
FlowSense: Monitoring Network Utilization with Zero

Measurement Cost

Curtis Yu1, Cristian Lumezanu2, Yueping Zhang2, Vishal Singh2, Guofei Jiang2, and

Harsha V. Madhyastha1

1 University of California, Riverside
2 NEC Labs America

Abstract

Flow-based programmable networks must continuously monitor performance met-

rics, such as link utilization, in order to quickly adapt forwarding rules in response to

changes in workload. However, existing monitoring solutions either require special in-

strumentation of the network or impose significant measurement overhead.

In this paper, we propose a push-based approach to performance monitoring in flow-

based networks, where we let the network inform us of performance changes, rather

than query it ourselves on demand. Our key insight is that control messages sent by

switches to the controller carry information that allows us to estimate performance.

In OpenFlow networks, PacketIn and FlowRemoved messages—sent by switches to

the controller upon the arrival of a new flow or upon the expiration of a flow entry,

respectively—enable us to compute the utilization of links between switches. We con-

duct a) experiments on a real testbed, and b) simulations with real enterprise traces, to

show accuracy, and that it can refresh utilization information frequently (e.g., at most

every few seconds) given a constant stream of control messages. Since the number of

control messages may be limited by the properties of traffic (e.g., long flows trigger

sparse FlowRemoved’s) or by the choices made by operators (e.g., proactive or wild-

card rules eliminate or limit PacketIn’s), we discuss how our proposed passive approach

can be combined with active approaches with low overhead.

1 Introduction

Enterprises are deploying flow-based programmable networks to support diverse performance-

or reliability-based application requirements such as deadline guarantees [8], quick fail-

ure recovery [4], or fast and reliable big data delivery [5, 10]. In flow-based networks,

a centralized controller locally computes the routes that satisfy a set of requirements

and installs them remotely in the forwarding tables of switches. To ensure that traf-

fic flows according to the pre-defined goals and to adapt rules quickly to workload or

infrastructure changes, the network must continually monitor the utilization of every

link.

Flow-based network utilization monitoring must be not only accurate and respon-

sive in detecting variations, but it must also scale with minimal overhead on the net-

work [3]. Existing monitoring techniques do not satisfy all of these goals simultane-

ously. Active monitoring techniques (e.g. SNMP polling) inject measurement probes

and require careful scheduling to scalably monitor the entire network. Passive “capture-

and-analyze” tools (e.g., SPAN, netflow, tcpdump) need expensive instrumentation and



infrastructure to gather and process measurements. Recently, several tools take advan-

tage of the functionality provided by software-defined networks (SDNs), which allow

the controller to poll switches for utilization-based statistics [11, 6]. Though this elimi-

nates the need for additional instrumentation, control packets used for polling still im-

pose overhead.

In this paper, we propose a new approach for high accuracy utilization monitoring

with zero measurement cost. Rather than rely on on-demand active polling of switch

counters, we infer performance by passively capturing and analyzing control messages

between the switches and the centralized controller. This is made possible by the phys-

ical separation of the control and data planes in SDNs. In particular, we use the control

messages that notify the controller of changes in network traffic (e.g., flow arrival, flow

expiration). Such changes in traffic may result in changes in performance; by detecting

the time and magnitude of these changes, the controller can monitor network utilization

locally, without additional instrumentation or overhead.

To explore the feasibility of our control traffic based monitoring, we design FlowSense

to measure link utilization (the bandwidth consumed by flows traversing the link) in

OpenFlow networks [7]. FlowSense relies on PacketIn and FlowRemoved messages,

sent by switches to the controller when a new flow arrives or when a flow entry expires.

FlowRemoved messages contain information about the size and duration of flows

matched against the entry. To compute utilization over an interval, the controller an-

alyzes all PacketIn and FlowRemoved messages corresponding to the arrival of flows

and to the expiration of the flows that were active during the interval.

Relying on control traffic to compute network utilization fails when there is little or

no control traffic. This may happen due to the properties of data traffic (e.g., long flows

that lead to few flow expiration events) or due to measures taken by network operators

(e.g., to limit the amount of control traffic and preserve scalability, they install flow

rules proactively that potentially never expire). In this paper, we study the feasibility

of our monitoring approach, both in terms of effectiveness (how accurate is it?) and

compatibility with current networks (how is it affected by traffic patterns and network

deployment scenarios?).

