
Oasis: An Overlay-Aware Network Stack

Harsha V. Madhyastha, Arun Venkataramani, Arvind Krishnamurthy, and Thomas Anderson
University of Washington and University of Massachusetts Amherst

ABSTRACT
Overlays have enabled several new and popular distributed applica-
tions such as Akamai, Kazaa, and Bittorrent. However, the lack of
an overlay-aware network stack has hindered the widespread use
of general purpose overlay packet delivery services [16, 29, 26].
In this paper, we describe the design and implementation of Oa-
sis, a system and toolkit that enables legacy operating systems to
access overlay-based packet delivery services. Oasis combines a
set of ideas – network address translation, name resolution, packet
capture, dynamic code execution – to provide greater user choice.
We are in the process of making the Oasis toolkit available for pub-
lic use, specifically, to ease the development of PlanetLab-based
packet delivery services.

1. INTRODUCTION
In recent years, overlay networks have enabled several real-world

applications such as Web content distribution [1], file sharing [15],
and popular downloads [7] that have seen widespread deployment.
Concurrently, research in overlay networks has demonstrated the
potential of providing improved or new network functionality on
top of existing networks; examples include general purpose packet
delivery services such as multicast [9], detour routing [24], reli-
able routing [3], quality of service [29], security [16], anycast [6],
indirection-based routing [26], multipath routing [37], etc.. More
recently, overlays have even been proposed as a building block in
the design of an evolvable network architecture to combat the ossi-
fication of the Internet [4].

Unfortunately, to date, overlays proposed for general purpose
packet delivery1 [3, 29, 8] services have seen little deployment. For
arbitrary end users to obtain end-to-end benefits by employing such
overlays, an important practical concern is ease of accessibility,
which is either ignored or addressed using a custom overlay proto-
col. Consequently, there is a lack of understanding of a cohesive
overlay architecture and an accompanying set of design principles
(such as the end-to-end principle for the Internet). Prematurely,
some recent studies appear pessimistic towards the ability of over-
lays to provide qualitatively better packet-delivery services [2, 29,
16, 36, 22] on top of a best-effort imperfect underlying network.

In this paper, we adopt a more optimistic stance towards using
overlays for general purpose packet delivery. We argue that the
lack of an overlay-aware network stack is a critical handicap to the
development and widespread deployment of packet delivery over-
lays. Our main contribution is Oasis, an Overlay Access System
for Internetworked Services, that allows users of the commodity

1In this paper, the term packet delivery refers to services tradition-
ally thought of as part of the network or transport layers, eg, rout-
ing, forwarding, congestion control etc.

operating systems, Linux, Windows XP and Mac OS, to route their
traffic via an overlay of their choice. A user may specify routing
preferences, such as “ route all traffic on port 80 via the Web op-
timizing overlay” or performance goals, such as “use an overlay
that limits loss rate to at most 1%”. Oasis dynamically selects an
appropriate overlay to meet the user’s preferences and falls back
on underlay routing when no overlay can satisfy the performance
goals.

Oasis’ key design goals are to – (1) provide fine-grained con-
trol to a user to specify routing preferences on an opt-in basis, (2)
provide extensible interfaces to accommodate diverse overlays, but
remain agnostic to their implementation, (3) do no harm, i.e., en-
sure that performance or fault-tolerance is no worse than the un-
derlying Internet, and (4) interoperate with legacy systems for easy
deployability.

A guiding design principle in Oasis is minimalism much like
the thin-waisted IP in today’s Internet. The minimalist design al-
lows Oasis to be interoperable with generic overlay services and
yet be agnostic of how the overlay provides said services. Never-
theless, Oasis is powerful enough to facilitate overlay-based com-
plex network and transport services that cut across layers of a tradi-
tional network stack. Oasis achieves this combination of overlay-
agnosticism and extensibility through a careful division of labor
between the end host and an overlay service provider (OSP); in
particular, through Oasis’s ability to safely execute code supplied
by an OSP to harness end host support. Thus, Oasis allows legacy
applications, overlay-aware applications, overlay packet delivery
services, and the underlay to evolve independently.

More broadly, today’s Internet also evolved on top of phone net-
works as an overlay, and few could have predicted the diversity of
applications it has enabled since then. Similarly, we believe that
the full potential of overlays as an integral architectural component
of an evolvable Internet can be judged fairly only by making it easy
to access and develop overlay-based services. Oasis and the asso-
ciated toolkit are but a first step in this direction.

The rest of the paper is organized as follows. Sections 2 and 3
present, respectively, the design and implementation of Oasis. In
Section 4, we outline the additional modules we make available
in our toolkit. Section 5 presents the performance evaluation of
Oasis. We present the related work in Section 6 and conclude with
a discussion of ongoing and future work in Section 7.

2. DESIGN
Oasis is an easily configurable system that enables an end user

to route his traffic via heterogeneous overlay networks instead of
the default Internet. This section outlines the design of the core
architecture of Oasis.



