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ABSTRACT

Images/videos are often uploaded in situations like disasters. This
can tax the network in terms of increased load and thereby upload
latency, and this can be critical for response activities. In such sce-
narios, prior work has shown that there is significant redundancy
in the content (e.g., similar photos taken by users) transferred. By
intelligently suppressing/deferring transfers of redundant content,
the load can be significantly reduced, thereby facilitating the timely
delivery of unique, possibly critical information. A key challenge
here however, is detecting ‘what content is similar,’ given that the
content is generated by uncoordinated user devices. Towards ad-
dressing this challenge, we propose a framework, wherein a ser-
vice to which the content is to be uploaded first solicits metadata
(e.g, image features) from any device uploading content. By intel-
ligently comparing this metadata with that associated with previ-
ously uploaded content, the service effectively identifies (and thus
enables the suppression of) redundant content. Our evaluations
on a testbed of 20 Android smartphones and via ns3 simulations
show that we can identify similar content with a 70% true positive
rate and a 1% false positive rate. The resulting reduction in redun-
dant content transfers translates to a latency reduction of 44 % for
unique content.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless communica-
tion; Distributed networks
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1 Introduction
A recent report estimates that there were around 350 million photos
uploaded to Facebook and more than 50 million photos uploaded
to Instagram on a daily basis in 2013 [1]. While new technolo-
gies attempt to increase wireless capacity (e.g., MIMO), users still
find that their image/video uploads stall often when using the cellu-
lar infrastructure [2]. Moreover, the demand for wireless capacity
is likely to be exacerbated when unforeseen events such as nat-
ural disasters occur. In such scenarios, the network further gets
overwhelmed due to a combination of the physical destruction of
the underlying infrastructure (which severely impacts both network
capacity and coverage) [3][4] and users generating more content
than usual [5]. For example, there was a sudden increase in the
number of images related to the hurricane Sandy that were up-
loaded to Flickr during the hour when the hurricane made landfall
in New Jersey [6]. Even disaster rescue teams may upload im-
ages/videos to a control center, to allow the center to appropriately
distribute resources/help. The higher traffic demands combined
with the strapped wireless infrastructure can significantly hinder
information delivery in such scenarios [7].

The large volume of images/videos that users attempt to transfer
during such events is likely to have significant redundancies in in-
formation (photos of the same event taken by different users). For
example, Weinsberg et al. [7] study the images taken by people in
the San Diego fire disaster in 2007 and the Haiti earthquake disas-
ter in 2010. They found that 53% of the images in the San Diego
set and 22% of the images in the Haiti set were similar to each
other (and in essence contained redundant content). Suppressing
transfers of such redundant content can ease the load on the net-
work, and allow unique1 information (possibly critical) to be trans-
ferred with low latency. Subsequently, the redundant content can
be lazily uploaded when the network conditions are more benign.
Content suppression and lazy uploading can also benefit users in
more generic settings (e.g., a flash crowd scenario during a sport-
ing event); users can save on their cellular data plans, as well as the
energy on their smartphones. These are likely to be taxed when the
available bandwidth is low.

Arguably, the biggest challenge in suppressing the transfer of re-
dundant content is to determine whether or not content generated
by disparate clients are similar (e.g., photos of the same event, cap-

1In the context of this paper, unique information refers to content
in dissimilar images, which contain objects or surroundings that are
not covered in other images.



tured almost at the same time). This is inherently hard since the ser-
vice to which clients are uploading images (e.g, Flickr or a server
at a disaster control center) must make this determination before
a client uploads the image content. Even if any one among a set
of similar photos has been previously uploaded, the service has to
determine if a second photo 2 that is being considered for upload is
similar to the one that has already been transferred; if the transfer
of the first photo is underway, the process is even harder.

The computer vision community has studied the problem of iden-
tifying similar images largely in the setting where the two images
being compared are at the same client/server. However, requiring
clients to upload images before the service can check for similarity
with previously uploaded images nullifies the utility of our frame-
work. Therefore, to suppress the uploads of redundant image con-
tent, we leverage the metadata used by the computer vision tech-
niques that detect image similarity. Specifically, we have the client
first extract metadata from the image it wishes to upload, and up-
load this metadata to the service. The client then uploads the image
content only if the service is unable find any similar images using
the uploaded metadata.

This approach however presents a fundamental trade-off. On the
one hand, the more fine-grained the metadata extracted by the client
from its image, the better the service’s ability to correctly identify
whether similar images have been previously uploaded. It is im-
portant to ensure not only a low false positive rate so that clients
do not miss uploading critical images but also a high true positive
rate to reduce as much of the redundant content as possible. On
the other hand, it is vital that the metadata extraction at the client,
the metadata exchange between the client and the service, and the
metadata-based lookup by the service all be lightweight. If not,
high processing overheads at the client-side or server-side, or large
delays incurred in transferring the metadata over the network, can
render moot our goal of reducing image upload times by suppress-
ing the uploads of redundant content; the same time can instead be
spent to simply upload the image.