To summarize, our primary contributions are two-fold. First, we introduce a push-

based approach to flow-based network performance monitoring with zero measurement

cost, where we let the network inform us of performance changes, rather than query it

ourselves. We describe FlowSense, a system to measure link utilization that is simul-

taneously fast, accurate, and imposes no overhead. Using preliminary experiments on

a small OpenFlow deployment, we show that the utilization computed using control

plane messages closely resembles that measured on the data plane.

Second, we explore the feasibility of FlowSense in today’s networks. We use real

world traffic measurements to estimate the impact that the properties of data traffic have

on the performance of FlowSense. We find that we can refresh link utilization measure-

ments at most as frequently as every few seconds. Although, to compute utilization at

any point in time, FlowSense must wait for all the flows active at that time to finish

and trigger FlowRemoved, the wait time is reasonable: we can accurately estimate

link utilization in under 10 seconds of delay. Since the network deployment can limit

the effectiveness of FlowSense, we discuss combining active and passive techniques.



Ultimately, passively capturing control messages can serve as a building block towards

more scalable, accurate, flexible, and general flow-based network monitoring.

2 OpenFlow Overview

In this section, we describe the general operation of an OpenFlow network and review

research that uses OpenFlow to monitor network performance.

2.1 Operation

We consider a network of OpenFlow-enabled switches that are connected with a logi-

cally centralized controller using a secure, lossless TCP connection. The network oper-

ates in the following (simplified) way:

Flow arrival. On the arrival of the first packet of a new flow, the switch looks for

a matching rule in the flow table and performs the action associated with the rule (e.g.,

forward, drop). If there is no matching entry, the switch buffers the packet and noti-

fies the controller that a new flow has arrived by sending a PacketIn control message

containing the headers of the packet. The controller responds with a FlowMod mes-

sage that contains a new rule matching the flow that is to be installed in the switch’s

flow table. The switch installs the rule and forwards the buffered packet according to it.

Subsequent packets in the flow are forwarded without triggering PacketIn’s.

Flow completion. Each flow table rule is associated with two timeout values that

define when the entry should expire: a hard timeout counted from the time at which

the entry was installed, and an soft timeout counted from the time of the last packet

which matched the entry. When the flow entry expires, the switch notifies the controller

by sending a FlowRemoved control message. The FlowRemoved contains, among

others, the duration for which the entry was present in the switch, and the number of

packets and number of bytes that matched the entry.

2.2 Monitoring with OpenFlow

The OpenFlow protocol provides functions to query switches for the number of packets

or bytes in flows matching against a specific rule or traversing a specific port. Prior work

relies on this capability to compute utilization in the network [11, 6]. OpenTM [11]

measures network-wide traffic matrix by periodically polling one switch on each flow’s

path and then combining the measurements. Polling a single switch does not impose

significant load on the network but may affect accuracy if the switch is not carefully

chosen. Jose et al. [6] detect heavy hitters by continually adapting polling rules to focus

on the flows that are more likely to have high volume. Both approaches have to carefully

schedule measurements to limit the polling overhead and maintain reasonable accuracy.

FlowSense, on the other hand, incurs zero measurement cost because it relies on control

traffic that the switches already send to the controller.

Ballard et al. use OpenFlow to enable flexible monitoring of network traffic for se-

curity problems [1]. Their tool, OpenSAFE, directs spanned network traffic towards pre-

defined sinks (e.g., IDS) according to pre-specified policies. While such an approach

could be used to compute network utilization (by analyzing the redirected traffic), the

overhead it creates by copying all network traffic is prohibitive.



OpenFlow Controlller

Control 

Traffic 

Parser

Utilization 

Monitor

Utilization 

Table

t
1

t
2

t
5 t

6
t
4

t
3control

plane

time

P
a
c
k
e
tI
n

P
a
c
k
e
tI
n

P
a
c
k
e
tI
n

F
lo
w
R
e
m

F
lo
w
R
e
m

F
lo
w
R
e
m

f
1

f
2 f

3

Fig. 1. (left) FlowSense design: Parser module captures control traffic and sends it the monitor.

The monitor updates utilization values at every checkpoint according to Algorithm 1. (right)

Visualization of how link utilization is estimated with the aid of PacketIn and FlowRemoved

messages.