Figure 1: Basic architecture of Oasis

2.1 Design Goals
The following objectives guide the design of Oasis.

• Fine-grained control: Oasis should enable the user to ex-
ercise fine-grained control in determining preferred Overlay
Service Providers (OSPs) or performance goals for different
portions of traffic. Note that, with the existing ISP model,
user-choice is undermined because of the high overhead of
switching carriers or employing multiple carriers simultane-
ously.

• Do no harm: Oasis should not worsen performance or fault-
tolerance compared to the existing Internet, i.e., an overlay
should be employed only when it optimizes user-specified
metrics beyond the underlay2 Further, the computational over-
head that Oasis itself imposes upon all traffic should be min-
imal.

• Extensibility: Oasis should also expose a generic interface to
overlays to support diverse overlay services and protocols.
To allow for Oasis, overlay services, and the division of la-
bor between them to evolve independently, Oasis should be
equipped to safely execute untrusted code supplied by OSPs.

• Deployability: Oasis should not require any modification to
legacy applications and operating systems.

2.2 Architecture
Oasis has three main tasks: (i) to provide a facility to the user

to specify routing goals, (ii) to intercept relevant packets and de-
termine the optimal OSP dynamically, (iii) to interface with over-
lays to send and receive encapsulated packets. Figure 1 shows the
core architecture of Oasis that we choose so as to fulfil these goals
while conforming to the above design guidelines. The components
in white with bold boundaries are those present in legacy operating
systems. The shaded pieces, User Control and OSP Portal are the
basic components that Oasis introduces. The components in dotted
boxes are overlay-specific modules that are dynamically employed
based on the user’s preference. This decoupling between the OSP
portal and the individual overlay modules has two benefits. First,
Oasis is extensible to new overlay services as it does not restrict-
ing overlays to abide by a fixed API. Second, the native underlay
(denoted by ISP/IP) can be used when no overlay can improve user-
specified metrics beyond the underlay.
2The underlay refers to the existing Internet. We treat the under-
lay as a special case of an overlay and sometimes abuse the terms
overlay and OSP to be inclusive of the underlay and the ISP.

(a) Outgoing packet path

(b) Incoming packet path

Figure 2: Components of Oasis. The key packet divert mech-
anism is a virtual network interface. Straight arrows represent
fixed forwarding paths and dotted arrows represent one of mul-
tiple forwarding choices for a packet. Undirected edges rep-
resent two-way information exchange. Some edges have been
omitted for simplicity, e.g., an overlay code module OCi may
again forward the packet to the underlay OC0.

Our realization of this architecture of Oasis consists of the fol-
lowing components as illustrated in Figure 2. VNI is a virtual net-
work interface used to intercept, modify, and resend network pack-
ets from user-space. DNS Resolver maintains mappings needed
to implement name-based routing preferences. Flow Map main-
tains per-flow state for address translation and routing. Monitor
is a brokering agent that maintains a database of end-to-end path
metrics for different OSPs. Overlay Manager manages the list of
available OSPs. Route Table is an operating system-specific mod-
ule for inserting routes into the routing table on the host machine,
OC1, OC2, . . . are custom overlay code modules supplied by the
respective OSPs, and OC0 simply routes the packet to the underlay
by default.

The User Routing Preferences component implements User Con-
trol in Figure 1, and the components, Overlay Manager and Moni-
tor, implement OSP Portal. The components VNI, DNS Resolver,
and Route Table implement the packet interception mechanism (de-
scribed in greater detail in section 2.2.4) that enables OSP Por-



tal to logically interpose itself between the transport and network
layer. Next, we describe in detail how these components interact
to accomplish Oasis’ objectives, while adhering to the design goals
listed above.

2.2.1 Joining an Overlay
Oasis maintains a list of overlays, including the underlay, from

which it dynamically chooses an OSP for a connection. To add
a new overlay as a potential carrier of packets, the user specifies a
URL and a name of local-scope, which she uses to refer to this over-
lay henceforth. Oasis downloads an XML specification document
from the URL. This document contains overlay-specific informa-
tion that includes the list of entry overlay nodes and the respec-
tive port numbers, and may specify the length of the shim header
to be padded to enable certain special overlay services (refer sec-
tion 2.2.3) or to avoid unnecessary copying overhead.

The XML document may also specify an URL from where Oasis
downloads and executes an overlay-specific class file as a separate
process. For controlling privileges of the overlay code, Oasis uses
Java’s security mechanisms that restrict I/O and network commu-
nication of foreign code.