To address this trade-off between minimizing the metadata-related
overhead and maximizing the accuracy of suppressing redundant
content, we break up the photo uploading process into multiple
phases. Our goal here is that, when a client is attempting to up-
load a photo, if no similar image was previously uploaded to the
service, we seek to determine this with the least amount of meta-
data exchange, so that the upload of the image’s content can begin
at the earliest. For this, the first phase involves the exchange of
a very small amount of coarse level metadata between the client
trying to upload the photo and the service, which allows us to de-
termine if a more careful comparison is even necessary; if there are
no images that match the candidate image to be uploaded even at
this level, the client can simply proceed with the upload.

If matches are found in the first phase, we employ a series of vi-
sion algorithms and exchange fine-grained metadata to increase the
fidelity of the comparison. We first seek to minimize the amount of
metadata/processing needed (we combine [8] and [9]). However,
this does not adequately ensure that false positives are rare. Hence,
we slightly increase the overhead by adding additional metadata
using the approach in [10]. While this allows us to bring down the
false positive rate, we are still unable to reach a reasonably high
true positive rate. Hence, we incorporate a third phase which in-
volves human feedback based on thumbnails (again, we increase
the metadata by a small amount) returned from the service; this
drives up the true positive rate without introducing additional false
positives. In combination, these three phases are able to signifi-

2We use the terms image and photo interchangeably.

cantly reduce the amount of redundancy in transferred content and
thereby the congestion, while ensuring very low false positive rates
and low processing overheads at the client and the server.

Our contributions: In this paper, we propose a framework for
identifying and suppressing the transfer of redundant image con-
tent in bandwidth constrained wireless networks. A key compo-
nent of our framework is the aforementioned three-phase approach
for metadata exchange between the generators of content (smart-
phones) and the service which receives the images. The framework
allows a client to estimate if the service is already in possession
of content that is similar to that in an image being considered for
upload. If the estimation suggests that this is the case, the image
upload is suppressed and deferred for a lazy transfer at a later time
when conditions are more benign; else the transfer proceeds.

We implement and evaluate our approach on a 20-node Android
smartphone testbed in various conditions with the Kentucky [11],
and an US cities image data set that we put together. We find that
our multi-stage approach for uploading images correctly identifies
the presence of similar images on the service with≈70% accuracy,
while ensuring a low false positive rate of 1%. More importantly,
our framework’s suppression of uploads of similar content enables
the network to tolerate 60% higher load (for target delay require-
ments), as compared to a setting without our framework. We obtain
similar results even at scale, when using ns-3 based simulations. Fi-
nally, we also show that the overheads imposed by our framework
in terms of bandwidth and energy are very small, therefore making
it viable for use.

2 Related Work
In this section, we briefly overview relevant related work.

Improving network performance and reliability during dis-
asters or flash-crowd events: There has been research on the im-
pact of flash-crowd events [12, 13, 14] and natural disasters [3, 4]
on network performance and connectivity. Proposed solutions al-
low the network to adapt and survive in such scenarios [15, 16, 17].
From among these, the work that is closest to ours is CARE [7],
which is a framework for image redundancy elimination to improve
content delivery in challenged, capacity-limited networks. While
the premise is similar, our work differs in terms of how image sim-
ilarity is detected. In CARE, it is assumed that central infrastruc-
ture is unavailable and thus, content is transferred in a peer-to-peer
fashion. Similarity detection takes place locally at a chosen node,
where the images to be compared are first made available. This
node transfers unique images when a DTN (delay tolerant network)
relay with infrastructure connectivity is available. In our system,
we assume that users have access to central infrastructure; only
metadata that is extracted from the images is used for similarity
detection. Our goal is to preemptively suppress the uploading of
similar images on the bandwidth constrained wireless network. We
acknowledge that the authors of CARE were the first to suggest the
use of similarity detection in images to reduce content; we believe
that our proposed work is complementary to CARE, both in terms
of the setting considered and the actual approach itself.

Data deduplication in network services: Orthogonal to our
work, data deduplication has been used to reduce storage capac-
ity [18] and bandwidth [19, 20] requirements in systems which in-
volve storing and moving large amounts of data. However, these
efforts do not consider content semantics as we do here.

Image similarity detection: Our work leverages state-of-the-
art approaches in computer vision for image feature extraction and
object matching. Over the last decade, many algorithms have been
proposed for robust extraction of global [9, 21] and local key-point [8,
22] features. The bag-of-words (BoW) approach, which had been



originally used in text document classification, was applied in com-
puter vision for image classification and matching by building a
visual codebook from image local key-points [23]. The min-hash
technique was proposed by Chum et al. [9, 24] to effectively es-
timate similarity between images represented in the BoW format.
Recent work has been focusing on geometry verification to improve
similarity detection accuracy [10, 25]. In section 3, we describe
in detail how we effectively combine these techniques to create a
lightweight, yet accurate image similarity detection system.

