
Characterizing Rule Compression Mechanisms in
Software-defined Networks

Curtis Yu1, Cristian Lumezanu2, Harsha V. Madhyastha3, Guofei Jiang2

1 University of California, Riverside
2 NEC Labs America

3 University of Michigan

Abstract. Software-defined networking (SDN) separates the network policy spec-
ification from its configuration and gives applications control over the forwarding
rules that route traffic. On large networks that host several applications, the num-
ber of rules that network switches must handle can easily exceed tens of thou-
sands. Most switches cannot handle rules of this volume because the complex
rule matching in SDN (e.g., wildcards, diverse match fields) requires switches to
store rules on TCAM, which is expensive and limited in size.
We perform a measurement study using two real-world network traffic traces to
understand the effectiveness and side-effects of manual and automatic rule com-
pression techniques. Our results show that not using any rule management mecha-
nism is likely to result in a rule set that does not fit on current OpenFlow switches.
Using rule expiration timeouts reduces the configuration footprint on a switch
without affecting rule semantics but at the expense of up to 40% increase in con-
trol channel overhead. Other manual (e.g., wildcards, limiting match fields) or
automatic (e.g., combining similar rules) mechanisms introduce negligible over-
head but change the original configuration and may misdirect less than 1% of the
flows. Our work uncovers trade-offs critical to both operators and programmers
writing network policies that must satisfy both infrastructure and application con-
straints.

1 Introduction

Software-defined networking (SDN) enables flexible and expressive network manage-
ment by separating the policy specification from configuration. Applications and opera-
tors work with abstract network views [19] and specify policies using an API. A central-
ized controller program translates the high-level policies into low-level configurations—
expressed as forwarding rules—and installs them into the switch memory using a spe-
cialized protocol, such as OpenFlow [16].

To maintain network performance, the set of forwarding rules installed at a switch
must fit into the switch’s memory. Two factors complicate this. First, as more appli-
cations adopt SDN, the number of rules required to express their policies on every
switch grows, similar to how BGP tables have grown with the spread of the Internet.
Researchers have observed that an average top-of-rack (ToR) switch would have to hold
around 78K rules with the default expiration timeout [5,12]. Second, switches store
wildcard rules in TCAM, which is expensive and limited in size. Most programmable
switches can hold only a few thousand wildcard-based rules.

There are two general approaches to ensure that application policies do not result
in too many rules: compression and caching. Network control programs can reduce the

number of rules manually (by relying on programmers to employ OpenFlow constructs
such as rule expiration timeouts or wildcards [27,5]) or automatically (by eliminating
redundant rules or combining rules with related patterns). Compression may limit the
expressivity of the configuration as it changes the original rule space. In addition, when
rules are generated in response to traffic, it is difficult to predict how many rules we
need a priori to tune the compression accordingly. Another approach is to cache the
most popular rules in TCAM and rely on additional (software) switches or the con-
troller to manage traffic not matching the cached rules [13]. This preserves the original
configuration but may introduce additional devices and delay in the data plane of pack-
ets matching less popular rules.

In this paper, we use two sets of real world network traffic data to study the effec-
tiveness and side-effects of manual and automatic rule compression. We seek to answer
the following questions: should SDN rely on programmers to employ mechanisms that
reduce the number of rules installed on switches and if so, what are the most effective
such mechanisms? or can SDN benefit from an automated rule reduction system that sits
between the controller and switches and optimizes how rules are installed on switches?
Our work explores trade-offs critical to both operators and programmers writing net-
work policies that must satisfy both infrastructure and application constraints.

First, we show how existing mechanisms that programmers and applications em-
ploy, such as reducing rule expiration timeout, using wildcards, or limiting the match
fields, manage the rules on a switch (Section 4). Lowering rule timeouts can reduce the
number of rules by 41–79%, as compared to the default operation, but at the expense of
increasing the utilization on the constrained controller-to-switch channel by up to 40%.
Even such high compression rates may be insufficient for most OpenFlow switches on
the market. Using wildcards or limiting the match fields can further improve the con-
figuration footprint but also limits the expressivity of the configuration as the original
rule semantics change.