2.2.2 Addition of Filters
The user specifies rules that Oasis uses to direct traffic to the

best-suited overlay. A rule is in the format <subset, overlay, [metric]>,
where subset identifies a portion of the user’s traffic. There are
two ways to identify such traffic (i) by specifying regular expres-
sions over DNS names, e.g. all traffic destined for www.cnn.com or
*.edu, and (ii) specifying the values that fields in the packet header
should match, e.g., all traffic destined to port 80, or all traffic on
port 6510 (used by Bittorrent) destined to select (say, university)
address prefixes. The second field, overlay, is a string identifying
the OSP. The third field, metric, is an optional string that specifies
user goals, e.g, optimize total transfer time, or minimize loss rate
and so on.

When the metric field is absent, overlay specifies a particular
overlay network that is to be always used for that subset. The
overlay referred to here is expected to be one that routes the traf-
fic forwarded to it out onto the network. However, when metric is
specified, overlay refers to a specialized externally-supplied code
module, which we refer to as a Monitor. Monitor is an agent that
chooses the overlay best suited to satisfy the user-specified goal of
optimizing metric. The Monitor, being stacked in between Oasis
and OSP modules, appears just like another overlay to Oasis. It
forwards packets back and forth between Oasis and OSP modules
and monitors end-to-end performance of different overlays. The
idea of delegating the responsibility of overlay selection also to an
“overlay” borrows from Active Names [33] and enables Oasis to in-
corporate new performance metrics and techniques to monitor such
metrics.

2.2.3 Interfacing with Overlays
When forwarding packets to overlays, by default, an explicit

overlay header is absent, i.e., Oasis simply hands a raw IP packet
to an OSP module. The custom OSP module is only required to re-
ceive these encapsulated UDP packets at the port the OSP specified
in its XML document. Subsequently, it is expected to hand packets
received along the reverse path back to Oasis at its standard port.
In addition to the packet that needs to be forwarded, Monitor also
needs to know the metric that is to be optimized and the overlays
it can choose from. This is accomplished by including the string,
specified as the metric by the user, in the shim header and grant-
ing Monitor access to Oasis’ configuration file that contains all the

Table 1: API exported by Oasis to users and overlays
User Interface • Add overlays by <name, URL>

• Add filters by <subset, overlay, [metric]>

Overlay Interface • Provide XML specification file with port
number and URL for custom overlay module
• Overlay module
· receives IP packets from Oasis
· sends IP packets to Oasis at standard port
· sends IP packets to Oasis to send on underlay

overlays the user has joined. We emphasize that Oasis is agnostic
to the contents or semantics of the shim. Furthermore, the shim
itself is used only for the special Monitor modules when user rout-
ing preferences are name-based and name-to-address mappings are
non-invertible. An alternate to such overlay-agnostic shims could
be for Monitor to provide a dynamic name resolution service sim-
ilar to DNS Resolver that selects the OSP at name-resolution time
on a per-connection basis.

OSP modules can also send packets that are to be routed on the
underlay back to Oasis at another standard port. A typical OSP
module uses this channel when it cannot improve performance for
a given flow. Monitor does the same if it deems none of the overlays
as superior to the underlay.

Table 1 summarizes the restrictions imposed on Oasis’ interface
with users and overlays by the above design choices. The over-
lay interface is different only for the Monitor OSP module, which
sends and receives encapsulated packets with a shim containing
metric information.

2.2.4 Packet Interception
On an Oasis-equipped client, a packet can traverse one of three

paths.

1. The packet does not match any rule specified by the user and
is forwarded to the underlay without mediation by Oasis.

2. The packet matches one of the user-specified rules and is in-
tercepted by Oasis, which then forwards it to an OSP module
that handles further processing.

3. The packet matches a user-specified rule and is intercepted
and forwarded to an OSP module that hands it back to Oasis
to send via the underlay.

The core of Oasis’ packet interception mechanism that enables
this is a virtual network interface (VNI). Traffic identified by the
users through their filters is diverted to the VNI. Oasis intercepts
packets based on the name of the destination or fields in the TCP/IP
headers. We briefly explain both modes of interception below.

Name-Based interception Oasis usurps the name-to-address res-
olution service on the host machine by diverting all DNS (destina-
tion port 53) requests to the VNI. If the user has requested opti-
mized carrier selection for that name, Oasis forwards the request to
the default nameserver to obtain an address IPreal, say, but returns to
the application a fake address, IPfake, that is chosen from a fake IP
address range - a set of addresses that are not valid Internet-routable
addresses, eg, 10.0.*.*. Further, it stores a mapping between IPreal

and IPfake in DNSResolver. Oasis modifies the IP route table on the
host machine so as to divert all traffic destined to an address in the
fake range to the VNI.

Now, when the legacy application, unaware of Oasis’ sleight, at-
tempts to send the first IP packet (eg, a SYN in case of TCP) to



Figure 3: Name-faking based packet timeline

Figure 4: Packet transformations when [IPclient, ports] tries to
connect to [IPdest, portd]. The client and the destination per-
ceive the other end to be [IPfake, portd] and [IPexit, portk] resp.

