from EC2

To test the prevalence of outages, we conducted a measurement
study using Amazon EC2, a major cloud provider. EC2 presum-
ably has the resources, business incentive, and best practices avail-
able for combating Internet outages. We show that even EC2 data
centers experience many long-term network connectivity problems.

We rented EC2 instances in the four available AWS regions from
July 20, 2010 to August 29, 2010. Each vantage point issued a pair
of pings every 30 seconds to 250 targets – five routers each from
the 50 highest-degree ASes [33]. We selected the routers randomly
from the iPlane topology [17], such that each router was from a dis-
tinct BGP prefix. We focus on paths to routers in major networks,
which should be more reliable than paths to end-hosts. We define
an outage as four or more consecutive dropped pairs of pings from
a single vantage point to a destination. This methodology means
that the minimum outage duration we consider is 90 seconds.

In 79% of the outages in our study, some vantage points had con-
nectivity with the target (one of the routers), while others did not.
Fig. 1 shows the durations of these 10,308 partial outages. By com-
parison, an earlier study found that 90% of outages lasted less than
15 minutes [13]. We also find that most outages are relatively short;
more than 90% lasted less than 10 minutes (solid line). However,
these short outages account for only 16% of the total unavailability
(dotted line). The relatively small number of long-lasting problems
account for much of the overall unavailability. Delayed protocol
convergence does not explain long outages [23].

In fact, many long-lasting outages occur with few or no accom-
panying routing updates [13, 20]. With routing protocols failing to
react, networks continue to send traffic along a path that fails to
deliver packets. Such problems can occur, for example, when a
router fails to detect an internal fault (e.g., corrupted memory on a
line card causing traffic to be black-holed [35]) or when cross-layer
interactions cause an MPLS tunnel to fail to deliver packets even
though the underlying IP network is operational [21].

During partial outages, some hosts are unable to find the working
routes to the destination, either due to a physical partition, due to a
routing policy that restricts the export of the working path, or due
to a router that is announcing a route that fails to deliver traffic.
The techniques we present later in this paper rely on the underlying
network being physically connected and on the existence of policy-
compliant routes around the failure, and so we need to establish
that there are long-lasting outages that are not just physical failures
or the result of routing export policies.

We can rule out physical partitions as the cause in our EC2 study.
All EC2 instances maintained connectivity with a controller at our
institution throughout the study. So, physical connectivity existed
from the destination to some EC2 instance, from that instance to
the controller, then from the controller to the instance that could
not reach the destination.

Since the problems are not due to physical partitions, either rout-
ing policies are eliminating all working paths, or routers are adver-
tising paths that do not work. By detouring through our institu-
tion, the paths we demonstrated around EC2 failures violate the
valley-free routing policy [15] – in not making those paths avail-
able, routers are properly enacting routing policy. However, if
working policy-compliant paths also exist, it might be possible to
switch traffic onto them.

2.2 Assessing Policy-Compliant Alternate Paths
Earlier systems demonstrated that overlays can route around many

failures [2, 6, 16]. However, overlay paths tend to violate BGP ex-
port policies. We build on this previous work by showing that al-
ternate policy-compliant paths appear to exist during many failures.
Generally, the longer a problem lasted, the more likely it was that
alternative routes existed.

Previous work found that many long-lasting failures occur out-
side of the edge networks [13, 20], and we focus on these types
of problems. Every ten minutes for a week starting September 5,
2011, we issued traceroutes between all PlanetLab sites. This set-
ting allowed us to issue traceroutes from both ends of every path,
and the probes to other PlanetLab sites give a rich view of other
paths that might combine to form alternate routes. We considered
as outages all instances in which a pair of hosts were up and had
previously been able to send traceroutes between each other, but
all traceroutes in both directions failed to reach the destination AS
for at least three consecutive rounds, before working again. This
yielded nearly 15,000 outages.

We checked if the traceroutes included working policy-compliant
routes around the failures. For each round of a failure, we tried to

find a path from the source that intersected (at the IP-level) a path
to the destination, such that the spliced path did not traverse the
AS in which the failed traceroute terminated. We only considered
a spliced path as valid if it would be available under observable
export policies. To check export policies, when splicing together a
potential path, we only accepted it if the AS subpath of length three
centered at the splice point appeared in at least one traceroute dur-
ing the week [17, 25]. This check suffices to encode the common
valley-free export policy [15].

Our methodology may fail to identify some valid paths that exist.
PlanetLab has somewhat homogeneous routing. We also required
that spliced paths intersect at a shared IP address. Two traceroutes
might intersect at a router or a PoP without sharing an IP address.
We would not consider this intersection when trying to splice paths.

We found that, for 49% of outages, alternate paths existed for the
duration of the failure. Considering only long outages that lasted
at least an hour, we found alternate routes in 83% of failures. For
98% of the outages in which an alternate path existed during the
first round of the failure, the path persisted for the duration.

2.3 Current Approaches to Address Failures
Lacking better options, operators rely on insufficient techniques

to try to locate and resolve long-lasting outages, especially if the
failure is in a network outside the operators’ control. Asymmetric
paths leave operators with a limited view even when paths work.
Tools like traceroute require bidirectional connectivity to function
properly, and so failures restrict their view further. Public tracer-
oute servers and route collectors [26,31] extend the view somewhat,
but only a small percentage of networks make them available. In
fact, these challenges mean that operators frequently resort to ask-
ing others to issue traceroutes on their behalf to help confirm and
isolate a problem [28].

If operators successfully identify a failure outside their own net-
works, they have little ability to effect repair:

Forward path failures: The source network’s operators can se-
lect an alternative egress in an attempt to avoid the problem. When
choosing, they can see the full BGP paths provided by their neigh-
bors. Each of the source’s providers announces its preferred path,
and the source is free to choose among them. If the network’s
providers offer sufficiently diverse paths, the failure may be avoided.
For example, we inspected BGP routes from five universities (Uni-
versity of Washington, University of Wisconsin, Georgia Tech,
Princeton, and Clemson) [5] to prefixes in 114 ASes. If these uni-
versities were our providers, the routes are sufficiently diverse that,
if the last AS link before the destination on one of the routes failed
silently, we could route around it to reach the destination in 90%
of cases by routing via a different provider. In §5.2, we present an
equivalent experiment demonstrating that our techniques would al-
low us to avoid 73% of these links on reverse paths back from the
114 ASes, without disturbing routes that did not use that link. 1

Reverse path failures: Using traditional techniques, however, hav-
ing multiple providers may not offer much reverse path diversity.
Under BGP, the operators can only change how they announce
a prefix to neighbors, perhaps announcing it differently to differ-
ent neighbors. They have no other direct influence over the paths
other networks select. A major limitation of existing techniques for
announcement-based route control is that they generally act on the
next hop AS, rather than allowing a network to target whichever
AS is causing a problem. We discuss the techniques below:

1The 114 ASes were all those that both announce prefixes visible
at the universities, needed for the forward path study, and peer with
a route collector [1, 26, 29, 31], needed for the reverse study.

Multi-Exit Discriminator (MEDs): An AS that connects to another
AS at multiple points can use MEDs to express to the neighbor on
which peering point it prefers to receive traffic. However, MEDs
have meaning only within the context of that single neighbor, so
they generally are effective only if the problem is in the immediate
upstream neighbor.

Selective Advertising: An origin AS with multiple providers can
advertise a prefix through only some providers. In variations on this
approach, the origin can advertise more-specific prefixes through
some providers and only less-specifics through others. Or, since
many ASes use path length as a tiebreaker when making routing
decisions, networks sometimes prepend routes they announce with
multiple copies of their AS, to make that path longer and hence
less preferred than shorter ones. With all these approaches, the ori-
gin can shift traffic away from providers it wants to avoid. If the
problem is not in the immediate provider, these techniques may be
deficient because (1) all working routes that had previously gone
through that provider will change; and (2), even if all sources with
failing paths had routed through a particular provider before selec-
tive advertising, forcing them to route via a different provider may
not change the portion of the path containing the failure.

BGP communities: Communities are a promising direction for fu-
ture experiments in failure avoidance but do not currently provide
a complete solution. An AS can define communities that other net-
works can tag onto routes they announce to the AS. Communities
instruct the AS on how to handle the routes. For example, SAVVIS
offers communities to specify that a route should not be exported to
a peer. However, communities are not standardized, and some ASes
give limited control over how they disseminate routes. Further,
many ASes do not propagate community values they receive [30],
and so communities are not a feasible way to notify arbitrary ASes
of routing problems. We announced experimental prefixes with
communities attached and found that, for example, any AS that
used a Tier-1 to reach our prefixes did not have the communities on
our announcements.

Changes to BGP announcements and to local configuration may
be unable to repair outages. In such cases, operators often must
resort to phone calls or e-mails asking operators at other networks
for support. These slow interactions contribute to the duration of
outages. We now show how our approach enables an operator to
avoid reverse path failures.