Second, we show that automatic rule compression can benefit SDN. We introduce
and evaluate a simple mechanism that encodes rules using binary trees to identify and
combine similar rules. (Section 5). This reduces the configuration size on a switch by as
much as 62% compared to normal operation and at little change in network overhead.
However, such benefit comes at a cost: aggressive automatic rule compression can also
result in some flows (<1%) being misdirected.

2 Motivation

In this section, we discuss how programmable switches store rules and implement rule
matching. We also review related research work and potential solutions for reducing the
number of rules. To keep the discussion simple, we consider OpenFlow as the de facto
protocol for installing and managing switch configurations.

2.1 Rules and memory

A network’s configuration consists of the forwarding rules installed at the switches.
Every rule consists of a bit string (with 0, 1, and * as characters) that specifies which

packets match the rule, an action (to be performed by the switch on matched packets),
and a set of counters (which collect statistics). Possible actions include “forward to
physical port”, “forward to controller”, “drop”, etc. Each rule has two expiration time-
outs: a soft one, counted from the time of the last packet that matched the rule, and a
hard one, from the time when the rule was installed.

Switch Max # rules Source
NEC PF5820 750 [1]
HP ProCurve 5406zl 1500 [5]
Pronto 3290 4000 [2]
HP 3800 10k (routing) [10]
NEC PF5240 64k-160k [1]
IBM G8264 97k [11]

Table 1: Several OpenFlow switches specify the maximum number of forwarding rules that
they store. Each rule can contain any subset of the 12 fields specified in the OpenFlow v1.0
specification [22], which is used by most switches on the market. The HP 3800’s fact sheet
specifies the maximum number of routing, rather than OpenFlow, entries; a routing entry can be
considered an OpenFlow entry with matches only on layer 3 fields.

Implementation details of how rules are stored and matched is left to the discretion
of each switch vendor [24]. A common approach is for switches to store wildcard rules
in TCAM and exact match rules in SRAM. TCAM is fast and can support wildcards
efficiently. However, since it is also expensive and power hungry, its size on switches
is limited. On the other hand, SRAM is cheaper and is available in higher capacity, but
has a higher lookup latency because it is often off-chip and uses search structures (e.g.,
hash tables and tries) to locate entries.

Switch vendors do not advertise the details of their OpenFlow implementation. In
addition, the number of OpenFlow rules that a switch can store in hardware is not al-
ways fixed and depends on how rules are formed (e.g., whether they have wildcards,
what fields they match on). We studied the public datasheets for six popular OpenFlow
switches and compiled their published OpenFlow table limits in Table 1. Unless oth-
erwise noted, the numbers correspond to 12-tuple OpenFlow rules. Independent mea-
surements and personal communication with vendors indicate that the values are rep-
resentative for current OpenFlow switches [24,3]. Prior work [5,12] has observed that
a typical ToR data center switch may store roughly 78K rules, an order of magnitude
larger than most switches in the table. Although architectural and algorithmic advances
in switch design may extend the memory limits further (e.g., by using memory other
than TCAM or by making software lookups faster), reducing the configuration size to
begin with is still essential to preserve flexibility and minimize the cost of lookups.

2.2 Managing configuration size

There are two types of solutions to manage configuration size: architectural-based and
software-based. Architectural-based solutions seek to optimize the performance of a
switch through various architectural design changes [2], but are slow to develop and
integrate. Software-based methods seek to reduce the size of the configuration that can

be stored on current architectures. We focus on software-based configuration size man-
agement and discuss the two main approaches: compressing the rule set and caching
the more popular rules. In this paper, we study compression-based techniques.

Compression Compression-based mechanisms are automatic (i.e., without program-
mer involvement) or manual (i.e., require actions from the programmer).

Manual. Personal communication with SDN operators and previous work [5,27]
indicate several OpenFlow-based mechanisms to reduce the flow table size on a switch.
These methods limit the number of rules by having existing rules cover more traffic [5]
(e.g., using wildcards rather than exact matches, using fewer match fields) or cover the
same traffic for shorter periods of time (e.g., setting smaller rule expiration timeouts).
However, this also results in a less expressive configuration because it reduces the abil-
ity to implement complex policies, such as multipathing [21]. Furthermore, wildcards
and longer timeouts reduce visibility into the network as they increase the coarseness
of the statistics that switches gather about flows.