IPfake, it gets diverted to the VNI. Oasis reads the packet from the
VNI, replaces IPfake with IPreal in the packet by consulting DNSRe-
solver, and then transmits the packet via the appropriate carrier as
shown in Figures 3 and 4.

If the chosen carrier is the underlay, Oasis simply directs the raw
IP packet to the physical network interface (PNI). If the chosen car-
rier is an overlay, Oasis hands the packet to the Overlay Manager
that delivers it via UDP to an entry node of the chosen overlay,
which could be running locally. Note that the custom overlay mod-
ule may again dynamically deduce the underlay to be a superior
carrier after all and choose to direct the packet back to Overlay
Manager, to forward to the PNI.

For compatibility with legacy destinations, the choice of the car-
rier remains fixed throughout the lifetime of a connection. How-
ever, if the destination is also equipped with Oasis, carrier selection
can take place dynamically for every packet independently.

Header-Based interception Header-based packet interception
directly diverts matching packets to the VNI. As with name-based
interception, matching packets are diverted to the VNI from where
Oasis transmits the packet via the appropriate OSP module.

Header-based interception avoids Oasis’ computational overhead
for traffic that the user does not wish to route via an overlay. Note
that fields in a packet’s header are determined only when the first
packet of the connection is generated. With only name-based inter-
ception, every packet would go through Oasis even if it is destined
with certainty for the underlay.

2.3 Summary
The core of Oasis itself is designed simply for carrier broker-

age based on end-to-end performance monitoring. Oasis is agnos-
tic to how overlays provide a specific packet delivery service. All

Figure 5: Windows Protocol Driver

overlay-specific functionality is implemented by the OSP and the
corresponding code downloaded dynamically. This division of la-
bor has two benefits - (i) Oasis is simple and consequently robust
and easy to maintain, (ii) the minimality of the Oasis-overlay inter-
face encourages diverse overlay services to independently evolve.
A similar argument for evolution of transport protocols was used
by Patel et al [20].

3. IMPLEMENTATION
Since the main focus of this paper is to introduce the API ex-

ported by Oasis to users and overlay developers, we outline de-
tails about the implementation only briefly. Oasis is largely imple-
mented in Java and works on Linux, Windows, and MacOS and is
about 6K lines of code.

The OS-specific code in Oasis mainly concerns enabling capture
and redirection of packets. The code for this is mostly implemented
in native C. Oasis uses the TUN/TAP virtual network interface (cor-
responding to VNI in the design) for packet redirection on all OS’s.
Oasis redirects DNS requests and packets destined to the fake IP
address range (10.0.x.x) to TUN. The other OS-specific component
of Oasis is the ability to dynamically route intercepted packets via
the underlay. For uniformity, this component is also implemented
as the special case of an overlay and is associated with the code
module OC0 that simply decapsulates and sends out the packet.
Hence, on both Windows and Linux, the underlay simply appears
like another overlay with the local address and the reserved port
acting as the entry node specification. Local code of an overlay
can choose to send out a packet via the underlay by forwarding the
packet to this reserved port at the local address.

3.1 Implementation on Linux
On Linux, redirection of packets to TUN is accomplished using

iptables rules. For each class of packets that are to be redirected
to TUN, an iptables rule is added to mark the corresponding pack-
ets. An entry is added to the local routing table to route all marked
packets to TUN. iptables rules are employed in this manner to redi-
rect DNS requests, packets destined to a fake address and packets
that match any of the packet header-based rules specified by the
user. The component that sends packets out on the underlay does
so on Linux using raw sockets.

3.2 Implementation on Windows
On Windows, DNS requests and packets destined to a fake ad-

dress are redirected to TUN by setting TUN as the default name-
server and mangling the local routing table, respectively. How-
ever, on Windows XP, there is no means by which packets can be
redirected to TUN based on fields in their header, and support for



raw sockets is currently disabled 3 due to security concerns. To
circumvent these restrictions, we implemented an NDIS protocol
driver [18] to intercept and route packets based on values of header
fields. As shown in Fig. 5, this driver sits in between the TCP/IP
stack and the network interfaces.

One edge of the NDIS driver appears as a network interface to
the TCP/IP stack. The other edge appears as a protocol to the net-
work interfaces on the system. So, all packets going from the net-
work stack to any network interface, or in the opposite direction, go
through this driver. The driver also receives ioctl calls from user-
space to add and delete filters that determine which traffic should be
redirected to TUN. The Overlay Manager component (as depicted
in Figure 2) uses these ioctl calls to interact with the driver. Each
packet received by the driver is passed through the filters that it has
received. If a match is found with any of the user-specified filters,
the packet is redirected to TUN by the driver. For underlay rout-
ing, a special port on the host machine is reserved, and all packets
destined to that port are decapsulated and forwarded to the physical
network interface by the driver.