3 FlowSense

In this section, we describe the design of FlowSense and how it uses control traffic to

measure the utilization of every link in the network.

3.1 Design

FlowSense uses FlowRemoved and PacketIn messages to compute network utilization

on inter-switch links. FlowRemoved’s are triggered by switches when flow entries

expire, and they inform the controller of several properties of the expired entry. Three

of these properties are most important to us: (1) the duration of the entry in the flow

table, (2) the amount of traffic matched against it, and (3) the input port of traffic that

matches the entry (we do not consider wildcard rules for now). This information helps

us infer the number of bytes that the flows that matched this entry contributed to the

utilization on the link that ends in the specified input port.

Whenever a flow entry expires and triggers a FlowRemoved message, we add a

new checkpoint for the corresponding link. We set the timestamp for the checkpoint as

the time at which traffic last matched the expired flow entry. If an entry’s soft timeout

expires, the checkpoint is the FlowRemoved timestamp minus the soft timeout. If the

entry’s hard timeout expires, we cannot tell how long the flow was actually active for, so

we set the checkpoint as the FlowRemoved timestamp and assume it has been active

for the entire flow duration.

At every checkpoint, FlowSense can estimate the contribution to the link’s utiliza-

tion made by flows that matched the expired entry as the ratio of the number of bytes

matched against the expired entry to the duration of the flows that matched the entry.

However, there may be other active flows on the same link that contribute to the total

utilization. FlowSense uses information from PacketIn messages, which are triggered

when a new flow arrives at a switch, to infer which flows are active at a given time.

To compute the utilization contribution of these active flows, we must wait for them to

expire and trigger FlowRemoved’s. Thus, we incur a delay in estimating the instant



Algorithm 1 Pseudocode of FlowSense’s utilization monitor.

1: procedure UTILIZATIONMONITOR(Utilization Table UT , Packet p)

2: Active List← set of p.in port’s active flows

3: if p is a PacketIn packet then

4: if p’s flow /∈ Active List then

5: Flow active flow
6: active flow.flow ← p.flow
7: active flow.time← p.time
8: Add active flow to Active List
9: end if

10: else if p is a FlowRemoved packet then

11: flow ← matching flow from A
12: Remove flow from Active List
13: Checkpoint chkpt
14: chkpt.time← p.time
15: if p was from soft timeout then

16: chkpt.time← chkpt.time − p.soft timeout
17: end if

18: chkpt.active← |Active List|
19: chkpt.util ← p.byte count/p.flow length
20: for active c in UT do

21: if c.time is between flow.time and chkpt.time then

22: c.active← c.active− 1

23: c.util ← c.util + chkpt.util
24: end if

25: if c.active = 0 then

26: Declare c final and inactive

27: end if

28: end for

29: Insert chkpt into UT
30: end if

31: end procedure

total utilization on a link at a checkpoint. We evaluate the magnitude of this delay in

Section 4.

Figure 1(right) illustrates an example scenario for our estimation of link utilization

as above. In this example, f1, f2, and f3 are flows that start at times t1, t2, and t3,

and t4, t6, t5 are the times at which those flows end; FlowSense determines the start

and end times based on PacketIn and FlowRemoved messages. If f1, f2 and f3 had

utilizations of 10, 20 and 40 MBps, then, when the first FlowRemoved message arrives

at t4, FlowSense will know the utilization for f1 by dividing the byte count from the

FlowRemoved message by the duration of the flow, and it also creates a checkpoint

at t4. When the FlowRemoved packet at t5 arrives, flow f3 ends and its utilization

of 40 MBps is recorded and added to the checkpoint at t4 leaving it with a current

known utilization of 50 MBps (the sum of f1 and f3). Finally, at t6, flow f2 ends and

its utilization is added to the checkpoints at both t4 and t5 giving the final checkpoint

utilizations recorded to be: 70 MBps at t4, 60 MBps at t5, and 40 MBps at t6.

FlowSense consists of two main modules: the control traffic parser and the utiliza-

tion monitor. The parser captures control traffic and extracts information from FlowRe-

moved and PacketIn messages. The utilization monitor maintains a utilization table

where it records the current utilization value and a list of active flows at all known

checkpoints. The monitor updates the table on every new PacketIn or FlowRemoved

data received from the parser. Figure 1(left) shows the design of FlowSense.