3. ENABLING FAILURE AVOIDANCE
Suppose an AS O wants to communicate with another AS Q but

cannot because of some problem on the path between them. If the
problem is within either O or Q, operators at that network have
complete visibility into and control over their local networks, and
so they can take appropriate steps to remedy the problem. Instead,
consider a case in which the problem occurs somewhere outside of
the edge ASes, either on the forward path to Q or on the reverse
path back to O. Further suppose that O is able to locate the failure
and to determine that an alternate route likely exists.2

O would like to restore connectivity regardless of where the prob-
lem is, but its ability to do so currently depends largely on where
the problem is located. If the problem is on the forward path and
O’s providers offer suitable path diversity, O can choose a path that
avoids the problem. By carefully selecting where to locate its PoPs
and which providers to contract with, O should be able to achieve
decent resiliency to forward path failures. However, having a di-
versity of providers may not help for reverse path failures, as O has
2We discuss how LIFEGUARD does this in §4.

little control over the routes other ASes select to reach it. As ex-
plained in §2.3, route control mechanisms like MEDs and selective
advertising only let O control the PoP or provider through which
traffic enters O. However, these BGP mechanisms give O essen-
tially no control over how other ASes reach the provider it selects.

O needs a way to notify ASes using the path that the path is
not successfully forwarding traffic, thereby encouraging them to
choose alternate routes that restore connectivity. As a hint as to
which paths they should avoid, O would like to inform them of the
failure location. AS-level failure locations are the proper granular-
ity for these hypothetical notifications, because BGP uses AS-level
topology abstractions. In particular, when one of the notified ASes
chooses an alternate path, it will be selecting from AS paths an-
nounced to it by its neighbors. Therefore, O needs to inform other
ASes of which AS or AS link to avoid, depending on whether the
failure is within a single AS or at an AS boundary.

Ideally, we would like a mechanism to let the origin AS O of
a prefix P specify this information explicitly with a signed an-
nouncement we will call AVOID_PROBLEM(X,P). Depending on
the nature of the problem, X could either be a single AS (AVOID_-
PROBLEM(A,P)) or an AS link A − B (AVOID_PROBLEM(A-
B,P)). Note that AS O is only able to directly observe the problem
with prefix P; it cannot determine if the issue is more widespread.
Announcing this hypothetical primitive would have three effects:

• Avoidance Property: Any AS that knew of a route to P that
avoided X would select such a route.

• Backup Property: Any AS that only knew of a route through
X would be free to attempt to use it. Similarly, A would be
able to attempt to route to O via its preferred path (through B
in the case when X is the link A-B).

• Notification Property: A (and B, for link problems) would be
notified of the problem, alerting its operators to fix it.

3.1 LIFEGUARD’s Failure Remediation
Deploying AVOID_PROBLEM(X,P) might seem to require

changes to every BGP router in the Internet. Instead, we use mech-
anisms already available in BGP to perform the notifications, in
order to arrive at a solution that is usable today, even if the solution
is not complete. A usable approach can improve availability today
while simultaneously helping the community understand how we
might improve availability further with future BGP changes. We
call our approach LIFEGUARD, for Locating Internet Failures Ef-
fectively and Generating Usable Alternate Routes Dynamically.

To approximate AVOID_PROBLEM(A,P) on today’s Internet,
LIFEGUARD uses BGP’s built-in loop prevention to “poison” a prob-
lem AS that is announcing routes but not forwarding packets. To
poison an AS A, the origin announces the prefix with A as part of
the path, causing A to reject the path (to avoid a loop) and with-
draw its path from its neighbors [8, 10]. This causes ASes that
previously routed via A to explore alternatives. Importantly, the
poison affects only traffic to O’s prefix experiencing the problem.
By allowing an AS to poison only prefixes it originates, our ap-
proach is consistent with the goals of work toward authenticating
the origin of BGP announcements [27]. Proposals to verify the en-
tire path [3] are consistent with the future goal for our approach, in
which AVOID_PROBLEM(X,P) would be a validated hint from the
origin AS to the rest of the network that a particular AS is not cor-
rectly routing its traffic. By the time such proposals are deployed, it
may be feasible to develop new routing primitives or standardized
communities to accomplish what we currently do with poisoning.

Although BGP loop prevention was not intended to give O con-
trol over routes in other ASes, it lets us experiment with failure

Network link
Prod. prefix path
Sentinel prefix path O

B

A

FE

C

D

O

B

A

FE

C

D

O-A-O

B-O-A-O

D-C-B-O-A-O

?

?

O-O-OB-O-O-O

C-B-O-O-O
E-A-B-O-O-O

A-B-O-O-O
D-C-B-O-O-O

B-O-O-O

A-B-O-O-O

(a) (b)

Figure 2: Routes and routing tables (a) before and (b) after O poisons
A to avoid a problem. Each table shows only paths to the production
prefix, with the in-use, most-preferred route at the top. Poisoning A
for the production prefix causes it to withdraw its route from E and F,
forcing E to use its less-preferred route through D and leaving F with
only the sentinel. Routes to the sentinel prefix do not change, allowing
O to check when the problem has resolved.

avoidance. In effect, poisoning A implements the Avoidance Prop-
erty of AVOID_PROBLEM(A,P), giving O the means to control
routes to it. A’s border routers will receive the poisoned announce-
ment and detect the poison, a form of the Notification Property.

On its own, poisoning is a blunt, disruptive instrument, a lim-
itation that LIFEGUARD must overcome. Poisoning inserts A into
all routes, so even ASes that were not routing through A may un-
dergo route exploration before reconverging to their original route,
leading to unnecessary packet loss [23]. Instead of providing the
Backup Property, poisoning cuts off ASes that lack a route around
A. Poisoning disables all paths through A, even if some work.

In the following sections, we show how LIFEGUARD overcomes
what initially seem like limitations of poisoning in order to better
approximate AVOID_PROBLEM(X,P).

3.1.1 Minimizing Disruption of Working Routes
Inserting an AS to poison an announcement increases AS path

length. Suppose that an origin AS O decides to poison A for O’s
prefix P. The poisoned path cannot be A-O, because O’s neighbors
need to route to O as their next hop, not to A. So, the path must
start with O. It cannot be O-A, because routing registries list O as
the origin for P, and so a path that shows A as the origin looks sus-
picious. Therefore, O announces O-A-O. Experiments found that
BGP normally takes multiple minutes to converge when switching
to longer paths, with accompanying packet loss to the prefix during
this period [23]. This loss would even affect networks with working
paths to the prefix.

To poison in a way that shortens and smooths this convergence
period, LIFEGUARD crafts steady-state unpoisoned announcements
in a way that “prepares” all ASes for the possibility that some AS
may later be poisoned. Fig. 2 provides an example of an origin AS
O with a production prefix P which carries real traffic. Fig. 2(a)
depicts the state before the problem, and Fig. 2(b) depicts the state
following a failure, after O has reacted to repair routing.

LIFEGUARD speeds up convergence and reduces path exploration
by prepending to the production prefix P’s announcement, announc-
ing O-O-O as the baseline path. If O detects that some networks
(ASes E and F in Fig. 2) cannot reach P due to a problem in A,
O updates the announcement to O-A-O. These two announcements
are the same length and have the same next hop, and so, under de-
fault BGP, they are equally preferred. If an AS is using a route
that starts with O-O-O and does not go through A, then receives
an update that changes that route to start with O-A-O instead, it
will likely switch to using the new route without exploring other

O

B1 B2

A

C1

C2 C3

C4D1 D2

O

B1 B2

A

C1

C2 C3

C4D1 D2

Network link
Transitive link
Pre-poison path
Post-poison path

(a) Before poisoning (b) After poisoning A via D2

Figure 3: A case in which LIFEGUARD can use selective poisoning. By
selectively poisoning A on announcements to D2 and not on announce-
ments to D1, O can cause traffic to avoid the link from A to B2, without
disrupting how C3 routes to A or how C[1,2,4] route to O.

options, converging instantly. We will show in a measurement
study in §5.2 that this prepending smooths convergence, helping
ease concerns that an automated response to outages might intro-
duce needless routing instability. This approach is orthogonal to ef-
forts to reduce convergence effects [18, 22, 24], which LIFEGUARD
would benefit from.