3 Efficient, lightweight detection of redundan-
cies in images

Our goal is to determine if there are similarities between images
that are to be uploaded by a plurality of spatially disparate uncoor-
dinated clients. We seek to do so with a very low overhead while
still sustaining a high accuracy for detecting similar images. We
envision that these images are to be transferred over a wireless net-
work to a central server. The server has access to all the images that
were previously uploaded to it.

3.1 Our framework in brief

Figure 1 presents an overview of our framework, which can be
adopted by any service to which users uploads photos, such as
Flickr or Facebook, or even a server at a disaster response control
center. When a new image is considered for upload to the server,
a small amount of metadata is first extracted from the image and
transmitted to the server. The server compares this metadata with
that from images that were previously uploaded, and determines if
a similar photo is already available. If this determination yields a
positive outcome, the photo upload is suppressed for the time be-
ing; else the device seeking to upload the image proceeds to do
so.

This seemingly simple high-level approach has three phases, with
the aim of reducing the overhead associated with identifying simi-
lar images. The first two phases form a hierarchical, automated ap-
proach for image similarity detection. First, when a client seeks to
upload an image, it extracts certain coarse-grained global features
and sends these to the server. If the server finds that there is (are)
a previously uploaded image(s) with similar features, it invokes the
second phase. In this phase, the client intelligently combines state
of the art vision algorithms to extract fine-grained local features
from the image. A compact representation of these features is then
sent to the server. The server performs a further comparison of
these features with those in its pre-existing set of images. If there
is a further match, it is deemed that similar content exists, and the
upload of the candidate image is suppressed.

For all images that pass the first check but fail the second check,
the server sends back thumbnails of a small set of the closest match-
ing images in its pre-existing set to the client. In fact, in the sce-
narios of interest, a small set of pre-existing images may turn out
be the closest matching ones to multiple images (being uploaded
by disparate users) that are being considered for transfer; in such
cases, the server can simply broadcast these thumbnails. If a client
device is in the possession of a human user (e.g., a smartphone),
the user can look at the thumbnail and then make a final decision
on whether or not to continue with the image upload.

Table 1 provides a summary of the techniques used in our frame-
work. In the subsequent subsections, we elaborate on how these
techniques are combined to efficiently detect image similarity.

Scope of our work: While our approach is applicable to differ-
ent forms of rich content, we limit ourselves to image/photo up-
loads/transfers in this work. Extension of the work to video is pos-
sible [26] but will be considered in the future. Further, our focus is

Technique Usage Goal Section
OCS
color his-
togram

In Phase 1: Compare
Euclidean distance be-
tween color histograms
to determine server has
candidate similar im-
ages

Lightweight, but
coarse-grained
similarity detection

3.2

ORB
local
key-
points

In Phase 2: Capture dis-
tinctive patches on an
image; these can be
matched to find similar
images

Facilitate highly
accurate simi-
larity detection;
uses image local
features

3.3.1

BoW
represen-
tation

In Phase 2: Com-
pute the Bag of Visual
Words (BoW) represen-
tation of an image by
mapping its key-points
into pre-computed clus-
ters

Provide the inputs
for computing the
min-hash values

3.3.2

Image
min-hash
values

In Phase 2: Convert
a BoW representation
into a fixed number of
hash values

Reduce communi-
cation and process-
ing overhead

3.3.3

Geometry
visual
phrases

In Phase 2: Add geom-
etry information to re-
duce false visual word
matches

Reduce false posi-
tive rate

3.3.4

Thumbnail
feedback

In Phase 3: Feedback
image thumbnails

Use user input to
increase true posi-
tive rates

3.4

Table 1: Summary of techniques combined to form our framework

the identification/suppression of redundant content in this work. In
scenarios such as disasters, it is conceivable that some images are
more important than others (e.g., a human in need of rescue versus
a damaged uninhabited vehicle). Thus, one could conceivably tar-
get prioritizing image uploads based on content; however, we defer
studies of such possibilities to the future.

In this work, we assume that if there is no prior image that is
similar to the one that is considered for transfer, the image is trans-
ferred; else it is suppressed. We do not take into account things like
the quality of the image (e.g., resolution), or the coverage (e.g.,
close up versus wide angle) as criteria for the above determination.
Accounting for these factors is a harder challenge; the service will
need to delay image transfers, compare all metadata from images
that are being considered for uploaded and explicitly pull images
from a chosen client based on some criteria (e.g., HD quality im-
age with a close up of a house). Furthermore, the vision algorithms
that we use here will not provide such assessments.

Our work primarily targets public services that require the trans-
fer of images (e.g. photos transferred during a disaster to facili-
tate rescue operations). Our approach can be potentially leveraged
in flash crowd scenarios where bandwidth is scarce; for example,
an image sharing service can use our approach to provide mobile
users an option to temporarily point to a similar version of an im-
age (that they seek to upload), which is already available on the
server side. A seamless upload and replacement with the user’s
own image could be done lazily when the network is under less
duress; from the user’s perspective, such an approach would save
both on the data usage (if WiFi was used instead of 4G later) and
energy costs that could be heavy due to retransmissions when the
bandwidth is poor.