3.3 User and Overlay Interface
Currently, a perl script lets the user specify routing preferences.

We plan to replace this script with a graphical user interface soon.
When invoked, this script encodes the user’s input and passes it on
to Oasis in a UDP packet. If the command issued by the user is to
join a new overlay, Oasis fetches the specification document for that
overlay. The specification document is assumed to be in XML with
a common standard for the tags used. This document is expected
to contain the URL from where Oasis can download code specific
to the overlay. The code that is downloaded is required to be a
collection of Java class files. Safe execution of this code is ensured
using Java’s security mechanisms, by taking away all permissions
except to open and listen on UDP sockets. Performance-monitoring
overlay modules are also granted permission to read Oasis’ config
file that lists the set of overlays that the user has added.

4. OVERLAY TOOLKIT
In addition to Oasis, we have developed a few additional mod-

ules that would help in the development and deployment of overlay-
services, especially on PlanetLab.

Interfacing with legacy destinations We have implemented a
generic exit overlay node module that runs within a PlanetLab slice.
This receives packets from clients, other overlay nodes and from
legacy destinations that it has forwarded packets to. Its core utility
is in the NAT functionality it implements. It appropriately mangles
encapsulated packets that it receives from Oasis-equipped clients
and other overlay nodes, before forwarding them to legacy destina-
tions via raw sockets. Sufficient state is maintained to invert this
mangling on packets received back from the destinations. The exit-
node module implements queueing mechanisms to service traffic
received from different nodes with differential forwarding priori-
ties. This feature is of essence in an overlay that involves nodes
residing in different administrative entities, which is the case in
PlanetLab. Each node would presumably attach higher priority to
traffic that belongs to clients in the local institution as compared to
traffic forwarded from other nodes in the overlay.

TCP connection proxy As a sample OSP module that would
run on an Oasis-equipped client, we have put together a basic TCP
connection proxy. The expected mode of operation of this module
is for it to be run on both the Oasis-equipped client as well as on
the exit overlay node. This module has a sender-side and a receiver-

3Service Pack 2 onwards

Figure 6: Overhead due to Oasis on individual packets

side component. The sender-side component at the client receives
TCP packets sent out by the application and the sender-side com-
ponent on the exit node receives TCP packets sent by the legacy
destination. The sender-side component at either end would pass
on packets to the receiver-side component at the other end. Thus,
by sitting in between the TCP stacks of the legacy client and desti-
nation, this pair of TCP connection proxies enables a new transport
protocol to be employed through the overlay.

PlanetLab client Though Oasis is primarily intended to be run
on legacy end-hosts, we have also developed a port of Oasis that
runs from within a PlanetLab slice. The main purpose of this port
is to aid in the process of evaluating overlays, by enabling the em-
ulation of end-clients from PlanetLab hosts. From the perspective
of Oasis, the main points of distinction between a PlanetLab slice
and a normal Linux box is that iptables rules cannot be employed
to redirect traffic and the routing table cannot be mangled. Our port
to PlanetLab works only for Web traffic. The Web client should use
the local address at a particular reserved port as a Web proxy. Oa-
sis captures packets by opening a raw socket at this reserved port.
Oasis is required to send back a fake SYN-ACK to the application
and look into the HTTP GET request to determine the destination.
But, once the connection is setup, it only needs to mangle sequence
numbers in either direction.

These modules enable an overlay-developer to assemble a basic
setup, wherein routing of packets from a legacy client to a legacy
destination is done over a dummy overlay. By adding intelligence
to the TCP connection proxy and by interposing overlay nodes that
do intelligent routing between the Oasis-equipped client and the
exit node, novel routing and transport protocols can be evaluated.

5. EVALUATION
In this section, we present the results of the experiments we con-

ducted to micro-benchmark Oasis. The two classes of experiments
we conducted were to evaluate the overhead incurred by routing
packets through Oasis and the overhead of running Oasis in terms
of CPU utilization. All our experiments were conducted with a
Linux box at the University of Washington as the client.

5.1 Latency Overhead
Our first set of experiments were to determine the latency over-

head imposed by Oasis in 3 different scenarios - (i) for individual
packets, and for transfer times of (ii) short, and (iii) long flows. Our
results indicate that the overhead attributable to Oasis is relatively
low in each of these cases.

Each of the experiments in this category was first performed
without any modification on the client. The experiment was then re-
peated with Oasis running on the client and all flows to .edu names
redirected to go out via the underlay, but with every packet medi-
ated by Oasis.



Figure 7: Overhead due to Oasis on short transfers

Figure 8: Overhead due to Oasis on long transfers

First, we examined what the additional latency borne by each in-
dividual packet is because of it having to go through Oasis. For this,
we identified a random set of 10 .edu domains distributed across the
US and pinged each of them with 100 ICMP ECHO probes from
our client. Considering the time taken by a probe packet to each
destination to be the average of the 100 probes sent to it, Fig. 6
shows the distribution of the overhead incurred for each destina-
tion. The median overhead is 2ms, which accounts for just around
4% of the average latency of 55ms to the 10 destinations we mea-
sured latencies to. So, the extra latency incurred by each individual
probe packet is relatively low.