3.1.2 Partially Poisoning ASes
LIFEGUARD tries to avoid cutting off an entire AS A and all ASes

that lack routes that avoid A. We have three goals: (1) ASes cut off
by poisoning should be able to use routes through A to reach O as
soon as they work again; (2) if some paths through A work while
others have failed, ASes using the working routes should be able
to continue to if they lack alternatives; and (3) when possible, we
should steer traffic from failed to working paths within A.
Advertising a less-specific sentinel prefix. While O is poisoning
A, ASes like F that are “captive” behind A will lack a route [7].
To ensure that F and A have a route that covers P, LIFEGUARD an-
nounces a less-specific sentinel prefix that contains P (and can also
contain other production prefixes). When P experiences problems,
the system continues to advertise the sentinel with the baseline (un-
poisoned) path. As seen in Fig. 2(b), ASes that do not learn of the
poisoned path, because they are “captive” behind A, will receive the
less specific prefix and can continue to try routing to the production
prefix on it, through A, instead of being cut off. This effect is the
Backup Property desired from AVOID_PROBLEM(A,P) and helps
achieve goals (1) and (2).
Selectively poisoning to avoid AS links. Although most failures in
a previous study were confined to a single AS, 38% occurred on an
inter-AS link [13]. We use a technique we call selective poisoning
to allow LIFEGUARD, under certain circumstances, to implement
AVOID_PROBLEM(A-B,P). Poisoning does not provide a general
solution to AS link avoidance, but, given certain topologies, selec-
tive poisoning can shift traffic within A onto working routes.

Specifically, under certain circumstances, O may be able to steer
traffic away from a particular AS link without forcing it completely
away from the ASes that form the link. Suppose O has multiple
providers that connect to A via disjoint AS paths. Then O can
poison A in advertisements to one provider, but announce an un-
poisoned path through the other provider. Because the paths are
disjoint, A will receive the poisoned path from one of its neighbors
and the unpoisoned path from another, and it will only accept the
unpoisoned path. So, A will route all traffic to O’s prefix to egress
via the neighbor with the unpoisoned path. This selective poison-
ing shifts routes away from A’s link to the other neighbor, as well
as possibly affecting which links and PoPs are used inside A.

Fig. 3 illustrates the idea. Assume O discovers a problem on the
link between A and B2. This failure affects C3, but C2 still has a
working route through A, and C4 still has a working route through
B2. O would like to shift traffic away from the failing link, with-
out forcing any networks except A to change which neighbor they
select to route through. In other words, O would like to announce
AVOID_PROBLEM(A-B2,P). If O only uses selective advertising
without poisoning, announcing its prefix via D1 and not D2, C4’s
route will have to change. If O poisons A via both D1 and D2,
C2 and C3 will have to find routes that avoid A, and A will lack a
route entirely (except via a less-specific prefix). However, by selec-
tively poisoning A via D2 and not via D1, O can shift A and C3’s
routes away from the failing link, while allowing C3 to still route
along working paths in A and without disturbing any other routes.
Selective poisoning functions like targeted prepending – prepend-
ing requires that A use path length to make routing decisions and
potentially causes other ASes to shift from using routes through
D2, whereas selective poisoning forces only A to change. In §5.2
we find that selective poisoning lets LIFEGUARD avoid 73% of the
links we test.

4. APPLYING FAILURE AVOIDANCE
In the previous section, we described how LIFEGUARD uses BGP

poisoning to approximate AVOID_PROBLEM(X,P). This allows us
to experiment with failure avoidance today, and it gives ASes a way
to deploy failure avoidance unilaterally. In this section, we describe
how LIFEGUARD decides when to poison and which AS to poison,
as well as how it decides when to stop poisoning an AS.

4.1 Locating a Failure
An important step towards fixing a reachability problem is to

identify the network or router responsible for it. To be widely ap-
plicable and effective, we require our fault isolation technique to:
• be effective even if the system has control over only one of the

endpoints experiencing a reachability problem.
• be accurate even if measurement probes to reachable targets

appear to fail due to rate-limiting, chronic unresponsiveness,
and/or being dropped on the reverse direction.

• integrate information from multiple measurement nodes, each
with only partial visibility into routing behavior.

We assume that a routing failure between a pair of endpoints can
be explained by a single problem. While addressing multiple fail-
ures is an interesting direction for future work, this paper focuses
on single failures.

4.1.1 Overview of Failure Isolation
The failure isolation component of LIFEGUARD is a distributed

system, using geographically distributed PlanetLab hosts to make
data plane measurements to a set of monitored destinations. Be-
cause many outages are partial, LIFEGUARD uses vantage points
with working routes to send and receive probes on behalf of those
with failing paths. Because many failures are unidirectional [20],
it adapts techniques from reverse traceroute [19] to provide reverse
path visibility. In the current deployment, vantage points send pings
to monitor destinations, and a vantage point triggers failure isola-
tion when it experiences repeated failed pings to a destination.

LIFEGUARD uses historical measurements to identify candidates
that could potentially be causing a failure, then systematically prunes
the candidate set with additional measurements. We outline these
steps first before describing them in greater detail.

1. Maintain background atlas: LIFEGUARD maintains an atlas
of the round-trip paths between its sources and the monitored

Level3 Telia ZSTTK

RostelecomNTT

TransTelecom

Target:
Smartkom

Source:
GMU

TraceRoute Historical TR Spoofed TR Hist. Reverse TR
Figure 4: Isolation measurements conducted for an actual outage. With
traceroute alone, the problem appears to be between TransTelecom and
ZSTTK. Using spoofed traceroute, reverse traceroute, and historical
path information, LIFEGUARD determines that the forward path is
fine, but that Rostelecom no longer has a working path back to GMU.

targets to discern changes during failures and generate candi-
dates for failure locations.

2. Isolate direction of failure and measure working direction:
After detecting a failure, LIFEGUARD isolates the direction of
failure to identify what measurements to use for isolation. Fur-
ther, if the failure is unidirectional, it measures the path in the
working direction using one of two measurement techniques.

3. Test atlas paths in failing direction: LIFEGUARD tests which
subpaths still work in the failing direction by probing routers on
historical atlas paths between the source and destination. It then
remeasures the paths for responsive hops, thereby identifying
other working routers.

4. Prune candidate failure locations: Routers with working paths
in the previous step are eliminated. Then, LIFEGUARD blames
routers that border the “horizon of reachability.” This horizon
divides routers that have connectivity to the source from those
that lack that connectivity.

4.1.2 Description of Fault Isolation
We illustrate the steps that LIFEGUARD uses to isolate failures

using an actual example of a failure diagnosed on February 24,
2011. At the left of Fig. 4 is one of LIFEGUARD’s vantage points,
a PlanetLab host at George Mason University (labeled GMU). The
destination, belonging to Smartkom in Russia, at the right, became
unreachable from the source. For simplicity, the figure depicts hops
at the AS granularity.

Maintain background atlas: In the steady state, LIFEGUARD uses
traceroute and reverse traceroute to regularly map the forward and
reverse paths between its vantage points and the destinations it is
monitoring. During failures, this path atlas yields both a view of
what recent paths looked like before the failure, as well as a histor-
ical view of path changes over time. These paths provide likely can-
didates for failure locations and serve as the basis for some of the
isolation measurements we discuss below. Because some routers
are configured to ignore ICMP pings, LIFEGUARD also maintains a
database of historical ping responsiveness, allowing it to later dis-
tinguish between connectivity problems and routers configured to
not respond to ICMP probes.

The figure depicts historical forward and reverse traceroutes with
the dotted black and red lines, respectively. The thick, solid black
line in Fig. 4 depicts the traceroute from GMU during the failure.
Traceroute can provide misleading information in the presence of
failures. In this case, the last hop is a TransTelecom router, sug-
gesting that the failure may be adjacent to this hop, between Trans-
Telecom and ZSTTK. However, without further information, oper-
ators cannot be sure, since the probes may have been dropped on
the reverse paths back from hops beyond TransTelecom.

Isolate direction of failure and measure working direction: LIFE-
GUARD tries to isolate the direction of the failure using spoofed
pings [20]. In the example, spoofed probes sent from GMU to
Smartkom reached other vantage points, but no probes reached
GMU, implying a reverse path failure. When the failure is unidirec-
tional, LIFEGUARD measures the complete path in the working di-
rection. Extending the spoofed ping technique, LIFEGUARD sends
spoofed probes to identify hops in the working direction while avoid-
ing the failing direction. For a reverse failure, LIFEGUARD finds a
vantage point with a working path back from D, then has S send
a spoofed traceroute to D, spoofing as the working vantage point.
In the example, GMU issued a spoofed traceroute, and a vantage
point received responses from ZSTTK and the destination. The
blue dashed edges in Fig. 4 show the spoofed traceroute.

If the failure had been on the forward path, the system instead
would have measured the working reverse path with a spoofed re-
verse traceroute from D back to S.

It is useful to measure the working direction of the path for two
reasons. First, since the path is likely a valid policy-compliant path
in the failing direction, it may provide a working alternative for
avoiding the failure. Second, knowledge of the path in the working
direction can guide isolation of the problem in the failing direction,
as we discuss below.

Test atlas paths in failing direction: Once it has measured the
working path, LIFEGUARD measures the responsive portion of the
path. For forward and bidirectional failures, the source can simply
issue a traceroute towards the destination.