Finally, we do not leverage device features (e.g., GPS location,
geotags, camera orientation) to assess if two images could be sim-
ilar; these features could be useful in reducing the search space at



1: Upload coarse grained metadata of
a new image

2: Compare coarse 
grained meta data

3: Send resultFound 
match?

Proceed to 
PHASE 2

Upload the 
image

NO YES

(a) Phase 1: Coarse grained metadata matching

4: Extract and upload fine grained local 
features

5: Combine state-of-the-art vision 
approaches to derive high accuracy 

with low overhead detection
6: Send resultFound 

match?

Suppress/Defer
Upload

Move to
PHASE 3

NO YES

(b) Phase 2: Fine grained feature matching

7: Return image thumbnails8: The user visually
compares image thumbnails

9: Send feedback Found 
match?

Suppress/Defer
Upload

Upload the 
image

NO YES

(c) Phase 3: Thumbnail feedback

Figure 1: Our framework for determining and suppressing images that contain similar (redundant) information

the server side (e.g., it can compare images that are taken by cam-
eras in close proximity only). Leveraging such features is orthogo-
nal to, and can be used in conjunction with our framework.

How do you determine if content in two images is similar?:
Whether or not the content in one image is similar to that in another
is a subjective matter; different human users may perceive things
differently and with respect to different images as well. Moreover, a
general user may choose to upload his image regardless of whether
or not someone else has uploaded a similar image. We assume that
(i) savings in terms of data usage and energy will incentivize users
to suppress their image transfers, especially when the network is
congested and, (ii) in scenarios such as disaster recovery, smart-
phones could be used by the relief crew, who will want to suppress
redundant content to reduce congestion and thus, aid relief opera-
tions.

In this work, we seek to ensure that if it is highly likely that a
typical human does not perceive that two images are similar, they
are classified as dissimilar. In other words, our framework must
minimize false positives when classifying images as similar. Keep-
ing this primary goal of a very low false positive rate, we seek to
eliminate redundancies via such similarity detection to the extent
possible, using state-of-the-art computer vision algorithms. We use
known data sets (discussed later) to get objective evaluations of our
framework; these evaluations show that our framework is extremely
effective in decreasing network congestion.

3.2 Phase 1: Use of a coarse-grained global feature

Global features capture the entire content in an image. Examples
include the color pattern or the scene pattern in the image. A global
feature is represented by a single feature vector. As color is an
important image attribute, a histogram of the color distribution in
an image is widely used as a global feature for determining if two
images are similar.

To construct such a histogram, we use the opponent color space
(OCS) [9] to determine image similarity. We use the OCS color
space, since it is not very sensitive to illumination (brightness) vari-
ations, unlike the RGB space. In brief, there are three components
in the OCS space: an intensity component and two opponent colors.
The components in the RGB color space can be used to compute
the the OCS color components using the following equation.

I = (R+G+B)/3

O1 = (R+G− 2B)/4 + 0.5

O2 = (R− 2G+B)/4 + 0.5

(1)

The intensity component is quantized into 64 bins, while the other
two components are quantized into 32 bins. The histogram vector
is normalized so as to represent each component with 1 byte; thus,
128 bytes are used overall to represent the histogram. Once these
128 bytes are sent to the server, the server compares the bin values

with those of the images that it has in its data set (previously up-
loaded). If the Euclidean distance of the histogram of any image on
the server side and the histogram of the image about to be uploaded
is less than a threshold τ1, the system enters the second phase for
similarity detection; otherwise, the client uploads the new image.

3.3 Phase 2: Using fine-grained local features

In the first phase, only the global distribution of colors and intensity
were examined. If the server finds matching histograms, in the
second phase, finer grained local features are extracted from the
image and uploaded as metadata for further comparisons. Contrary
to global features, local features are extracted from small patches
in the image. When combined together, such local features (called
key-points) represent the characteristics of the entire image. Fine-
grained local features can be used to detect image similarity with
high accuracy. Our approach for using local features consists of the
following steps.

3.3.1 Extraction of key-points from an image

As mentioned above, the local features that we compare in order to
assess the similarity of images are key-points. Key-points are small
patches of an image that differ significantly from the surrounding
areas (in the image). In computer vision, SIFT (Scale Invariant Fea-
ture Transform) is the most widely used algorithm for determining
the key-points in images [22]. However, SIFT typically imposes a
very high processing complexity and is thus, not a viable solution
for resource (battery) limited devices like smart-phones. In our ex-
periments, extracting key-points of a high resolution scenery image
(approximately 2 MB of data) with SIFT requires about 30 seconds
or even more.