We next determined how this overhead affects the total transfer
time for a TCP flow. The overhead experienced by each packet
would dilate the Round Trip Time (RTT) between the two end-
hosts. And, the increase in RTT would also affect the throughput
of the flow due to TCP’s RTT bias. To examine the effect of this,
we fetched the index.html object from all of the 10 .edu domains
chosen previously, 10 times each. Considering the download time
from each domain to be the average of the 10 downloads performed
from it, Fig. 7 plots the distribution of the increase in transfer time.
The median increase in the download time is 0, which demonstrates
that the overhead incurred by each packet does not have any signif-
icant effect on the total transfer time for a flow.

The index.html object fetched from each of the 10 domains was
just a few KiloBytes large. To evaluate the overhead on larger trans-
fers, which would involve a larger number of packets, we identified
10 mirrors of the Fedora Core 4 Linux distribution in .edu domains
across the US. We fetched the first 20MB of a particular iso file
in the distribution from each of these 10 mirrors. The increase in
total transfer time for each of these sites, comparing the transfer
performed with and without Oasis, is shown in Fig. 8. Even in
this scenario, the median increase in transfer time is 0. So, the low
overhead that each packet incurs while going through Oasis does
not have any significant effect on the total download time even in
the case of large transfers.

(a)

(b)

Figure 9: CPU utilization of Oasis with respect to (a) total
download rate, and (b) total upload rate

Since Oasis also catches DNS requests and sends back fake re-
sponses, we also determined the overhead incurred in making a
DNS lookup. Name-based rules in Oasis are in the form of regular
expressions. Checking whether a string matches any among a set
of regular expressions can be optimized by building an appropriate
finite state machine. However, we ran our experiment with the sim-
ple implementation of checking against each rule in sequence. We
observed that the overhead incurred by a DNS lookup, even when
Oasis is executed with as many as 100 name-based rules, is of the
same order as that incurred by normal packets.

5.2 CPU Utilization
The next set of experiments we conducted were to determine the

overhead of using Oasis in terms of its CPU utilization. We eval-
uated this overhead with respect to the total rate of (i) download,
and (ii) upload traffic being sent through Oasis. For both the ex-
periments, we generated traffic at a desired rate using a simple tool
that sourced UDP traffic at a constant rate.

First, we ran our tool on a machine in the same subnet as our
client to send out traffic to our client at a constant rate. We ran
the tool for 60 seconds and determined the CPU utilization of Oa-
sis once every 5 seconds. Ignoring the first and last sample, the
CPU utilization of Oasis for a given download rate was computed
as the mean of the other 10 samples. This experiment was repeated
varying the download rate from 100Kbps to 10Mbps in increments
of 100Kbps. Fig. 9(a) shows that Oasis’ CPU utilization does not
exceed 20% even at a download rate of 10Mbps.

Next, we ran the tool on the client so as to send out traffic at
a constant rate. As before, we determined the CPU utilization of
Oasis for upload rates varying from 100Kbps to 10Mbps. Fig. 9(b)
shows that the CPU utilization of Oasis remains reasonable until an
upload rate of around 2.5Mbps and then rises pretty steeply, mak-
ing Oasis unusable at upload rates above 3Mbps. The significantly
lower bottleneck on upload rate is due to the overhead involved in
intercepting packets.



6. RELATED WORK
Oasis primarily enables end-users to access overlays that provide

improved packet delivery services. Examples include overlays that
offer better reliability [3, 11] and better loss rates [29].

Overlays such as RON [3], HIP [21], ROAM [38] and some ser-
vices to support end-host mobility [28, 31, 35] enable access for
legacy applications. Some network architectural proposals [34, 5]
outline techniques to interoperate with legacy applications. Nakao
et al. [17] describe mechanisms to enable access for users that are
not part of the overlay. Unfortunately, the above schemes are cus-
tomized for a specific overlay service and route all or a fixed subset
of a user’s traffic through the overlay. In contrast, Oasis is designed
to enable greater user choice in an environment consisting of multi-
ple overlays. Oasis allows a user to specify her routing preferences
in a fine-grained manner and dynamically selects the overlay best
suited to carry a packet in accordance with those preferences. Fur-
ther, a user can easily add a new candidate overlay by downloading
the corresponding overlay code module.

Oasis combines several existing techniques, none of which are
novel by themselves, to interoperate with legacy applications. DNS
rewriting, employed by Oasis to virtualize addresses, has been used
before in [10], [19], [23] and [35]. Oasis virtualizes addresses into
the 10.0.x.x address range that is marked for private use [13]. This
idea of exploiting local-scope addresses has been employed in ear-
lier work that enables mobility [28, 31, 35], redirection [12], pro-
cess migration [27, 28] and availability [27]. Yalagandula et al. [35]
outline the limitations of local-scope addresses and work-arounds
for the same.