Automatic. Rule management has been studied in the context of IP routing table
compaction [25], with the goal of restricting the usage of TCAM [15,23]. While some
of these methods (e.g., [15]) use binary trees to identify similar rules (like the approach
we present later in Section 5), existing methods work on a “single IP to out port” ac-
tion and are not easily applicable to OpenFlow rules, which may have as many as 12
different match fields to be aggregated at once. The TCAM Razor approach uses de-
cision trees and multi-dimensional topological transformations to efficiently compress
packet-classification rules [17,14], but cannot easily adapt to incremental rule changes.
To the best of our knowledge, none of these methods have been implemented in an
OpenFlow-based network.

Policy composition and arbitration frameworks such as Frenetic [7], NetCore [18],
and PANE [8] manage application policies to ensure that there are no conflicting or
overlapping rules. vCRIB [20] intelligently places rules on different OpenFlow switches
while being aware of the resources that the rules utilize. Although these systems can
optimize the rules they place on switches (e.g., by eliminating redundancies), their focus
is on managing the policies installed across the network, rather than on reducing the
configuration size on any single switch.

Caching Rather than compressing the rule set, Katta et al. propose to keep only the
more popular rules in TCAM and use additional (software) switches or the network
controller to manage the traffic that does not match on the cached rules [13]. This ap-
proach preserves the semantics of the original rule space at the expense of additional
devices or delay on the data path of a subset of the traffic.

3 Method and data

We use two traces of real-world network traffic to characterize the effectiveness of man-
ual and automatic rule compression techniques in reducing the flow table size.

Data. We use a packet trace from a campus network and a flow-level trace from a
nation-wide research network. Our goal is to assess the potential of rule compression

 64

 256

 1024

 4096

 16384

 65536

 262144

 20 40 60 80 100 120 140

N
um

be
r

of
 c

on
cu

rr
en

t r
ul

es

Time (minutes)

TO = ∞ TO = 60s TO = 30s TO = 5s

(a)

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 0 20 40 60 80 100 120 140 160

A
ve

ra
ge

 n
um

be
r

of
 c

on
cu

rr
en

t r
ul

es

Time (minutes)

/32 /28 /24 /20 /16

(b)
Fig. 1: (a) Maximum number of concurrent rules as we vary the timeout after which rules expire
and (b) average number of rules over time as we vary the IP prefix size from /32 to /16.

mechanisms when regular network traffic traverses OpenFlow devices. Thus, our traces
are not collected from OpenFlow-based networks, whose traffic may already be adapted
to the programmabile nature of the network. The first dataset, Campus, was collected
by Benson et al. [4] at an edge switch of a large US campus network in Jan 2010 and
contains 115K flows over two hours. The second dataset, Abilene, contains 1% sampled
Netflow data from the Internet2 network, collected at the Washington, DC router in Feb
2013. The trace contains around 12M flows over three hours. For anonymity, the IP
addresses in the Abilene trace have their last 11 bits zeroed out. These two datasets are
typical for two important OpenFlow switch usage scenarios: at the edge and at the core
of a network.

Rule generation. Since neither of the two networks where the traces were collected
is OpenFlow-enabled, we simulate the operation of an OpenFlow network to determine
the set of rules that would be installed to handle the traffic. We first identify all five-
tuple flows (src IP, dst IP, src port, dst port, protocol) in each dataset and assume that
each flow must be handled by one rule (i.e., with no wildcards). We create matches on
five fields rather than all 12 supported by existing OpenFlow switches because these are
the fields for which our traces include information. We assume a switch with a single
flow table, conforming to OpenFlow v1.0, which is implemented on most switches on
the market.

As the data sets do not have any information about the actual out port number used
for every flow, we use the following heuristics to determine the action of each rule. Since
the Abilene dataset contains next-hop IP information, we associate every next-hop IP
with a unique out port. For the Campus data set, we simulate a 24-port switch, where
every flow is assigned to an out port based on its destination IP prefix. We assume a
reactive OpenFlow deployment (i.e., the installation of the rule corresponding to a flow
is triggered by the first packet in the flow and its removal by the timeouts), as it offers a
dynamic model for rule management and a worst case scenario for evaluation (because
it maximizes the total number of rules that are generated).