Hence, we choose ORB [8] as our algorithm to extract image
key-points, instead of SIFT. Experiments from other research groups
have shown that ORB is about two orders of magnitude faster than
SIFT while offering comparable results in many situations [27][28].
Each ORB key-point is described by 256 binary digits, whereas
with SIFT, each key-point is described by a 128-dimensional vec-
tor. The number of key-points depends on the image size, the im-
age resolution and the number of objects in the image. Normally,
the amount of data associated with the key-points in an image is
far greater than the size of the image itself! Therefore, directly
comparing and matching key-points of images is not an option for
our framework; this would violate our goal of exchanging a very
limited amount of metadata for determining the similarity across
disparate images.

3.3.2 Bag of Words (BoW) representation

Instead of directly working with image key-points, we use the bag-
of-words (BoW) approach [23] to build what is called a “visual
codebook." Any image can be represented as a bag of visual words,
which is much more compact than simply representing the image



via key-points. We describe below how the visual words are deter-
mined. For now, we point out that a visual word in the ORB repre-
sentation is simply described by a 256 bit-vector; each element of
the vector is called a dimension. A comparison of the visual words
representing two images could be used to determine if the two im-
ages are similar. Representing an image by a bag of visual words is
performed as follows.

Determining the visual words: First, the ORB key-points of a
large set of representative images are extracted. These key-points
are all grouped into a pre-defined number of clusters using any
good clustering algorithm. In our approach, we use a modified
version of the k-means clustering algorithm to partition and group
binary vectors [29]. With this algorithm, the input key-points are
mapped onto k different clusters based on the Euclidean distance
between the key points and the cluster centroids. However, the Eu-
clidean distance is not suitable for binary data such as the ORB
key-point descriptors. Therefore, in our framework, we use the
Hamming distance instead of the Euclidean distance. The Ham-
ming distance between two binary vectors is simply the number of
bits that are different in the two vectors.

The centroid of each cluster is randomly chosen first but is iter-
atively refined, as key points are added to the cluster; details are
available in [30]. With the binary vector representation, in order to
determine the centroid of a cluster, we count the number of zeroes
and ones in each of the 256 dimensions, for all the data points (key
points) that are associated with the cluster. If the number of zeroes
is greater than the number of ones, the value of the corresponding
dimension for the centroid is a zero, else it is a one. If there is a
tie between the number of zeroes and ones, the value of the that
dimension for the centroid is randomly assigned as either a “0" or
a “1". Each such cluster centroid is then considered to be a visual
word in the aforementioned codebook.

When an image is considered for transfer, each ORB key-point
in the image is mapped on to the closest cluster centroid in terms of
the Hamming distance. With such a mapping, each image is now
represented by a histogram of visual words; the number of key-
points mapped on to a cluster reflects the value of the corresponding
visual word in the histogram.

We wish to point out here that the codebook can be pre-loaded
onto the clients when our software framework is installed (under
benign conditions of connectivity); thus, there is no need to ex-
change it each time a comparison is to be done across images. In
the BoW approach, the number of clusters is generally chosen be-
tween tens of thousands to hundreds of thousands.

3.3.3 Reducing detection overhead using min-hashes

Transferring the histogram of visual words constructed as above
will incur significant overhead since it would require at least n ∗ k
bytes if each component in the histogram can be represented by n
bytes and we have k such components. For example, even with n =
2 and k = 50000, this corresponds to 100 KB. To adhere to our goal
of having very little overhead of exchanging metadata, we use the
min-hash approach proposed by Chum et al. [9, 24] in conjunction
with the BoW representation.

To define the min-hash function of an image in the BoW repre-
sentation we do the following. First, if the value associated with a
visual word in the histogram is greater than 0, the word is simply
considered to be included in a set that is associated with the image.
Simply accounting for whether or not a visual word is present in
an image (as above) is a weaker representation of the BoW vec-
tor, since the number of occurrences of a word is not taken into
account. Now that each image is simply represented by a set of
words, the similarity of two images with sets of visual words I1

pe
rm

ut
at

io
ns

A B C D E F I1=ABC I2=BCD I3=AEF
3 6 2 5 4 1 2 2 1
1 2 6 3 5 4 1 2 1
3 2 1 6 4 5 1 1 3
4 3 5 6 1 2 3 3 1

Label assignments Min-hash values

Table 2: An example of min-hash functions: Four permutations of
label assignments are shown.

and I2 respectively, is defined by the following equation.

sim(I1, I2) =
|I1 ∩ I2|
|I1 ∪ I2|

(2)

The min-hash function approximates the similarity in Equation 2
between two images as follows. Let h be a hash function that maps
all members (visual words) of set I (or I’) into distinct integer num-
bers (called labels). The min-hash value of an image I is the min-
imum from all the hash values associated with the visual words
in that image. Formally, for each visual word X, a unique hash
value h(X) is assigned. The min-hash value of image I is H(I)
= min{h(X), X ∈ I}. The client uses M different assignments
of labels to the visual words. Specifically, let us say there are N
visual words; each is assigned a unique label value ∈ {1, N} at
random. This is referred as one assignment or permutation. The
client can perform M (different) such permutations and compute
the min-hash value in each case. The number of identical min-hash
values between two images can be used to assess the similarity level
between the two.