The algorithm that FlowSense uses for monitoring utilization on a network works



as follows. When the controller receives a PacketIn message, FlowSense creates a new

flow and adds it to a list of active flows (Active List) associated with the new flow’s

input port. On a FlowRemoved message, FlowSense removes the corresponding flow

from Active List and creates a checkpoint (chkpt) with a timestamp (chkpt.time)

equal to the current time minus the soft timeout. It then makes note of the number of

currently active flows (chkpt.active) and uses the utilization of the flow as the starting

utilization of the checkpoint chkpt.util. Each previously known active checkpoint (c)
for the same input port in the Utilization Table (UT ) is then checked to see if its times-

tamp is between the start and end time of the newly ended flow. If it is, then c’s number

of active flows and utilization are updated. When a checkpoint’s number of active flows

hits 0, FlowSense declares that checkpoint final and inactive. Finally, FlowSense inserts

chkpt into UT for future lookup purposes. Algorithm 1 describes the steps involved in

the utilization monitoring in a more detailed manner.

3.2 Limitations

Using control traffic to compute utilization has two limitations. First, we are able to

compute utilization only at discrete points in time. These checkpoints are determined

by FlowRemoved arrivals at the controller and by the values of the timeouts associated

with the expired entry. In Section 4.2, we show that the average difference between

consecutive checkpoints on a link is less than two seconds.

Second, how quickly we are able to estimate the utilization at a checkpoint depends

on the type of traffic; long flows that last forever can delay indefinitely the computation

of utilization. Our results in Section 4.3 show that, if FlowSense is willing to tradeoff

10% of accuracy, it can measure total utilization at a checkpoint in under 10 seconds.

We also discuss ways to improve the estimation delay by combining active and passive

measurements.

Finally, FlowSense is limited to reporting the average utilization over a flow entry’s

duration and cannot capture instant utilization at any point in time. Thus, it works best

in environments with many short flows, such as data centers or enterprises [2], where

the small duration of a flow and the small difference between consecutive checkpoints

make the average utilization a good approximation of the instant utilization.

4 Evaluation

We evaluate FlowSense from three perspectives: (1) how accurate are its utilization

estimates?, (2) how often can it refresh its estimate for a link’s utilization?, and (3) how

quickly can it estimate the utilization at a specific time? To answer these questions, we

perform experiments using a small OpenFlow testbed and simulations on a real-world

enterprise trace.

4.1 Accuracy

To estimate the accuracy of utilization monitoring, we set up a small testbed comprising

two OpenFlow switches, A and B, that are connected to each other. hostA is connected

to A, and hostB1 and hostB2 to B. Initially, the rule tables of the two switches are

empty. When new flows arrive, we always add rules with no hard timeout and a soft

timeout of 1s. We use iperf to simultaneously perform two data transfers from hostA to



 0

 10

 20

 30

 40

 50

 60

 0  50  100  150  200

U
ti
liz

a
ti
o

n
 (

M
B

p
s
)

Time Elapsed (sec)

Polling
FlowSense

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12

C
D

F
 o

f 
p

o
rt

s

Average time between checkpoints (sec)

All
90% util reported

Fig. 2. (left) Accuracy of utilization monitoring. We compare FlowSense’s estimates with the

values obtained by continually polling the switch counters at 1s intervals; (right) Granularity

of utilization monitoring for all flows and for flows that have 90% of their utilization reported

after 10s. We assume flows are mapped to 24 distinct links.

hostB1 and hostB2 for a period of three minutes. The transfer from hostA to hostB2

has a constant rate of 10MBps, while the transfer from hostA to hostB1 varies across

three different rates over time: 20MBps, 45MBps, and 30MBps. Before changing the

transfer rate, we briefly interrupt the transfer for a little more than a second to allow the

soft timeout to expire and trigger FlowRemoved messages.

We compare the utilization obtained by FlowSense with that gathered from contin-

ually polling A and B at 1s intervals. Figure 2(left) presents the results obtained for

the link connecting A and B. FlowSense reports utilization values that are similar to

those inferred through polling. In comparison to the values obtained with polling, uti-

lization measured with FlowSense shows a small shift to the right because flow entry

timeouts have a precision at the granularity of seconds. Thus, it may take up to a second

for FlowRemoved to trigger after a timeout expires. Since FlowSense is only working

with a single PacketIn and FlowRemoved message per flow, it does not experience

the same jittery behavior as the polling method because its readings are an average

utilization over that flow’s lifetime.