Evaluation metrics. To measure the effectiveness of rule reduction techniques, we
use the maximum value across time of the total number of rules installed on the switch
at any moment in time. To measure the side effects of reducing the number of rules, we
measure the rate of controller-to-switch operations (to estimate overhead).

Campus Abilene
rules ops/sec # rules ops/sec

no mgmt. 115K 46 12M 1255
60s timeout 11K 176 100.5K 2800
Timeouts (§4.2)
- 30s 7,982 (-27%) 200 (+14%) 53K (-47%) 2,914 (+1.2%)
- 10s 6,757 (-39%) 233 (+32%) 29K (-71%) 3,214 (+12%)
- 5s 6,509 (-41%) 247 (+40%) 21K (-79%) 3,631 (+26%)
Match fields (§4.3)
- dest-only 7,052 (-36%) 73 (-59%) 75K (-26%) 1,949 (-32%)
- IP-only 4,460 (-59%) 125 (-29%) 53K (-47%) 1,215 (-58%)
Wildcard (IP granularity) (§4.4)
- \24 8479 (-23%) 69 (-61%) - -
- \16 8225 (-25%) 66 (-63%) 100K (-0%) 2,784 (-3%)
- \8 8218 (-25%) 66 (-63%) 99K (-1.5%) 2,752 (-4%)
IP-only, 60s 4,460 125 53K 1,215
Simple aggregation (§5.1)
T = 100% 3,568 (-20%) 121 (-3%) 46K (-13%) 1,277 (+5%)
Aggressive aggregation (§5.2)
T = 25% 1,695 (-62%) 69 (-45%) 40K (-24%) 1,189 (-2%)
T = 50% 2,676 (-40%) 85 (-32%) 43K (-19%) 1,234 (-1%)
T = 75% 3,122 (-30%) 106 (-15%) 45K (-15%) 1,265 (0%)

Table 2: Comparison of various rule management methods. For each method, we show for both
datasets the maximum number of concurrent rules and the 95th percentile value (across minutes)
of operations per second. Percentages for number of rules and ops/sec are in comparison to the
default OpenFlow operation of using a 60s timeout (for the manual techniques) and to the IP-only
rules with 60s timeout (for the automatic aggregation).

4 Manual Rule Management

In this section, we study manual solutions for reducing the number of rules on an
OpenFlow switch. These are solutions that programmers must proactively use in their
code. We derive them from personal communication with SDN operators and previ-
ous work [5,27]. These mechanisms limit the time a rule stays on the switch (through
rule expiration timeouts), the space occupied by a rule on the switch (by reducing the
number of fields to match on), or the total number of rules (by using wildcards).

4.1 Not managing rules

Figure 1(a) shows the number of concurrent rules that would have to be held on an
OpenFlow switch that forwards the flows in the Campus dataset. We assume rules do
not expire (TO =∞) and contain exact matches on all five fields mentioned in Section 3.
Since rules never expire, their number is continually increasing as new flows arrive,
reaching a maximum of 115,323 rules at the end of the trace. We repeat the experiment

for the Abilene data and find that it generates more than 12M rules. Recall however that
the Abilene IPs have their last 11 bits zeroed, therefore the rules are essentially wildcard
rules; the number of exact match rules will be much higher. These numbers exceed
the maximum number of flows supported by all but one of the OpenFlow switches
described in Table 1.

4.2 Timeouts

We vary the soft timeout for each rule from 5s to 60s (the default timeout value in Open-
Flow). Rules with short timeouts are expunged sooner and may need to be reinstalled if
there are subsequent packets matching the rule. Large timeouts keep the rule in mem-
ory longer and are suited for long flows with lower packet arrival rates. Figure 1(a) and
Table 2 show that, as the soft timeout becomes smaller, the number of concurrent rules
decreases and the rate of operations increases. Current switches typically handle around
275 operations (i.e., rule installations or deletions) a second [5] and could support the
95th percentile operation load in the Campus dataset but not in the Abilene trace.