For reverse failures, LIFEGUARD cannot measure a reverse tracer-
oute from D, as such a measurement requires a response from D to
determine the initial hops. Instead, LIFEGUARD has its vantage
points, including S, ping: (1) all hops on the forward path from S to
D and (2) all hops on historical forward and reverse paths between
S and D in its path atlas. These probes test which locations can
reach S, which cannot reach S but respond to other vantage points,
and which are completely unreachable. LIFEGUARD uses its at-
las to exclude hops configured never to respond. For all hops still
pingable from S, LIFEGUARD measures a reverse traceroute to S.

In the example, LIFEGUARD found that NTT still used the same
path towards GMU that it had before the failure and that Rostele-
com no longer had a working path. We omit the reverse paths from
most forward hops to simplify the figure. In this case, LIFEGUARD
found that all hops before Rostelecom were reachable (denoted
with blue clouds with solid boundaries), while all in Rostelecom
or beyond were not (denoted with light-gray clouds with dashed
boundaries), although they had responded to pings in the past.

Prune candidate failure locations: Finally, LIFEGUARD removes
any reachable hops from the suspect set and applies heuristics to
identify the responsible hop within the remaining suspects. For
forward outages, the failure is likely between the last responsive
hop in a traceroute and the next hop along the path towards the des-
tination. LIFEGUARD’s historical atlas often contains paths through
the last hop, providing hints about where it is trying to route.

For a reverse failure, LIFEGUARD considers reverse paths from D
back to S that are in its atlas prior to the failure. For the most recent
path, it determines the farthest hop H along that path that can still
reach S, as well as the first hop H’ past H that cannot. Given that
H’ no longer has a working path to S, contacting the AS containing
H’ or rerouting around it may resolve the problem.

If the failure is not in H’, one explanation is that, because H’
lacked a route, D switched to another path which also did not work.
In these cases, LIFEGUARD performs similar analysis on older his-
torical paths from D, expanding the initial suspect set and repeating

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30

R
es

id
ua

l d
ur

at
io

n
pe

r
fa

ilu
re

 (
m

in
ut

es
)

Minutes elapsed since start of failures

Mean
Median

25th

Figure 5: For our EC2 dataset, residual duration after outages have
persisted for X minutes. The graph shows that, once a problem has
persisted for a few minutes, it will most likely persist for at least a few
more minutes unless we take corrective action.

the pruning. Since Internet paths are generally stable [37], the fail-
ing path will often have been used historically, and there will often
be few historical paths between the source and destination.

Because both historical reverse paths from unresponsive forward
hops traversed Rostelecom, it seems highly likely this is the point
of failure. This conclusion is further supported by the fact that
all unreachable hops except Rostelecom responded to pings from
other vantage points, indicating that their other outgoing paths still
worked. We provide details on this and other examples at http:
//lifeguard.cs.washington.edu, and we provide details
on LIFEGUARD’s failure isolation in a tech report [32].

4.2 Deciding to Start and Stop Poisoning
Deciding whether to poison: As seen in Fig. 1, most outages re-
solve quickly. For the system to work effectively, it would be help-
ful to differentiate between outages that will clear up quickly and
those that will persist. If routing protocols will quickly resolve
a problem, then it would be better to wait, to avoid causing fur-
ther routing changes. If the protocols will not restore connectivity
quickly on their own, then poisoning may be a better approach.

The following analysis of our EC2 study (§2.1) shows that it is
possible to differentiate between these cases with high likelihood.
Fig. 5 shows the residual duration of these outages, given that they
have already lasted for X minutes. The median duration of an out-
age in the study was only 90 seconds (the minimum possible given
the methodology). However, of the 12% of problems that persisted
for at least 5 minutes, 51% lasted at least another 5 minutes. Fur-
ther, of the problems that lasted 10 minutes, 68% persisted for at
least 5 minutes past that. LIFEGUARD triggers isolation after mul-
tiple rounds of failed pings, and it takes an average of 140 seconds
to isolate a reverse path outage. If a problem persists through both
those stages, then the results suggest that the problem is likely to
persist long enough to justify using poisoning to fix it. We will
show in §5.2 that poisoned routes converge within a few minutes
in almost all cases, with little loss during the convergence period.
So, if there are alternative paths that avoid the problem LIFEGUARD
locates, our system should quickly restore connectivity.

Long-lasting problems account for much of the total unavailabil-
ity. As a result, even if LIFEGUARD takes five minutes to identify
and locate a failure before poisoning, and it then takes two minutes
for routes to converge, we can still potentially avoid 80% of the
total unavailability in our EC2 study. In §5.1, we will show that
it is possible to determine (with high likelihood) whether alternate
policy compliant paths will exist before deciding to poison an AS.
If no paths exist, LIFEGUARD does not attempt to poison the AS.

Deciding when to unpoison: Once LIFEGUARD accurately identi-
fies the AS A responsible for a problem, BGP poisoning can target
it and cause other ASes to route around A. However, A will even-
tually resolve the underlying issue, at which point we would like
to be able to revert to the unpoisoned path, allowing ASes to use
paths through A, if preferred. When the poisoned announcement is
in place, however, A will not have a path to the prefix in question.

LIFEGUARD uses a sentinel prefix to test reachability. Concerns
such as aggregation and address availability influence the choice of
sentinel. In our current deployment, the sentinel is a less specific
prefix containing both the production prefix and a prefix that is not
otherwise used. Responses to pings from the unused portion of
the sentinel will route via the sentinel prefix, regardless of whether
the hops also have the poisoned more-specific prefix. By sending
active ping measurements from this prefix to destinations that had
been unable to reach the production prefix prior to poisoning (e.g.,
E in Fig. 2), the system can detect when to unpoison the production
prefix. If the sentinel is a less-specific without any unused prefixes,
LIFEGUARD can instead ping the destinations within the poisoned
AS (e.g., A) or within captives of the poisoned AS (e.g., F).

5. LIFEGUARD EVALUATION
To preview the results of our evaluation, we find that LIFEGUARD’s

poisoning finds routes around the vast majority of potential prob-
lems, its approach is minimally disruptive to paths that are not ex-
periencing problems, and its failure isolation can correctly identify
the AS needing to be poisoned. Table 1 summarizes our key results;
the following sections provide more details.

We deployed LIFEGUARD’s path poisoning using the BGP-Mux
testbed [5], using its AS number and prefixes. LIFEGUARD con-
nected to a BGP-Mux instance at Georgia Tech, which served as
the Internet provider for the BGP-Mux AS (and hence for LIFE-
GUARD). For the poisoning experiments in this section, LIFEGUARD
announced prefixes via Georgia Tech into the commercial Internet.

We assessed the effects of poisoning in the absence of failures.
To obtain ASes to poison, we announced a prefix and harvested all
ASes on BGP paths towards the prefix from route collectors [26,
31]. We excluded all Tier-1 networks, as well as Cogent, as it is
Georgia Tech’s main provider. In §5.2 and §7.1, we evaluate tech-
niques to poison even these large ASes. For each of the remaining
harvested ASes,3 we first went from a baseline of O to a poisoned
announcement O-A-O, then repeated the experiment starting from
a baseline of O-O-O. We kept each announcement in place for 90
minutes to allow convergence and to avoid flap dampening effects.
For the duration of the experiments, we also announced an unpoi-
soned prefix to use for comparisons.

5.1 Efficacy
Do ASes find new routes that avoid a poisoned AS? We monitored
BGP updates from public BGP route collectors to determine how
many ASes found an alternate path after we poisoned an AS on
their preferred path. There were 132 cases in which an AS peering
with a route collector was using a path through one of the ASes
we poisoned. In 102 of the 132 cases (77%), the route collector
peer found a new path that avoided the poisoned AS. Two-thirds of
the cases in which the peer could not find a path were instances in
which we had poisoned the only provider of a stub AS.
Do alternate policy-compliant routes exist in general? We ana-
lyzed a large AS topology to show that, in the common case, al-
ternate paths exist around poisoned ASes. The topology, along

3We announced our experiments on the NANOG mailing list and
allowed operators to opt out their ASes. None did. A handful opted
out of an earlier Georgia Tech study, and we honored their list.

http://lifeguard.cs.washington.edu
http://lifeguard.cs.washington.edu

Criteria Summary Experimental Result
Effectiveness (§5.1) Most edge networks have routes that avoid poisoned

ASes, and we can calculate which do a priori
77% of poisons from BGP-Mux
90% of poisons in large-scale simulation

Disruptiveness (§5.2)
Working routes that already avoid the problem AS
reconverge quickly after poisoning

95% of paths converge instantly

Minimal loss occurs during convergence Less than 2% packet loss in 98% of cases

Accuracy (§5.3) Locates failures as if it had traceroutes from both ends Consistent results for 93% of inter-PlanetLab failures
Isolates problems that traceroute alone misdiagnoses 40% of cases differ from traceroute

Scalability (§5.4)
Quickly isolates problems with reasonable overhead 140 s for poisoning candidates, 280 probes per failure
Reasonably small additional update load for
addressing most of observed unavailability

< 1% if 1% of ISPs use LIFEGUARD
< 10% if 50% of ISPs use LIFEGUARD

Table 1: Key results of our LIFEGUARD evaluation, demonstrating its viability for addressing long-duration outages.

with AS relationships, is from a dataset combining public BGP
feeds with more than 5 million AS paths between BitTorrent (BT)
peers [9]. To simulate poisoning an AS A on a path from a source
S to an origin O, we remove all of A’s links from the topology. We
then check if S can restore connectivity while avoiding A (i.e., a
path exists between S and O that obeys export policies).