4.2 Granularity

Many applications need to monitor utilization as often as possible to quickly react to

traffic changes. How often FlowSense captures utilization depends on the distribution

of flows, in particular on how frequently and how rapidly flow entries expire and trigger

FlowRemoved’s.

To evaluate the granularity of measurements, we simulate FlowSense on a real-

world enterprise trace. We use the EDU1 trace collected by Benson et al. [2], capturing

all traffic traversing a switch in a campus network for a period of two hours. We iden-

tify all network flows (i.e., pairs of IP addresses and application ports) in the trace,

along with their start and finish times. The finish time of a flow is an approximation

of when the flow entry associated with the flow would expire and trigger a FlowRe-

moved message in an OpenFlow network. We consider a flow as finished if there is no

traffic between the associated endpoints for at least five seconds. We compute the aver-



 0.2

 0.4

 0.6

 0.8

 1

 0.001  0.01  0.1  1  10  100  1000

F
ra

c
ti
o

n
 o

f 
c
h

e
c
k
p

o
in

ts

Time until last active flow ends (s)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100

F
ra

c
ti
o

n
 o

f 
c
h

e
c
k
p

o
in

ts

% of utilization reported

After 1 sec
After 5 sec

After 10 sec

Fig. 3. (left) Distribution of waiting times to compute the total utilization value at every FlowRe-

moved event. (right) Utilization reported after 1s, 5s, and 10s following the expiry of a flow

entry. Around 70% of links have 90% or more of total utilization reported after 10 seconds.

age time between FlowRemoved events, under the assumption that all flows arrive on

the same link, and find that a flow expires, and thus enables us to refresh the utilization

measurements, every 16ms.

In reality, however, flows arrive at a switch on different input ports. Because the

traffic trace does not contain input port information, we simulate a 24-port switch using

the following heuristic. We first associate every distinct /p prefix (where p is, in turn, 32,

30, 28, 20, or 24) of source IP addresses in the trace with a port and then assign each

individual flow to the link (or input port) associated with its source IP /p prefix. We

group flows by prefix because routing in the Internet is typically prefix-based. Below,

we present results for p = 28.

We compute the average time between two consecutive utilization checkpoints for

each port and plot the cumulative distribution in Figure 2(right). Here, consider the line

labeled “All”. For half of the incoming links, the average time between two utilization

measurements is at most one second and for almost 90% of the links under 3 seconds.

We also performed the heuristic to simulate a 48-port switch with various prefix sizes

and obtained similar results.

4.3 Staleness

To compute the total utilization at a checkpoint, FlowSense must wait for all the flows

active at the checkpoint to finish and trigger FlowRemoved messages. For each check-

point, we define the utilization wait time as the time until the last active flow expires.

Figure 3(left) shows the cumulative distribution of the utilization wait times for each

checkpoint in the trace described in Section 4.2, where flows are assigned to one of 24

incoming links. The median utilization wait time is 98s: for almost half of the check-

points, FlowSense would have to wait more than 100s to capture the complete utiliza-

tion.

The long delay in computing the total utilization may be caused by active flows that

are very long but do not send a lot of traffic (e.g., ssh sessions). Next, we show that if

an application is willing to tradeoff some accuracy for timeliness, it can have a reason-

able estimate of a link’s utilization at a particular checkpoint in under 10s, rather than



having to wait for 100s. We compute how much of the total utilization at a checkpoint

is reported by FlowSense 1s, 5s, and 10s after the checkpoint is created. Figure 3(right)

shows that FlowSense reports around 60% of the total utilization for 50% of the check-

points after 1s, and 90% of the total utilization for 70% of the checkpoints after 10s.

The granularity of measurements does not decrease by much when considering only

the 70% of checkpoints that capture 90% after 10s. The line labeled “90% util reported”

in Figure 2(right) shows the distribution of the average time between these checkpoints.

The median time is only around 1.7s (increasing from 1.1s when considering all check-

points).

To summarize, FlowSense is able to refresh utilization less than every 2s on average

and obtain 90% of the total utilization at these refresh checkpoints in under 10s. We

are investigating ways to predict the utilization wait time at each checkpoint. Such a

prediction would give applications another knob to tune measurement performance: if

the wait time is too high, the application could decide to trigger on-demand polling,

thus trading off scalability for lower measurement staleness.