OCALA[14], an overlay-generic proxy for the i3 [26] overlay, is
closely related to Oasis. Key differences are as follows - (i) Oasis
enables captured traffic to be sent out via the underlay if none of
the overlays help improve performance, (ii) Oasis supports header-
based (in addition to name-based) redirection of packets and avoids
imposing unnecessary overhead on traffic destined to the underlay,
(iii) Oasis does not impose a carrier-Oasis API (like OCALA’s OC-
D layer) and therefore has a “thinner waist”, (iv) Oasis can safely
execute sandboxed code supplied by an OSP, and (v) Oasis does
not explicitly mandate an inter-overlay bridging API and delegates
that responsibility to the peering overlays. We note that an im-
portant advantage of overlays over today’s multidomain Internet is
that a single overlay can have a global span; thus, bridging mul-
tiple overlays appears to be an overkill from an architectural per-
spective. In comparison to OCALA, we believe that Oasis’ design
choices ensure that performance or fault-tolerance is no worse than
the underlying Internet (“do no harm”), enable finer-grained control
over routing preferences, and provide greater extensibility. Finally,
Oasis’ main focus is on making packet delivery overlays services
usable, thus the associated toolkit provides reusable modules for
building overlay transport and routing services.

Architecturally, the do-no-harm design and greater extensibil-
ity are the two features that distinguish Oasis from other overlay-
brokerage systems [21, 5, 14, 32] as well. First, with existing sys-
tems, when a user assigns a subset of her traffic to an overlay, that
traffic always goes through the overlay. In contrast, Oasis allows a
user to specify the delivery metric of her choice and dynamically
selects the overlay best suited to carry that traffic. Additionally, Oa-
sis or the overlay itself may choose to direct a packet to the underlay
if it deems the latter as the best carrier. Second, existing systems
require a shim layer in a fixed format in the encapsulated overlay
packet. This requirement not only restricts the class of interoper-
able overlays, but also fixes this set of overlays at compile-time.
Oasis can interoperate with a generic overlay as it forwards pack-
ets with an empty shim header to the overlay-specific code module

responsible for constructing the shim. Oasis enables a user to join
a new overlay at runtime by downloading the corresponding code
module.

Broadly, Oasis can be viewed as an “end-to-end-compliant” in-
stantiation of the general idea of Active Names [33] and Active
Networks [30]. Oasis allows dynamic name translation based on
performance goals. In particular, delegating the task of monitor-
ing end-to-end performance across overlays also to an “overlay”
borrows the idea of stackable name resolution from Active Names.
Unlike Active Networks, the (overlay) network hands code to the
end host on a demand basis when the overlay is initiated or up-
graded. This design provides flexibility while upholding the end-
to-end principle.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we described the design and implementation of

Oasis an instantiation of an overlay-aware network stack. Oasis’s
primary task is to perform overlay-carrier brokerage in accordance
with a user’s preferences. Thus, it acts as the first hop router resid-
ing on the local machine for all network traffic.

Oasis’s ability to execute overlay-specific code allows sophis-
ticated transport and routing overlay services to be built using it.
As an example, we have built a multipath routing and congestion
control system using the Oasis toolkit. The multipath controller
itself is an overlay module that hides multiple paths from legacy
applications, but is capable of inducing an application to send data
faster than TCP [25]. An associated exit overlay node module in
the toolkit performs a similar connection proxying to be compat-
ible with legacy destinations. Other services we have built using
Oasis include detour routing for short end-to-end paths, reliability
etc. Currently, we are investigating the use of Oasis in designing
incentive-compatible mechanisms for cooperative detour routing
via managed as well as peer-to-peer overlays. A detailed descrip-
tion of these services will appear in a future paper.

We are currently in the process of making the Oasis system and
toolkit available for public use. A preliminary version may be ob-
tained at http://www.cs.umass.edu/˜arun/Oasis/.

8. REFERENCES
[1] Akamai, inc. home page. www.akamai.com.
[2] A. Akella, J. Pang, B. Maggs, S. Seshan, and A. Shaikh. A

comparison of overlay routing and multihoming route
control. In ACM SIGCOMM, pages 93–106, New York, NY,
USA, 2004.

[3] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris.
Resilient overlay networks. In SOSP, pages 131–145. ACM
Press, 2001.

[4] T. Anderson, L. Peterson, S. Shenker, and J. Turner.
Overcoming the Internet impasse through virtualization.
Computer, 38(4):34–41, 2005.

[5] K. Argyraki and D. Cheriton. Loose source routing as a
mechanism for traffic policies. In Proc. of FDNA, 2004.

[6] H. Ballani and P. Francis. Towards a global ip anycast
service. SIGCOMM Comput. Commun. Rev., 35(4):301–312,
2005.