We check policies using the three-tuple test [25], as in §2.2. This
approach may miss alternate paths if the valley-free assumption is
too strict,4 and rarely used backup paths may not be in our topology.
Conversely, it may identify valley-free paths not used in practice.

To establish the validity of this methodology, we simulated the
Georgia Tech poisonings. In 92.5% of cases, the simulation found
an alternate path if and only if the AS found such a path following
our actual poisoning. In the remaining 7.5% of cases, the simula-
tion found an alternate path, but in practice the AS failed to find
one. In these cases, the source was an academic network connected
to both a commercial provider and an academic provider (which
only provides routes to academic destinations). These connections
made the AS multi-homed in our simulation. In practice, however,
the AS seems to reject routes from its commercial provider if the
route contained an academic AS, and we had poisoned one.

Having established that our simulation closely predicts the re-
sults of actual poisonings, we simulated poisoning ASes on the BT
and BGP feed paths. For each AS path with length greater than 3
(i.e., traversing at least one transit AS in addition to the destina-
tion’s provider), we iterated over all the transit ASes in the path
except the destination’s immediate provider and simulated poison-
ing them one at a time.5 An alternate path existed in 90% of the
10M cases. We then simulated poisoning the failures isolated by
LIFEGUARD in June 2011. Alternate paths existed in 94% of them.

5.2 Disruptiveness
How quickly do paths converge after poisoning? We used updates
from the BGP collectors to measure convergence delay after poi-
soning. We will show that, in most cases, if an AS was not routing
through the AS we poisoned, it re-converges essentially instantly
to its original path, requiring only a single update to pass on the
poison. Global convergence usually takes at most a few minutes.

First, we assess how quickly ASes that were using the poisoned
AS settle on a new route that avoids it. We also assess how quickly
routes converge for ASes that were not using the poisoned AS. As
explained above, we poisoned each harvested AS twice each using
different pre-poisoning baseline paths. After each announcement,
for each AS that peers with a route collector, we measured the delay
from when the AS first announced an update to the route collector

4It is well known that not all paths are valley-free in practice, and
we observed violations in the BitTorrent traceroutes.
5A multi-homed destination can use selective advertising to avoid
a particular provider. A single-homed destination can never avoid
having paths traverse its provider.

0.9999

0.999

0.99

0.9

 0 50 100 150 200 250 300 350 400 450 500

C
um

ul
at

iv
e

F
ra

ct
io

n
of

C
on

ve
rg

en
ce

s
(C

D
F

)

Peer Convergence Time (s)

Prepend, no change
No prepend, no change

Prepend, change
No prepend, change

Figure 6: Convergence time for route collector peer ASes after poi-
soned announcements. A data point captures the convergence for one
peer AS after one poisoned announcement. Change vs. no change in-
dicates if the peer had to change its path because it had been routing
through the poisoned AS. For Prepend, the baseline announcement be-
fore poisoning was O-O-O, whereas for No prepend it was O. The poi-
soned announcement was always O-A-O. Prepending reduces path ex-
ploration by keeping announcement length consistent.

to when it announced its stable post-poisoning route. We leave out
(route collector peer, poisoned AS) pairs if the peer AS did not have
a path to the LIFEGUARD prefix following the poisoning.

As seen in Fig. 6, a baseline announcement of O-O-O greatly
speeds convergence. More than 95% of the time, ASes that were
not using the poisoned AS converged essentially instantly upon re-
ceiving the poisoned update, as they did not need to change their
path, and 99% of them converged within 50 seconds (Prepend, No
Change line). In comparison, if we simply announce O as the
baseline before poisoning, less than 70% of the unaffected ASes
converged instantly, and 94% converged within 50 seconds (No
Prepend, No Change line). Similarly, using O-O-O as the baseline
helps ASes that had been routing via A settle on a new route faster:
96% converged within 50 seconds, compared to only 86% if we
use O as the baseline. Prepending keeps the announcements a con-
sistent length, which reduces path exploration for ASes not routing
through A. In fact, with prepending, 97% of unaffected ASes made
only a single update, informing neighbors only of the insertion of
the poisoned AS A into the route. Without prepending, only 64%
of these ASes made only one update. The other 36% explored al-
ternatives before reverting back to their original path.

These graphs capture per-AS convergence. Because announce-
ments need to propagate across the Internet and are subject to pro-
tocol timers as they do so, different ASes receive a poisoned an-
nouncement at different times.

We also assessed how long global convergence took, from the
time the first router collector receives an update for our prefix until
all route collector peer ASes had converged to stable routes. With
prepending, global convergence took at most 91 seconds in the me-
dian case, at most two minutes for 75% of poisonings, and at most
200s in 90% of poisonings. In contrast, without prepending, the

50th, 75th, and 90th percentiles are 133s, 189s, and 226s. Com-
pared to the delay following a poisoning, it generally takes slightly
less time for routes to converge globally when we remove the poi-
son and revert to the baseline announcement. Because most ASes
that were not using the poisoned AS reconverge to their original
path without exploring other options, we would not expect them to
experience transient loss during the global convergence period.
How much loss accompanies convergence? Our results indicate the
packet loss during convergence is minimal. We calculated loss rate
during convergence following our poisonings that used a baseline
of O-O-O. Every ten seconds for the duration of the experiment,
we issued pings from the poisoned LIFEGUARD prefixes to all 308
working PlanetLab sites. In general, many of the sites were not
routing via any particular poisoned AS, and so this experiment lets
us evaluate how much we disrupt working paths. We filtered out
cases in which loss was clearly due to problems unrelated to poi-
soning, and we excluded a PlanetLab site if it was completely cut
off by a particular poisoning. Following 60% of poisonings, the
overall loss rate during the convergence period was less than 1%,
and 98% of poisonings had loss rates under 2%. Some convergence
periods experienced brief spikes in loss, but only 2% of poisonings
had any 10 second round with a loss rate above 10%.
Can poisoning shift routes off an AS link without completely dis-
abling either AS? We demonstrate selective poisoning using two
BGP-Mux sites, University of Washington (UWash) and University
of Wisconsin (UWisc). Paths from most PlanetLab nodes to UWash
pass through the Internet2 (I2) Seattle PoP, then to Pacific North-
west Gigapop, and to UWash. Most PlanetLab paths to UWisc pass
through I2’s Chicago PoP, then through WiscNet, before reaching
UWisc. So, the BGP-Mux AS has UWash and UWisc as providers,
and they connect via disjoint paths to different I2 PoPs.

We tested if we could shift traffic away from the I2 Chicago PoP,
supposing the link to WiscNet experienced a silent failure. We ad-
vertised the same two prefixes from UWash and UWisc. We an-
nounced the first prefix unpoisoned from both. We poisoned I2 in
UWisc’s announcements of the second prefix, but had UWash an-
nounce it unpoisoned.

First, we show that paths that were not using I2 would not be
disrupted. We looked at paths to the two prefixes from 36 RIPE
RIS BGP peers. For 33 of them, the paths to the two prefixes were
identical and did not use I2. The other three ASes routed to the
unpoisoned prefix via I2 and WiscNet. For the selectively poisoned
prefix, they instead routed via I2 and PNW Gigapop, as expected.

We then compare traceroutes from PlanetLab hosts to the two
prefixes, to show that paths through I2 avoid the “problem.” For the
unpoisoned prefix, over 100 PlanetLab sites routed through I2 to
WiscNet. Focusing on just these PlanetLab sites, we assessed how
they routed towards the other prefix, which we selectively poisoned
for I2 from UWisc. For that prefix, all the sites avoided the link
from I2 to WiscNet. All but three of the sites routed via PNW
Gigapop and UWash, as we intended. The remaining three – two
sites in Poland and one in Brazil – used Hurricane Electric to reach
UWisc. Excepting these three sites, selective poisoning allowed
us to shift paths within a targeted network without changing how
networks other than the target routed.
Are Internet paths diverse enough for selective poisoning to be ef-
fective? This technique may provide a means to partially poison
large networks, and services with distributed data centers may have
the type of connectivity required to enable it. In our second selec-
tive poisoning experiment, we approximated this type of deploy-
ment, and we assess how many ASes we could selectively poison.
To make this assessment, we need to identify whether ASes se-
lect from disjoint paths, which would allow us to selectively poison

them. It is hard to perform this assessment in general, because we
need to know both which path an AS is using and which paths it
might use if that path became unavailable.