We use an example from [9] to demonstrate how the min-hash
approach works. Consider a vocabulary of six visual words A, B, C,
D, E and F and three different images. Each image contains three of
these visual words, specifically, I1 = {A,B,C}, I2 = {B,C,D} and I3
= {A,E,F}. For each image, 4 min-hash functions are generated by
using different permutations as shown in Table 2. For example, the
min-hash of I1, corresponding to the first permutation (row 1) is the
value associated with C and is thus equal to 2. As I1 and I2 have
3 identical min-hash values out of 4, their similarity is 3

4
=75%; for

the same reason, the similarity between I1 and I3 is 1
4

=25%.
Proof sketch: The skeleton of a simple proof for why min-hash

approach yields the similarity between two images is as follows.
Let π(S) be a random permutation on a set S, and let X be the
element which has the minimum hash value in π(I1∪I2). Because
π is a random permutation, the probability that X is any element
in the set I1 ∪ I2 is equal for all elements. If X ∈ (I1 ∩ I2),
then obviously, H(I1) = H(I2) = h(X). Otherwise, without loss
of generality, assume X ∈ I1 \ I2; then, H(I1) < H(I2). To
summarize, two images have the same min-hash value if and only
if the element X, which has the minimum hash value, is included in
both of them. It is easy to see that, as a consequence, the probability
that two images I1 and I2 have the same min hash value is equal to
their similarity, i.e., sim(I1, I2), as defined in Equation 2.

3.3.4 Improving detection accuracy by using geometry visual
phrases (GVPs)

In the bag of words representation and the inferred min-hash infor-
mation, the geometry information of each key-point (for example,
the location of a key-point in the image) is lost. To reduce the
likelihood of false matches because of the above, we use geome-
try visual phrases (GVP) in combination with the min-hash values.
This reduces the false positive rates significantly.
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Figure 2: An example of visual phrases between two images

We describe in brief how GVPs are computed and used; more
details are in [10]. Towards determining the GVPs between two
images, each image is divided into a fixed number of bins (same
for both images regardless of the size of the image). In each image,
each key-point corresponding to a visual word is then mapped into
this offset space and is represented by the co-ordinates {x, y}, of
the bin index to which it belongs; this is referred to as the geom-
etry information. Each pair of equal min-hash functions identify a
visual word that occurs in both images. For each of these visual
words, the differences in geometry information of the key-points
(denoted by ∆x and ∆y) are computed. If these "difference" val-
ues for say L visual words are the same, this implies that these L
key-points are likely to be mapped onto the same (corresponding)
objects in the two images and thus, are said to form a co-occurring
GVP of length L. To illustrate, let us consider the example in Fig-
ure 2, which shows two different images of a house (found online)
that was damaged due to hurricane Sandy. The ∆x and ∆y val-
ues for the key points A, B and C are all {0, 0}. Thus, these three
points together could potentially map onto something common in
the two images and this forms a GVP of length 3. Similarly, for the
the two key points G and H, the ∆x and ∆y values are 0 and -1
respectively; thus, these two key points could potentially map on to
identical constructs in the two images. This is a GVP of length 2.

Given two images I and I ′, the similarity score based on visual
phrases of length L is defined in equation 3.

simL(I, I ′) =
∑
s

(
Ms
L

)(
M
L

) , (3)

In equation 3, Ms is the number of key-points in bin s of the offset
space, and thus

(
Ms
L

)
is the number of GVPs of length L in that

bin. For example, in bin {0,0}, there are 3 key-points viz., A, B
and C; if L = 2, the number of length-2 GVPs in the bin is 3, cor-
responding to AB, AC and BC. Thus, the numerator on the RHS of
equation 3 is simply the total number of GVPs of length L between
two images. The denominator,

(
M
L

)
, corresponds to the maximum

possible number of GVPs of length L that can be formed between
the two images, given that M min-hash functions are used. Hence,
the similarity score between two images is the number of GVPs of
length L that are common between them, normalized by the max-
imum possible number of GVPs length L that can be created by
using M min-hash functions.

If the similarity scores between the user’s image and a candidate
image is greater than a threshold (say τ2), the images are deemed
similar.

3.4 Phase 3: Thumbnail feedback
If at the end of phase 2, if the server finds no matches for the image
considered for upload, it invokes an optional phase 3, seeking user
input for finally making a decision on whether or not to have the
image uploaded.

Upon failing to find a match in phase 2, the server rank orders the
images in the candidate set based on the similarity scores with re-
spect to the image being considered for upload. For each of the top
k images in this ordered list, a small thumbnail is sent back to the
client device; photo sharing services typically generate a thumb-
nail for every image at the time it is uploaded [31]. The user of
the client device can visually compare her image with the received
thumbnails and assess whether or not similar images are already
available at the server; based on this, she can decide whether or not
to transfer the image.