[7] Bittorrent home page. www.bittorrent.com.
[8] Y. Chen, D. Bindel, H. Song, and R. H. Katz. An algebraic

approach to practical and scalable overlay network
monitoring. SIGCOMM Comput. Commun. Rev.,
34(4):55–66, 2004.

[9] H. Eriksson. MBone: The Multicast Backbone.
Communications of the ACM, 37(8):54–60, Aug. 1994.

[10] M. Freedman, E. Freudenthal, and D. Mazi. Democratizing
content publication with coral, 2004.



[11] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M.
Levy, and D. Wetherall. Improving the reliability of internet
paths with one-hop source routing. In USENIX OSDI, pages
183–198, 2004.

[12] S. Gupta and A. L. M. Reddy. A client oriented, ip level
redirection mechanism. In Proceedings of IEEE Infocom,
1999.

[13] Internet protocol v4 address space.
[14] D. Joseph, J. Kannan, A. Kubota, K. Lakshminarayanan,

I. Stoica, and K. Wehrle. Ocala: An architecture for
supporting legacy applications over overlays. Technical
Report UCB/CSD-005-1397, UC Berkeley, EECS, 2005.

[15] Kazaa home page. www.kazaa.com.
[16] A. Keromytis, V. Misra, and D. Rubenstein. Sos: Secure

overlay services, 2002.
[17] A. Nakao, L. Peterson, and M. Wawrzoniak. A divert

mechanism for service overlays. Technical Report
TR-668-03, Computer Science Department, Princeton, Feb.
2003.

[18] Pcusa ndis tutorial.
www.pcausa.com/pcasim/packetredir.htm.

[19] T. S. E. Ng, I. Stoica, and H. Zhang. A waypoint service
approach to connect heterogeneous internet address spaces.
In USENIX Technical Conf., 2001.

[20] P. Patel, A. Whitaker, D. Wetherall, J. Lepreau, and T. Stack.
Upgrading transport protocols using untrusted mobile code.
In SOSP, October 2003.

[21] P. J. R. Moskowitz, P. Nikander and T. Henderson. Host
identity protocol, 2003.

[22] S. Ratnasamy, S. Shenker, and S. McCanne. Towards an
evolvable internet architecture. In In ACM SIGCOMM, 2005.

[23] P. Rodriguez, S. Mukherjee, and S. Rangarajan. Session level
techniques for improving web browsing performance on
wireless links. In WWW, 2004.

[24] S. Savage, T. Anderson, A. Aggarwal, D. Becker,
N. Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vahdat,
G. Voelker, and J. Zahorjan. Detour: a case for informed
Internet routing and transport. IEEE Micro, 19, No. 1:50–59,
January 1999.

[25] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson. TCP
congestion contorl with a misbehaving receiver. Computer
Communication Review, 29(5), 1999.

[26] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet indirection infrastructure. IEEE/ACM Trans. Netw.,
12(2):205–218, 2004.

[27] G. Su. MOVE: Mobility with Persistent Network
Connections. PhD thesis, Columbia University, Oct. 2004.

[28] G. Su and J. Nieh. Mobile communication with virtual
network address translation. Technical Report
CUCS-003-02, Columbia University, Feb. 2002.

[29] L. Subramanian, I. Stoica, H. Balakrishnan, and R. H. Katz.
OverQoS: Offering Internet QoS using overlays. In NSDI,
2004.

[30] D. Tennenhouse and D. Wetherall. Towards an Active
Network Architecture. In Computer Communication Review,
1996.

[31] F. Teraoka, Y. Yokote, and M. Tokoro. A network
architecture providing host migration transparency. In
Proceedings of the ACM SIGCOMM ’88 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communication, 1991.

[32] J. Touch, Y. Wang, L. Eggert, and G. Finn. Virtual internet
architecture. Technical Report ISI-TR-2003-570,
Information Sciences Institute (ISI), March 2003.

[33] A. Vahdat, T. Anderson, and M. Dahlin. Active Naming:
Programmable Location and Transport of Wide-area
Resources, Aug. 1999.

[34] M. Walfish, J. Stribling, and M. Krohn. Middleboxes no
longer considered harmful. In OSDI, 2004.

[35] P. Yalagandula, A. Garg, M. Dahlin, L. Alvisi, and H. Vin.
Transparent mobility with minimal infrastructure. Technical

Report TR-01-30, UT Austin, June 2001.
[36] X. Yang, D. Wetherall, and T. E. Anderson. A dos-limiting

network architecture. In SIGCOMM, 2005.
[37] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and

R. Wang. A transport layer approach for improving
end-to-end performance and robustness using redundant
paths. In USENIX Annual Technical Conference, June 2004.

[38] S. Zhuang, K. Lai, I. Stoica, R. Katz, and S. Shenker. Host
mobility using an internet indirection infrastructure. In Proc.
of Mobisys, 2003.