Route collectors and BGP-Mux let us experiment in a setting
in which we have access to these paths. We announced a prefix
simultaneously via BGP-Muxes at UWash, UWisc, Georgia Tech,
Princeton, and Clemson. This setup functions as an AS with five
PoPs and one provider per PoP. We iterated through 114 ASes that
provide BGP feeds. For each pair of AS A and BGP-Mux M in
turn, we poisoned A from all BGP-Muxes except M and observed
how A’s route to our prefix varied with M. We found that selective
poisoning allowed us to avoid 73% of the first hop AS links used by
these peers, while still leaving the peers with a route to our prefix.
In §2.3, we found that these five university providers allowed us to
avoid 90% of these links on forward paths to these same ASes.

5.3 Accuracy
Having demonstrated that LIFEGUARD can often use BGP poi-

soning to route traffic around an AS or AS link without causing
widespread disruption, we assess LIFEGUARD’s accuracy in locat-
ing failures. We show that LIFEGUARD seems to correctly identify
the failed AS in most cases, including many that would be not be
correctly found using only traceroutes. Our tech report provides
further analysis of LIFEGUARD’s failure isolation [32].
Are LIFEGUARD’s results consistent with what it would find with
control of both ends of a path? In general, obtaining ground truth
for wide-area network faults is difficult: emulations of failures are
not realistic, and few networks post outage reports publicly. Due to
these challenges, we evaluate the accuracy of LIFEGUARD’s failure
isolation on paths between a set of PlanetLab hosts used as LIFE-
GUARD vantage points and a disjoint set of PlanetLab hosts used as
targets.6 Every five minutes, we issued traceroutes from all vantage
points to all targets and vice versa. In isolating the location of a fail-
ure between a vantage point and a target, we only gave LIFEGUARD
access to measurements from its vantage points. We checked if
LIFEGUARD’s conclusion was consistent with traceroutes from the
target, “behind” the failure. LIFEGUARD’s location was consistent
if and only if (1) the traceroute in the failing direction terminated in
the AS A blamed by LIFEGUARD, and (2) the traceroute in the op-
posite direction did not contradict LIFEGUARD’s conclusion. The
traceroute contradicted the conclusion if it included responses from
A but terminated in a different AS. The responses from A indicate
that some paths back from A worked. We lack sufficient informa-
tion to explain these cases, and so we consider LIFEGUARD’s result
to be inconsistent.

We examined 182 unidirectional isolated failures from August
and September, 2011. For 169 of the failures, LIFEGUARD’s results
were consistent with traceroutes from the targets. The remaining
13 cases were all forward failures. In each of these cases, LIFE-
GUARD blamed the last network on the forward traceroute (just as
an operator with traceroute alone might). However, the destina-
tion’s traceroute went through that network, demonstrating a work-
ing path from the network back to the destination.
Does LIFEGUARD locate failures of interest to operators? We
searched the Outages.org mailing list [28] for outages that inter-
sected LIFEGUARD’s monitored paths [32]) and found two interest-
ing examples. On May 25th, 2011, three of LIFEGUARD’s vantage
points detected a forward path outage to three distinct locations.
The system isolated all of these outages to a router in Level3’s
Chicago PoP. Later that night, a network operator posted the fol-
lowing message to the mailing list: “Saw issues routing through
6We cannot issue spoofed packets or make BGP announcements
from EC2, and so we cannot use it to evaluate our system.

Chicago via Level3 starting around 11:05 pm, cleared up about
11:43 pm.” Several network operators corroborated this report.

In the second example, a vantage point in Albany and one in
Delaware observed simultaneous outages to three destinations: a
router at an edge AS in Ohio and routers in XO’s Texas and Chicago
PoPs. LIFEGUARD identified all Albany outages and some of the
Delaware ones as reverse path failures, with the remaining Delaware
one flagged as bidirectional. All reverse path failures were isolated
to an XO router in Dallas, and the bidirectional failure was iso-
lated to an XO router in Virginia. Several operators subsequently
posted to the Outages.org mailing list reporting problems with XO
in multiple locations, which is likely what LIFEGUARD observed.
Does LIFEGUARD provide benefit beyond traceroute? We now
quantify how often LIFEGUARD finds that failures would be incor-
rectly isolated using only traceroute, thus motivating the need for
the system’s more advanced techniques. In the example shown in
Fig. 4, traceroutes from GMU seem to implicate a problem for-
warding from TransTelecom, whereas our system located the fail-
ure as being along the reverse path, in Rostelecom. For the pur-
poses of this study, we consider outages that meet criteria that make
them candidates for rerouting and repair: (1) multiple sources must
be unable to reach the destination, and these sources must be able
to reach at least 10% of all destinations at the time, reducing the
chance that it is a source-specific issue; (2) the failing traceroutes
must not reach the destination AS, and the outage must be partial,
together suggesting that alternate AS paths exist; (3) and the prob-
lem must not resolve during the isolation process, thereby exclud-
ing transient problems. During June 2011, LIFEGUARD identified
320 outages that met these criteria [32]. In 40% of cases, the sys-
tem identified a different suspected failure location than what one
would assume using traceroute alone. Further, even in the other
60% of cases, an operator would not currently know whether or not
the traceroute was identifying the proper location.

5.4 Scalability
How efficiently does LIFEGUARD refresh its path atlas? LIFE-

GUARD regularly refreshes the forward and reverse paths it moni-
tors. Existing approaches efficiently maintain forward path atlases
based on the observations that paths converge as they approach the
source/destination [12] and that most paths are stable [11]. Based
on these observations, we implemented a reverse path atlas that
caches probes for short periods, reuses measurements across con-
verging paths, and usually refreshes a stale path using fewer probes
than would be required to measure from scratch. In combination,
these optimizations enable us to refresh paths at an average (peak)
rate of 225 (502) reverse paths per minute. We use an amortized
average per path of 10 IP option probes (vs. the 35 reported in
existing work [19]) and slightly more than 2 forward traceroutes.
It may be possible to improve scalability in the future by focus-
ing on measuring paths between “core” PoPs whose routing health
and route changes likely influence many paths,7 and by scheduling
measurements to minimize the impact of router-specific rate limits.
What is the probing load for locating problems? Fault isolation re-
quires approximately 280 probe packets per outage. We found that
LIFEGUARD isolates failures on average much faster than it takes
long-lasting outages to be repaired. For bidirectional and reverse
path outages, potential candidates for poisoning, LIFEGUARD com-
pleted isolation measurements within 140 seconds on average.

7For example, 63% of iPlane traceroutes traverse at least one of the
most common 500 PoPs (0.3% of PoPs) [17].

d = 5 minutes d = 15 min. d = 60 min.
T = 0.5 1.0 0.5 1.0 0.5 1.0

I
0.01 393 783 137 275 58 115
0.1 3931 7866 1370 2748 576 1154
0.5 19625 39200 6874 13714 2889 5771

Table 2: Number of additional daily path changes due to poisoning for
fraction of ISPs using LIFEGUARD (I), fraction of networks monitored
for reachability (T), and duration of outage before poisoning (d). For
comparison, routers currently make 110K–315K updates per day.

What load will poisoning induce at scale? An important question
is whether LIFEGUARD would induce excessive load on routers if
deployed at scale. Our earlier study showed that, by prepending, we
can reduce the number of updates made by each router after a path
poisoning. In this section, we estimate the Internet-wide load our
approach would generate if a large number of ISPs used it. While
our results serve as a rough estimate, we find that the number of
path changes made at each router is low.

The number of daily path changes per router our system would
produce at scale is I × T × P (d) × U , where I is the fraction
of ISPs using our approach, T is the fraction of ASes each ISP
is monitoring with LIFEGUARD, P (d) is the aggregate number of
outages per day that have lasted at least d minutes and are candi-
dates for poisoning, and U is the average number of path changes
per router generated by each poison. Based on our experiments,
U = 2.03 for routers that had been routing via the poisoned AS,
and U = 1.07 for routers that had not been routing via the poisoned
AS. For routers using the poisoned AS, BGP should have detected
the outage and generated at least one path update in response. For
routers not routing through it, the updates are pure overhead. Thus,
poisoning causes affected routers to issue an additional 1.03 up-
dates and and unaffected routers an additional 1.07 updates. For
simplicity, we set U = 1 in this analysis.

We base P (d) on the Hubble dataset of outages on paths between
PlanetLab sites and 92% of the Internet’s edge ASNs [20]. We filter
this data to exclude cases where poisoning is not effective (e.g.,
complete outages and outages with failures in the destination AS).
We assume that the Hubble targets were actually monitoring the
PlanetLab sites and define P (d) = H(d)/(IhTh), where H(d) is
the total number of poisonable Hubble outages per day lasting at
least d minutes, Ih = 0.92 is the fraction of all edge ISPs that
Hubble monitored, and Th = 0.01 is our estimate for the fraction
of total poisonable (transit) ASes on paths from Hubble VPs to their
targets. Because the smallest d that Hubble provides is 15 minutes,
we extrapolate the Hubble outage distribution based on the EC2
data to estimate the poisoning load for d = 5.