4.3 Match fields

Having fewer match fields should decrease the memory footprint of an OpenFlow
rule. We consider two smaller matches: on IP-only (source and destination, no ports)
and on destination-only (destination IP and port, no source). Table 2 shows that both
destination-only and IP-only matches lower the number of concurrent rules by at least
26%, as compared to 5-tuple rules with 60s timeout. Though these rule savings are sig-
nificant, the maximum number of concurrent rules with the Abilene trace is still quite
high compared to the memory capacity of three of the OpenFlow switches in Table 1.
While fewer rules result in a lower rate of operations on the switch, since the flow ar-
rival is not uniform, the 95th percentile rate of operations per second in the Abilene
trace is over 4x higher than the threshold of 275.

4.4 Wildcards

Wildcard-based rules cover a larger part of the flow-space and thus, fewer rules are nec-
essary. However, they limit 1) the expressivity of the configuration because they cannot
perform fine-grained matching (e.g., for multipathing [21]), and 2) the application’s vis-
ibility into the network because the controller cannot request statistics on the individual
flows that match the rule.

To evaluate the effect of wildcards on the flow table size, we consider the original 5-
tuple rules, as well as the destination-only and IP-only rules. For each rule, we introduce
wildcards in the rightmost bits of IP addresses, effectively reducing them to prefixes.
Figure 1(b) and Table 2 show that the average number of rules over each minute de-
creases as we vary the IP prefix size from /32 to /16. The savings (23% in the Campus
data) come at the expense of more policy violations (30% of packets are forwarded dif-
ferently). Combining wildcards with fewer match fields further reduces the number of
rules, but not always sufficiently enough to fit into the memory of all switches in Ta-
ble 1. The reduction in number of rules is lesser in the Abilene data because it includes

r4: r5: r3:r2:

r1:

src tree

dst tree

r4: r5:

r7:

r4:r5:

r7:

r4:r5:
r3:

r1:

r2:

r4: r5:

r6:r1:

r4:r5:

r1:

r6:

(a) (b) (c)

Fig. 2: Simple binary tree aggregation. For simplicity, we represent the subtrees corresponding
to the last two bits of source and destination IPs. See Figure 3 for example rules mapped on these
subtrees.

r4:1.1.1.0

r5:1.1.1.1

r1:1.1.1.0/31

r2:1.1.1.2

r3:1.1.1.3

Src Rules

r2:2.1.1.0

r3:2.1.1.0
r1:2.1.1.0/31

r5:2.1.1.1

r4:2.1.1.3

Dst Rules

r6:1.1.1.2/31

r6:2.1.1.0

r4:1.1.1.0

r5:1.1.1.1

r1:1.1.1.0/31

r6:1.1.1.2/31

r6:2.1.1.0 r1:2.1.1.0/31

r5:2.1.1.1

r4:2.1.1.3

r7:1.1.1.0/30

r7:2.1.1.0/31

r4:1.1.1.0

r5:1.1.1.1

r7:1.1.1.0/30

r5:2.1.1.1

r4:2.1.1.3

r7:2.1.1.0/31

Fig. 3: Examples of rules mapping to the subtrees in Figure 2.

only /21 addresses. As with limiting the match fields, using wildcards reduces the ex-
pressivity of the installed configuration and our ability to retrieve information about the
original rule set (e.g., counters) as the rule semantics change.

4.5 Summary

The most consistently effective way to reduce the number of rules is by lowering rule
expiration timeouts. Although it introduces a large network overhead because of the
increased control channel operation rate, it preserves the original rule semantics and the
controller’s ability to query the counters of the original rules. Other approaches limit
the control channel overhead at the expense of changing the original rule semantics.

No manual rule compression method is a panacea: as Table 2 shows, even in the
best case compression scenario, the number of rules for Abilene cannot fit on half of the
switches in Table 1. In reality, the type of traffic and the goal of network operators, in
addition to rule compression algorithms, play a large role in determining how to fit the
configuration on switches.

5 Automatic Rule Management

We now consider the scenario where the OpenFlow controller uses an automatic mech-
anism to reduce the number of rules. To the best of our knowledge there is no existing

mechanism for rule space compression for SDN controllers. Existing rule compression
approaches focus on IP routing table compaction [15,23] or minimizing packet clas-
sifiers in TCAM [17,6]. They use binary trees or decision trees to identify redundant
and similar rules and focus on simple IP-based rules or on how to optimize ranges that
cannot be stored as a simple prefix. Their applicability to OpenFlow is not clear yet
as OpenFlow rules are more complex (up to 12 matching fields) [14]. Furthermore,
IP-based rule management techniques cannot easily adapt to incremental rule changes.