3.5 Handling parallel transfers of similar content
Thus far, we implicitly assumed that an image being considered for
upload is compared with images that were already uploaded previ-
ously and stored in the server database. However, it is quite possi-
ble that in our scenarios of interest, multiple user devices attempt
to upload similar images almost at the same time (close to when
the event is occurring). Due to the shared access to the wireless
medium, these attempts could be proceeding in parallel. If band-
width is limited, it becomes important to reduce the load especially
in such settings; for example, multiple such critical events (people
needing to be rescued) could be ongoing at the same time and it
is desirable to have (unique) information associated with all such
events. The challenge here is to essentially compare such paral-
lel uploads and determine if such attempts are towards transferring
similar content.

When a client sends an OCS histogram of a new image, the
server inserts an entry (with this information) for the image, into
a queue. When there are other parallel uploads, the server not only
compares the histogram of a candidate image with that of the im-
ages in its database, but also with the histograms of entries in this
queue. If there are similar histograms (in either the database or in
the above queue), the client is instructed to upload the local fea-
tures as before. When the server receives the local features of an
image, it associates them with the proper entry in the queue. It then
compares these local features with the images from the database
that were classified to be likely candidates with similar content as
well as the local features of entries in the queue that are already
available (with matching histograms). If there is a match with ei-
ther, the image transfer is suppressed and the corresponding entry
is deleted from the queue; else, the client is instructed to upload the
image. After an image is completely received, the corresponding
entry is deleted from the queue and the image is added to the server
database. We point out that we only use the first two phases in de-
termining if images that are considered for upload almost simulta-
neously, are similar. When this determination is taking place, only
metadata of the images is available at the server side (the thumb-
nails of such images are not yet available). Since we desire that the
decisions on whether or not to upload be quick, we avoid waiting
for the complete information towards generating thumbnails and
providing subsequent user feedback; this would cause delays and
affect user experience. However, recall that the thumbnail feed-
back in phase 3 is mainly to help increase the true positive rate;
thus, for the images considered for upload almost simultaneously,
our system still achieves a low false positive rate.



4 System Implementation
In this section, we describe the prototype implementation of our
framework. Our prototype consists of a central server which ac-
cesses a database where a set of previously uploaded images are
stored. A number of mobile client devices generate new images
and attempt to upload them to the server. We use the Kentucky im-
age data set (described later in Section 5) to learn the appropriate
values for the parameters in our implementation.

4.1 Image server

The server stores the images that it receives in a central database.
For each image, it extracts and stores the image’s 128-byte OCS
histogram and the image’s min-hash values as described in Sec-
tion 3. At the server side, we choose to construct 512 permutations
(recall Section 3.3) and determine the corresponding hash values
for each image; each hash value is stored using 2 bytes. As one
might expect, the larger the number of permutations, the higher the
accuracy in similarity determination. However, Zhang et al. [10]
showed that when more than 512 hash functions are used, the gain
in accuracy is at a point of diminishing returns due to an increase
in the imposed processing overhead.

For each hash value, the server also stores the geometry informa-
tion of the visual word that corresponds to that min-hash function
(the visual word which is assigned the minimum value by the hash
function). Specifically, for each visual word, we store the x,y in-
dices of the bin to which the key-point associated with that visual
word belongs, as described in Section 3.3. For each image, we use
a 10x10 bin-space as in [10]; thus, the geometry information of a
min-hash value consists of 1 byte, including 4 bits for the horizon-
tal bin index and 4 bits for the vertical bin index. Therefore, the
total byte count to capture the local features of an image is 1536;
this includes 1024 bytes for the min-hash values and 512 bytes for
the geometry information. In total, we impose only 1664 bytes
overhead for each image, together for both the global and local fea-
tures. This is less than 1% of the size of a normal quality image
taken with a modern smartphone. Our server application is imple-
mented in C++ and uses the OpenCV library [32] to extract global
and local features of the images.

Server operations: When a client application is about to up-
load an image, it sends the OCS histogram of the image first. The
server searches its database to find images with similar histograms
(the component values are within a threshold τ1 of the incoming
image’s histogram) based on Euclidean distance. If such similar
histograms are found, the corresponding images are considered as
candidates for containing the content in the image to be uploaded;
then, the client is asked to transfer min-hash values and the geom-
etry information of its image. If no similar histograms are found,
the client is instructed to upload its image.

In the next phase, when the local features of the image are re-
ceived, the server calculates the geometry similarity score of that
image with respect to each of the images in the candidate set ac-
cording to Equation 3. Here, the scores are based on GVPs of
length 2; it has been shown that this provides a good enough detec-
tion accuracy when compared to using GVPs of other lengths [10].
If any of these similarity scores is ≥ τ2, the server deems that the
content is similar and notifies the client application to suppress the
image upload.

Otherwise, the server chooses those images that have the highest
similarity scores and sends back thumbnails of these, to the client
(a delayed multicast is possible to reach a plurality of clients, but
we don’t implement this). The human user of the client device
can then check to see if the images are similar, and only choose to
upload the image if she feels that they are not. We assume that users
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are objective and suppress an upload if a thumbnail is indeed of a
similar image (we discuss our data sets and their objective usability
for determining the similarity of images in Section 5).