Scaling the parameters estimates the load from poisoning under
different scenarios. In Table 2, we vary the fraction of participating
ISPs (I), the fraction of poisonable ASes being monitored (T), and
the minimum outage duration before poisoning is used (d). We
scale the number of outages linearly with I and T . We scale with
d based on the failure duration distribution from our EC2 study.

LIFEGUARD could cause a router to generate from tens to tens
of thousands of additional updates. For reference, a single-homed
edge router peering with AS131072 sees an average of approxi-
mately 110K updates per day [4], and the Tier-1 routers we checked
made 255K-315K path updates per day [26]. For cases where only
a small fraction of ASes use poisoning (I ≤ 0.1), the additional
load is less than 1%. For large deployments (I = 0.5, T = 1) and
short delays before poisoning (d = 5), the overhead can become
significant (35% for the edge router, 12-15% for Tier-1 routers).
We note that reducing the number of monitored paths or waiting
longer to poison can easily reduce the overhead to less than 10%.

6. LIFEGUARD CASE STUDY
To demonstrate LIFEGUARD’s ability to repair a data plane out-

age by locating a failure and then poisoning, we describe a failure
between the University of Wisconsin and a PlanetLab node at Na-
tional Tsing Hua University in Taiwan. LIFEGUARD announced
production and sentinel prefixes via the University of Wisconsin
BGP-Mux. LIFEGUARD had monitored the PlanetLab node for a
month, gathering historical data. On October 3-4, 2011, nodes in
the two prefixes exchanged test traffic with the PlanetLab node,
and we sent traceroutes every 10 minutes from the PlanetLab node
towards the test nodes to track its view of the paths. We use the
measurements from the Taiwanese node to evaluate LIFEGUARD.

After experiencing only transient problems during the day, at
8:15pm on October 3, the test traffic began to experience a persis-
tent outage. When LIFEGUARD isolated the direction of the outage,
spoofed pings from Wisconsin reached Taiwan, but spoofed pings
towards Wisconsin failed, indicating a reverse path problem. LIFE-
GUARD’s atlas revealed two historical paths from Taiwan back to
Wisconsin. Prior to the outage, the PlanetLab node had been suc-
cessfully routing to Wisconsin via academic networks. According
to the atlas, this route had been in use since 3pm, but, prior to that,
the path had routed through UUNET (a commercial network) for
an extended period. The UUNET and academic paths diverged one
AS before UUNET (one AS closer to the Taiwanese site). LIFE-
GUARD issued measurements to see which of the hops on these re-
verse paths still could reach Wisconsin. These measurements estab-
lish a reachability horizon with UUNET and the ASes before it be-
hind the failure. During the failure, all routers along the academic
path from the divergence point to Wisconsin were still responsive
to pings, meaning they had a route to the University of Wisconsin.
However, hops in UUNET no longer responded to probes. In fact,
hand inspection of traceroutes from the PlanetLab node to Wis-
consin showed that, at 8:15pm, the path had switched to go via
UUNET, and the traceroutes had been terminating in UUNET.

Because the hops on the academic route had paths to Wisconsin,
it was a likely viable alternative to the broken path, and we used
LIFEGUARD to poison UUNET. For a brief period after LIFEGUARD
announced the poison, test traffic was caught in a convergence loop.
After convergence, the test traffic and a traceroute from Taiwan
successfully reached the production prefix via academic networks.
Traceroutes to the sentinel prefix continued to fail in UUNET until
just after 4am on October 4, when the path through UUNET began
to work again. In summary, LIFEGUARD isolated an outage and
used poisoning to re-establish connectivity until the outage was re-
solved. Once repaired, the poison was no longer necessary, and
LIFEGUARD reverted to the baseline unpoisoned announcement.

7. DISCUSSION

7.1 Poisoning Anomalies
Certain poisonings cause anomalous behavior. Some networks

disable loop detection, accepting paths even if they contain their
AS. Other networks do not accept an update from a customer if the
path contains a peer of the network. We discuss these two issues.

Some networks with multiple remote sites communicate between
sites across the public Internet, using the same AS number across
sites. One approach is to disable BGP’s loop prevention to ex-
change prefixes from the remote sites, even though they share an
origin AS. The paths for these prefixes allow the remote sites to
route to each other using BGP. Fortunately, best practices mandate
that, instead of disabling loop detection altogether, networks should
set the maximum occurrences of their AS number in the path. For

instance, AS286 accepts updates if it is already in the AS path. In-
serting AS286 twice into the AS path, however, causes it to drop
the update, thus enabling the use of poisoning. We expect ASes
that use the public Internet to communicate between remote sites
to be stubs (meaning they have no customers). We use poisoning to
bypass faulty transit networks, so have no need to poison stubs.

Some networks do not accept an update from a customer if the
path contains one of the network’s peers. For example, Cogent will
not accept an update that includes one of its Tier-1 peers in the
path, meaning that announcements poisoning one of these ASes
via Georgia Tech did not propagate widely. However, we could
poison them via BGP-Mux instances at universities that were not
Cogent customers, and 76% of route collector peers were able to
find a path that avoided a poisoned AS through which they had
previously been routing. While the filtering reduced the coverage
of our poisoning studies and will prevent poisoning from rerouting
around some failures, it is likely not a big limitation. First, most
failures occur outside of large networks (such as Cogent and Tier-
1s) [32, 36]. Second, we used poisoning to experiment with AS
avoidance, but most of the techniques and principles still apply to
other implementations, such as a modification of BGP to include a
new signed AVOID_PROBLEM(X,P) notification.

7.2 Address Use by the Sentinel Prefix
We proposed using a less-specific prefix with an unused sub-

prefix as a sentinel. We discuss the trade-offs when using three al-
ternative approaches. First, absent any sentinel, it is not clear how
to check for failure recovery or to provide a backup unpoisoned
route. Second, if an AS has an unused prefix that is not adjacent
to the production prefix, it can use the unused prefix as a sentinel,
even though it may lack a super-prefix that covers both prefixes.
This approach allows the AS to check when the failed route is re-
paired. However, this scheme does not provide a “backup” route to
the production prefix for networks captive behind the poisoned AS.
Third, if an AS lacks unused address space to serve as a sentinel, a
less-specific prefix will ensure that the poisoned AS and ASes cap-
tive behind it still have a route, even though the less-specific prefix
does not include an unused sub-prefix. Pings to the poisoned AS
and its captives will return via routes to the unpoisoned less-specific
prefix, and so they can be used to check for repairs.

Alternatively, a provider with multiple prefixes hosting the same
service can use DNS redirection to test when a problem has re-
solved, without using additional addresses. Such providers often
use DNS to direct a client to a nearby data prefix. Our scheme relies
on clients using the same route to reach all prefixes in the absence
of poison. To establish that this property holds, at least for Google,
we resolved a Google hostname at 20 PlanetLab sites around the
world, yielding a set of Google IP addresses from various data cen-
ters. We then issued traceroutes from the PlanetLab sites to the
set of IP addresses. Each PlanetLab site used a consistent path to
reach Google’s network for all IP addresses. Google then routed
the traffic to a particular data center. With this consistent routing,
if a provider discovers a routing problem affecting a set of clients
C, it could poison the prefix P1 serving those clients. It need not
poison its prefix P2 that serves other clients (possibly from a differ-
ent data center). Periodically, the provider’s DNS resolvers could
give a client from C an address from P2 and an address from P1,
with P1 serving as a failover. By checking server logs, the provider
could discern if the client was able to reach P2. When clients can
reach P2, the provider can remove the poison on P1.

8. RELATED WORK
Failure isolation. Hubble [20] informs our failure isolation ap-

proach. LIFEGUARD makes heavy use of reverse traceroute [19].
Feamster et al. measured failures between vantage points using

pings and traceroutes [13]. Upon detected a problem, PlanetSeer
triggered measurements from multiple vantage points [36]. How-
ever, after identifying partial outages, all further probes and analy-
sis focusing only on the local measurements.

Feldman et al. located the cause of BGP updates by assum-
ing that it was on the old path or the new path. They could pin-
point the likely cause of a BGP update to one or two ASes [14].
iSpy [39] identified prefix hijacking using a technique similar to
LIFEGUARD’s reachability horizon, but assumed that paths were
symmetric. LIFEGUARD uses reverse traceroute and spoofed probes
to more accurately determine the reachability horizon.

Failure Avoidance. Previous research used poisoning as a mea-
surement tool to uncover network topology [10] and default
routes [8]. While inspired by that work, we propose using poi-
soning operationally as a means to improve availability.