5 Discussion

We designed FlowSense to work for reactive OpenFlow deployments, where switches

trigger control messages every time a new flow arrives or a flow entry expires. The

presence of a large number of flows triggers many control packets and can overwhelm

both the controller, which cannot process all control traffic in a timely fashion, and the

switches, which cannot operate at line speed and quickly exhaust their flow tables [12].

Previous research shows that such deployments are feasible for medium-sized networks

with a powerful controller or a collection of controllers. For example, controllers in

networks of 100 switches, with new flows arriving every 10µs, may have to process up

to 10 million PacketIn messages per second [2].

In practice, the need for scalability pushes operators to increasingly adopt alter-

native OpenFlow deployments: distribute controller functionality across different ma-

chines, set up rules proactively to never expire (e.g., with infinite timeouts) so as to

avoid triggering control traffic, and use wildcard rules to reduce the amount of control

traffic. We discuss next the applicability of FlowSense in such scenarios.

Distributing the controller. Distributing the controller does not affect the amount

or frequency of control traffic. Using a mechanism similar to FlowVisor [9], FlowSense

could still capture incoming control traffic and synchronize the information gathered

across controllers.

Proactive rules and large timeouts. When operators install rules proactively, new

flows at a switch do not trigger PacketIn’s because they find a matching rule in the

flow table. Further, if rules have large timeouts, they take long to expire and trigger

FlowRemoved’s. Some entries may even be set up to never expire or to not trigger a

FlowRemoved when they expire. In such scenarios, control traffic is scarce or missing

completely and polling switch counters for utilization provides more frequent utiliza-

tion estimates, albeit at the expense of network overhead. For reactive applications that

rely on traffic changes, they will have to either rely on stale data or begin active polling

as previously stated.



Wildcard rules. Wildcard rules limit the number of FlowRemoved messages and

forces us to resort to active solutions such as polling counters more often. More impor-

tantly, certain wildcard rules can make the utilization computation impossible. If a rule

has a wildcard for the input port then the rule is not associated with a single link. Thus,

we cannot infer how the traffic that matches against the rule is divided among the input

ports to which the wildcard refers to and we cannot compute utilization on the links that

end in these input ports.

6 Conclusions

We presented FlowSense, a tool to efficiently infer link utilization in flow-based net-

works by capturing and analyzing control messages between switches and the con-

troller. Using experiments on a small OpenFlow testbed and simulations on a traffic

trace from a campus network, we showed that our method is accurate and provides up-

to-date information when control messages are abundant. Our work is the prelude to a

larger research direction that we intend to explore in the future: how can we leverage

information carried on the control channel of flow-based networks, that is unavailable in

traditional networks, to build more robust and accurate monitoring systems and tools.

References
1. J. R. Ballard, I. Rae, and A. Akella. Extensible and scalable network monitoring using

OpenSAFE. In INM/WREN, 2010.

2. T. Benson, A. Akella, and D. Maltz. Network traffic characteristics of data centers in the

wild. In ACM IMC, 2010.

3. Z. Cai, A. L. Cox, and T. E. Ng. Maestro: A System for Scalable OpenFlow Control. Tech-

nical Report TR11-07, Rice University, 2011.

4. Genesis Hosting Solutions. http://www.nec.com/en/case/genesis/index.html.

5. IBM and NEC team up. http://www-03.ibm.com/press/us/en/pressrelease/36566.wss.

6. L. Jose, M. Yu, and J. Rexford. Online measurement of large traffic aggregates on commodity

switches. In USENIX Hot-ICE, 2011.

7. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner. OpenFlow: enabling innovation in campus networks. ACM Sig-

comm CCR, 38:69–74, March 2008.

8. Selerity. http://seleritycorp.com/.

9. R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, and

G. Parulkar. Can the production network be the test-bed. In USENIX OSDI, 2010.

10. Tervela. http://www.tervela.com/.

11. A. Tootoonchian, M. Ghobadi, and Y. Ganjali. OpenTM: Traffic Matrix Estimator for Open-

Flow Networks. In PAM, 2010.

12. M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable flow-based networking with

DIFANE. In ACM Sigcomm, 2010.