To understand the potential of automatic rule compression, we propose a simple
approach, based on the work of Liu [15], that uses binary trees to identify and aggregate
related rules. In doing so, our goal is to provide a simple compression baseline. We do
not seek to either introduce a novel OpenFlow table compaction method or to fully
replicate and compare with previous rule aggregation methods built for IP-based rules.
Evaluating these approaches within the scope of OpenFlow is subject to future work.

5.1 Simple aggregation

To reduce the memory footprint of the configuration installed on a switch, we automat-
ically aggregate similar rules into a single rule. A network controller can accomplish
this by intercepting all OpenFlow control messages and storing the state of all switches
in-memory. On a rule install to a switch, the controller adds the rule to its in-memory
state for the switch and checks for aggregation. If aggregation is not possible, the con-
troller simply installs the rule into the switch. Otherwise, it sends an aggregated rule
and deletes all rules that are covered by it. Similarly, on a rule removal, the controller
checks to see if it is part of any aggregated ruleset and appropriately reinserts rules as
necessary.

To build a proof of concept implementation of rule reduction and demonstrate its ef-
fectiveness, we use binary trees [26] to store and aggregate rules on a particular switch.
Because we use binary trees, we are limited to only IP-based rules. We are currently
exploring other possibilities that can accommodate more header fields.

For every switch, we maintain two binary trees: one based on source IP addresses
and the other based on destination IP addresses. Every node corresponds to a source or
destination address prefix. When the controller wants to install a rule r to a switch, it
adds the rule action to both the source and destination trees at the nodes corresponding
to the source and destination prefix included in r.

Given this binary tree based representation of rules installed at a switch, we aggre-
gate rules as follows. Consider a new rule r added at nodes s and d in the source and
destination trees, respectively. We can potentially aggregate if r has the same action as
another rule r′ and if r′ satisfies one of the following conditions in both the source and
destination trees: 1) r and r′ are at the same node in the tree, 2) r′ is r’s parent, or 3) r
and r′ are siblings. Moreover, in the case that r is aggregated up to its parent in either
tree, we recursively continue checking upwards in the source and destination trees to
see if further opportunities for aggregation exist.

Figures 2 and 3 show a three-level sub-tree representing the last two bits of the IP
space, along with example rules. Different colors represent different rule actions. First,
rules r2 and r3 are aggregated into r6 because they a) have the same associated action
(blue), b) are at the same node in the destination tree, and c) are siblings in the source

tree. Thereafter, recursive checks for aggregation find that r1 and r6 can be aggregated
into r7. On the other hand, though r4 and r5 have the same action (red) and are siblings
in the source tree, they cannot be aggregated since they do not satisfy any one of criteria
1), 2), and 3) mentioned above.

5.2 Aggressive aggregation

As described so far, we can aggregate a rule r up to its parent node only if there exists
another rule with the same action at r’s sibling. This limits the ability to aggregate
similar rules when two rules are not at the same node or share a parent, but share a
common ancestor. For example, in Figure 2, although r4 and r5 could not be aggregated
because they do not have a common parent in the destination tree, they could potentially
be aggregated up to their common grandparent.

However, unless we place any restrictions, aggregating rules with common ances-
tors could result in the aggregation of very dissimilar rules. For example, two rules that
are at the leftmost and rightmost nodes in either tree (as dissimilar as they can get),
can be aggregated up to their common ancestor—the root. In such cases, the aggregated
rule will span a very large part of the IP address space, and matched packets will be
associated with an action that is perhaps not intended by the application policy.

To limit the aggressiveness of aggregation with common ancestors, we use a thresh-
old T . We install an aggregated rule at a node in the source or destination tree only if the
controller has already inserted rules that are associated with at least T% of the leaves
in the subtree rooted at the node. For example, in Figure 2, we could aggregate r4 and
r5 into the root of the destination tree if T ≥ 50%.

One of the side-effects of aggressive aggregation is that it can violate application
policies. When threshold-based aggregation is used, an aggregated rule may match
packets that are not covered by rules previously installed by the controller. In the ab-
sence of the aggregated rule, these packets would trigger a PacketIn message sent to
the controller, to which the controller may have chosen to insert a rule with a different
action than the aggregated rule. Later, we evaluate the extent to which policy violations
occur and the trade-offs involved in eliminating them.