In the absence of a solution to long-lasting, partial outages, re-
searchers and companies have proposed systems to detour traffic
around outages using overlay paths [2, 6, 16]. These approaches
provide a great alternative when no other solutions exist. In contrast
to detouring, our poisoning approach does not require the expense
of an overlay and can carry traffic at core Internet data rates along
policy-compliant BGP paths that avoid the identified problem.

Entact used overlapping BGP prefixes to simultaneously mea-
sure alternative paths [38]. Bush et al. used an anchor prefix to
determine whether a test prefix should be reachable [8]. Similarly,
LIFEGUARD uses a sentinel prefix to test for repairs along the fail-
ing path while rerouting traffic to a path avoiding the outage.

MIRO proposed to enable AS avoidance and other functional-
ity by allowing ASes to advertise and use multiple inter-domain
paths [34]. The proposal retains much of the quintessence of BGP
and routing policies, but it requires modifications to protocols and
routers, meaning it faces a slow path to adoption. Our deployable
solutions and results on failure avoidance could perhaps present
some of the argument for the adoption of MIRO-like modifications.

9. CONCLUSION
Increasingly, Internet and cloud-based services expect the Inter-

net to deliver high availability. Nevertheless, partial outages that
last for hours occur frequently, accounting for a large portion of the
Internet’s overall end-to-end downtime. Such an outage can occur
when an ISP advertises a BGP route but fails to deliver packets on
the route. To address these problems, we introduce LIFEGUARD, a
system that locates the AS at fault and routes around it. Using mul-
tiple vantage points and spoofed probes, we show that LIFEGUARD
can identify the failing AS in the wild. We show that we can use
BGP poisoning to cause routes to avoid an AS without disrupting
working routes. An ISP can deploy our approach unilaterally to-
day. LIFEGUARD enables experiments that we hope will motivate
the need for and design of new route control mechanisms.

Acknowledgments
We gratefully acknowledge our shepherd Craig Labovitz and the
SIGCOMM reviewers. The BGP-Mux system would not be avail-
able without the help of researchers and network administrators at
the sites: Scott Friedrich, Michael Blodgett, Jeff Fitzwater, Jen-
nifer Rexford, Larry Billado, Kit Patterson, and Schyler Batey.
This work was partially funded by Google, Cisco, FAPEMIG, NSF

(CNS-0905568 and CNS-1040663), and the NSF/CRA Computing
Innovation Fellowship program. We are thankful for their support.

10. REFERENCES
[1] Abilene Internet2 network. http://www.internet2.edu/network/.
[2] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay

networks. In SOSP, 2001.
[3] R. Austein, S. Bellovin, R. Bush, R. Housley, M. Lepinski, S. Kent, W. Kumari,

D. Montgomery, K. Sriram, and S. Weiler. BGPSEC protocol.
http://tools.ietf.org/html/draft-ietf-sidr-bgpsec-protocol.

[4] The BGP Instability Report.
http://bgpupdates.potaroo.net/instability/bgpupd.html.

[5] BGPMux Transit Portal. http://tp.gtnoise.net/.
[6] C. Bornstein, T. Canfield, and G. Miller. Akarouting: A better way to go. In

MIT OpenCourseWare 18.996, 2002.
[7] M. A. Brown, C. Hepner, and A. C. Popescu. Internet captivity and the

de-peering menace. In NANOG, 2009.
[8] R. Bush, O. Maennel, M. Roughan, and S. Uhlig. Internet optometry: assessing

the broken glasses in Internet reachability. In IMC, 2009.
[9] K. Chen, D. R. Choffnes, R. Potharaju, Y. Chen, F. E. Bustamante, D. Pei, and

Y. Zhao. Where the sidewalk ends: Extending the Internet AS graph using
traceroutes from P2P users. In CoNEXT, 2009.

[10] L. Colitti. Internet Topology Discovery Using Active Probing. PhD thesis,
University di "Roma Tre", 2006.

[11] I. Cunha, R. Teixeira, and C. Diot. Predicting and tracking Internet path
changes. In SIGCOMM, 2011.

[12] B. Donnet, P. Raoult, T. Friedman, and M. Crovella. Efficient algorithms for
large-scale topology discovery. In SIGMETRICS, 2005.

[13] N. Feamster, D. G. Andersen, H. Balakrishnan, and M. F. Kaashoek. Measuring
the effects of internet path faults on reactive routing. In SIGMETRICS, 2003.

[14] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs. Locating
Internet routing instabilities. In SIGCOMM, 2004.

[15] L. Gao. On inferring autonomous system relationships in the Internet.
IEEE/ACM TON, 2001.

[16] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and
D. Wetherall. Improving the reliability of Internet paths with one-hop source
routing. In OSDI, 2004.

[17] iPlane. http://iplane.cs.washington.edu.
[18] J. P. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson, and

A. Venkataramani. Consensus routing: The Internet as a distributed system. In
NSDI, 2008.

[19] E. Katz-Bassett, H. V. Madhyastha, V. K. Adhikari, C. Scott, J. Sherry, P. van
Wesep, A. Krishnamurthy, and T. Anderson. Reverse traceroute. In NSDI, 2010.

[20] E. Katz-Bassett, H. V. Madhyastha, J. P. John, A. Krishnamurthy, D. Wetherall,
and T. Anderson. Studying black holes in the Internet with Hubble. In NSDI,
2008.

[21] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. Detection and
localization of network black holes. In INFOCOM, 2007.

[22] N. Kushman, S. Kandula, and D. Katabi. R-BGP: Staying connected in a
connected world. In NSDI, 2007.

[23] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed Internet routing
convergence. In SIGCOMM, 2000.

[24] K. K. Lakshminarayanan, M. C. Caesar, M. Rangan, T. Anderson, S. Shenker,
and I. Stoica. Achieving convergence-free routing using failure-carrying
packets. In SIGCOMM, 2007.

[25] H. Madhyastha, E. Katz-Bassett, T. Anderson, A. Krishnamurthy, and
A. Venkataramani. iPlane Nano: Path Prediction for Peer-to-Peer Applications.
In NSDI, 2009.

[26] D. Meyer. RouteViews. http://www.routeviews.org.
[27] P. Mohapatra, J. Scudder, D. Ward, R. Bush, and R. Austein. BGP prefix origin

validation. http://tools.ietf.org/html/draft-ietf-sidr-pfx-validate.
[28] Outages mailing list.

http://isotf.org/mailman/listinfo/outages.
[29] Packet clearing house. http://www.pch.net/home/index.php.
[30] B. Quoitin and O. Bonaventure. A survey of the utilization of the BGP

community attribute. Internet draft, draft-quoitin-bgp-comm-survey-00, 2002.
[31] RIPE RIS. http://www.ripe.net/ris/.
[32] C. Scott. LIFEGUARD: Locating Internet Failures Effectively and Generating

Usable Alternate Routes Dynamically. Technical report, Univ. of Washington,
2012.

[33] UCLA Internet topology. http://irl.cs.ucla.edu/topology/.
[34] W. Xu and J. Rexford. MIRO: Multi-path Interdomain ROuting. In SIGCOMM,

2006.
[35] J. Yates and Z. Ge. Network Management: Fault Management, Performance

Management and Planned Maintenance. Technical report, AT&T Labs, 2009.
[36] M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang. PlanetSeer: Internet path

failure monitoring and characterization in wide-area services. In OSDI, 2004.
[37] Y. Zhang, V. Paxson, and S. Shenker. The stationarity of Internet path

properties: Routing, loss, and throughput. ACIRI Technical Report, 2000.
[38] Z. Zhang, M. Zhang, A. Greenberg, Y. C. Hu, R. Mahajan, and B. Christian.

Optimizing cost and performance in online service provider networks. In NSDI,
2010.

[39] Z. Zhang, Y. Zhang, Y. C. Hu, Z. M. Mao, and R. Bush. iSpy: detecting IP
prefix hijacking on my own. In SIGCOMM, 2008.

http://iplane.cs.washington.edu
http://www.routeviews.org
http://isotf.org/mailman/listinfo/outages
http://www.ripe.net/ris/
http://irl.cs.ucla.edu/topology/

	Introduction
	Background and Motivation
	Quantifying Unreachability from EC2
	Assessing Policy-Compliant Alternate Paths
	Current Approaches to Address Failures

	Enabling Failure Avoidance
	LIFEGUARD's Failure Remediation
	Minimizing Disruption of Working Routes
	Partially Poisoning ASes

	Applying Failure Avoidance
	Locating a Failure
	Overview of Failure Isolation
	Description of Fault Isolation

	Deciding to Start and Stop Poisoning

	LIFEGUARD Evaluation
	Efficacy
	Disruptiveness
	Accuracy
	Scalability

	LIFEGUARD Case Study
	Discussion
	Poisoning Anomalies
	Address Use by the Sentinel Prefix

	Related Work
	Conclusion
	References