5.3 Evaluation

Table 2 shows the results of our measurement.
Rule savings of simple aggregation. Figure 4 shows how the rule savings vary

with the use of wildcards i.e., reducing the IP prefix size (ignore the lines for T <
100% for now). In the Abilene dataset, as we decrease the prefix size, the potential for
aggregation increases. Without aggregation, specifying rules at /16 granularity (rather
than /21) reduces their number to only around 40K (compared to slightly over 50K). In
contrast, when using aggregation, the maximum number of rules is further reduced by
third (to around 25K). The savings are even bigger for the Campus data set: up to 62%
savings when aggregating at /28 prefix).

Overhead of simple aggregation. Aggregation may increase the number of switch
operations, because one rule addition or deletion performed by the controller can trans-
late to several operations at the switch. This is reflected in the Abilene data where the

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 20 22 24 26 28 30 32

M
ax

 n
um

be
r o

f c
on

cu
rre

nt
 ru

le
s

IP prefix size

Baseline
T = 100%
T = 75%
T = 50%
T = 25%

 0

 10000

 20000

 30000

 40000

 50000

 60000

 10 12 14 16 18 20

M
ax

 n
um

be
r o

f c
on

cu
rre

nt
 ru

le
s

IP prefix size

Baseline
T = 100%
T = 75%
T = 50%
T = 25%

(a) (b)

Fig. 4: Maximum number of concurrent rules needed to cover the (a) Campus and (b) Abilene
flows, as we vary the value of T and use wildcards.

operation rate increases slightly by 5% (see Table 2). However, when we have many
aggregations, we may also save operations because we delete an aggregated rule from
the switch only when all rules it aggregates are deleted. Since the Campus data has
more rule savings (and implicitly more higher-in-the-tree aggregations), the number of
operations decreases slightly by 3%.

Is aggressive aggregation effective? Table 2 and Figure 4 show that aggressive
aggregation can reduce dramatically the number of rules (by 62% for Campus and 24%
for Abilene) and the rate of switch operations (45% for Campus and 2% for Abilene).
Using a threshold has only limited effect on the wildcarded Campus rules. When the
prefix size is big, the savings are significant (up to 62% with /28 prefix and 75% thresh-
old). However, because the IPs in the Campus data are more similar, most rules are
already aggregated when the prefix size decreases enough (less than /24) and using a
threshold cannot yield further savings.

We measure policy violations as the percentage of flows that are forwarded with
a different action when we aggregate rules compared to a deployment where there is
no aggregation. The fraction of flows for which rule aggregation leads to an incorrect
output action is low. When the threshold is 25% i.e., we install an aggregate rule in a
node even when only a quarter of the leafs in its subtree have an associated rule, less
than 1% of the Abilene flows could be misdirected. The number of policy violations
decreases with higher thresholds. There are no violations for Campus, as the set of
output actions is less varied than for Abilene.

5.4 Summary

Automatically aggregating similar rules reduces their number by up to 20% compared
to IP-only rules with 60s timeout at negligible changes in control channel overhead.
Operators or programmers can further increase efficiency (up to 62% rule reduction)
if they allow a small part of the traffic (under 1%) to be directed to other destinations.
While this is unacceptable for most applications, it may be a solution for dedicated net-
work deployments where any of a set of destinations is acceptable (e.g., load balancers,
firewalls, anycast). As Table 2 shows, for many cases, it is more effective to use small
timeouts than any automatic aggregation.

6 Conclusions and Future Work

Our real-world traces study shows that simple OpenFlow-based mechanisms, such as
lowering rule expiration timeouts, are effective in managing the configuration size on
OpenFlow switches although may increase (sometimes unacceptably) the utilization of
the switch-to-controller channel. Other manual (using wildcards) or automatic (aggre-
gating similar rules) mechanisms may reduce the size of the rule set even higher but
curtail the expressiveness of the high-level policy and may, in a small number of cases,
misdirect some packets. Understanding these trade-offs is important to SDN operators
and programmers that must write network policies that satisfy both infrastructure and
application constraints.

Our ongoing and future work spans two directions. On one hand, we are studying
the adaptability of existing IP-based rule compression mechanisms [17] to OpenFlow.
We are exploring the use of R-trees [9] to extend our ability to identify and aggregate
rule similar in fields other than IP addresses (e.g., protocol).

References
1. NEC OpenFlow switches. http://www.openflow.org/wp/switch-NEC/.
2. Pronto OpenFlow switches. http://www.openflow.org/wp/switch-Pronto/.
3. M. Appelman and M. D. Boer. Performance Analysis of OpenFlow Hardware. Technical report, University of Amster-

dam, 2012.
4. T. Benson, A. Akella, and D. Maltz. Network traffic characteristics of data centers in the wild. In IMC, 2010.
5. A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalag, P. Sharma, and S. Banerjee. Devoflow: Scaling flow management for

high-performance networks. In SIGCOMM, 2011.
6. Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla. Packet Classifiers in Ternary CAMs Can Be Smaller. In

ACM Sigmetrics, 2006.
7. N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and D. Walker. Frenetic: A netowrk

programming language. In ACM IFIP, 2011.
8. A. D. Freguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi. Participatory Networking: An API for Applica-

tion Control in SDNs. In SIGCOMM, 2013.
9. A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD, 1984.

10. HP 3800. http://h17007.www1.hp.com/us/en/networking/products/switches/HP_3800_
Switch_Series/index.aspx.

11. IBM OpenFlow switches. http://www.openflow.org/wp/ibm-switch/.
12. S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The nature of datacenter traffic: Measurement and

analysis. In IMC, 2009.
13. N. Katta, O. Alipourfad, J. Rexford, and D. Walker. Infinite CacheFlow in Software-Defined Networks. In HotSDN,

2014.
14. K. Kogan, S. Nikolenko, W. Culhane, P. Eugster, and E. Ruan. Towards Efficient Implementation of Packet Classifiers

in SDN/OpenFlow. In HotSDN, 2013.
15. H. Liu. Routing table compaction in ternary CAM. IEEE Micro, 22(1):55–64, 2002.
16. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:

enabling innovation in campus networks. ACM Sigcomm CCR, 38:69–74, 2008.
17. C. R. Meiners, A. X. Liu, and E. Torng. TCAM Razor: A Systematic Approach Towards Minimizing Packet Classifiers

in TCAMs. 18(2), 2010.
18. C. Monsanto, N. Foster, R. Harrison, and D. Walker. A Compiler and Run-time System for Network Programs. In ACM

POPL, 2012.
19. C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker. Composing software-defined networks. In NSDI, 2013.
20. M. Moshref, M. Yu, A. Sharma, and R. Govindan. Scalable rule management for data centers. In NSDI, 2013.
21. Openflow multipath proposal. http://www.openflow.org/wk/index.php/Multipath_Proposal.
22. Openflow switch specification, 1.0.0. http://www.openflow.org/documents/openflow-spec-v1.0.

0.pdf.
23. V. C. Ravikumar and R. N. Mahapatra. TCAM architecture for IP lookup using prefix properties. IEEE Micro, 24(2):60–

69, 2004.
24. C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore. OFLOPS: An Open Framework for OpenFlow Switch

Evaluation. In PAM, 2012.
25. N. Sarrar, R. Wuttke, S. Schmid, M. Bienkowski, and S. Uhlig. Leveraging Locality for FIB Aggregation. In IEEE

Globecom, 2014.
26. R. Wang, D. Butnariu, and J. Rexford. OpenFlow-based Server Load Balancing Gone Wild. In Hot-ICE, 2011.
27. M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable flow-based networking with DIFANE. In ACM Sigcomm,

2010.

http://www.openflow.org/wp/switch-NEC/
http://www.openflow.org/wp/switch-Pronto/
http://h17007.www1.hp.com/us/en/networking/products/switches/HP_3800_Switch_Series/index.aspx
http://h17007.www1.hp.com/us/en/networking/products/switches/HP_3800_Switch_Series/index.aspx
http://www.openflow.org/wp/ibm-switch/
http://www.openflow.org/wk/index.php/Multipath_Proposal
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf

	-20ptCharacterizing Rule Compression Mechanisms in Software-defined Networks-10pt