Fast histogram matching in Phase 1: For each OCS histogram
that is received (from the clients), the server needs to find the set of
images in its database with similar histograms. The database could
potentially contain a large set of images, and brute-force checks are
thus not viable. To achieve an efficient search, we utilize the fast
“k nearest neighbor" search (knn) to find a good approximate set
of the candidate images. We use the FLANN library [33] which is
freely available for knn search. The histograms of all the images
on the server side are grouped into hierarchical clusters. Specif-
ically, based on the histograms, all the images are first grouped
into N clusters; each such cluster in turn is recursively partitioned
into N sub-clusters and so on, up to a maximum number of itera-
tions. Here, we choose a default value of N=32, as suggested by
the FLANN library.

Choosing the key parameter for the knn search: One important
parameter when using knn search is the value of k, the maximum
number of nearest neighbors the library should return. The higher
the value of k, the library explores a larger number of branches in
the cluster-tree and is thus able to find a larger set of similar images.
However the search time also increases.

To determine a good value for k, we conduct an experiment us-
ing the Kentucky image set with 10200 images. This set contains
groups of images that are similar; each group contains four images
(ground truth). We build a test set that consists of 500 images, such
that no image is similar to any other image in the set. For each im-
age, we execute FLANN with different values for k, and record the
processing times and the number of similar images found on the
server. Figure 3 shows the search time (for query processing) for
different values of k, and Figure 4 shows the accuracy of the search
results in terms of the percentage of similar images that are found
for a candidate image (as compared to the ground truth). These
graphs show that, if we set k=500, we are able find over 90% of
similar images with an expected processing delay of only about
33ms. Thus, we choose this to be the default value in our server
implementation.



4.2 Client application

The client app is implemented on Android smart-phones using Java
and native C++ code (JNI). Upon capturing an image, our client app
is invoked for attempting an upload of the image to the server. The
Java code is only for the graphical interface; the image processing
code is written in C++ and is linked with the OpenCV library for
feature extraction.

Client operations: First, the client application extracts the OCS
histogram of the image and sends it to the server. It then awaits
a server notification with regards to whether or not there are im-
ages with similar histograms in the server’s database. If such can-
didate images exist, the client app extracts the local features, i.e.,
the min-hash values and their corresponding geometry information,
from the image. To calculate the min-hash values, first the ORB
key-points of the images are extracted. Next, the client applica-
tion converts the image into the BoW presentation by mapping the
key-points into visual words based on a vocabulary file. The vo-
cabulary file contains the book of visual words (codebook) that is
pre-built and preloaded from a set of training images (these are also
available to the server). We choose to use a codebook of 20000
clusters. With this, the processing time at the client for each image
is approximately 1.2 seconds. With a larger codebook, (e.g., with
50000 clusters) the processing time is around 3.5 seconds. Thus,
choosing this larger codebook will degrade the performance of our
framework (increased latencies). Furthermore, with 20000 visual
words, we only need to use 2 bytes to represent each cluster and
this limits the metadata overhead; larger numbers of clusters will
increase these overhead costs.

Next, the client reads 512 different hash values (permutations)
from a pre-built data file; for each permutation, a unique label is
assigned to a hash value and thus, each visual word. It identifies
the label of the visual word with the min-hash value for each per-
mutation, and computes the geometry information for the visual
word associated with that value. It sends both the min-hash values
and the geometry information back to the server (local features).

Pre-installed data on client side: We pre-install a vocabulary
file for the BoW processing and a permutation file for determining
the min-hash labels for images on the client side. Thus, this infor-
mation does not need to be exchanged for each image. With 20000
clusters, the size of the vocabulary file is only 640 KB; each cluster
centroid of an ORB key-point is just 256 bits (32 bytes). The per-
mutation file contains 512 permutations; each permutation in turn
contains 20000 assignments which map each cluster on to a unique
2-byte label value. To reiterate, each permutation essentially re-
orders the identification labels to be assigned to the clusters. Thus,
the size of the permutation file is ≈ 20MB. These files are also
available to the server (which essentially provides the software at
install to each client). The only time that these files need to be re-
built is if there are large changes to the image database maintained
by the server.

5 Evaluation
In this section, we describe our evaluations of our framework. We
perform experiments on a testbed of Android phones, as well as
simulations using ns3 to showcase the performance as well as the
benefits of our approach.

5.1 Training and test image sets

We begin with describing our image data sets and how we use them
to evaluate the accuracy with which our framework can identify
similar images. We use the Kentucky image set, which has been
widely used in computer vision, primarily because of the availabil-

ity of ground-truth information. We also use an image set of US
cities that we collected on the Internet as described below.

The Kentucky image set [11]: The image set consists of 10200
images forming 2550 groups. In each group, there are 4 images of
the same object taken from different angles; such images match our
requirement/definition of similar images.

The city image set: We use the Bing image search service to
find one image each for 5000 popular US cities. As these pictures
are taken from different cities, there are no pairs of similar images
in the entire image set.

We resize and increase the file size of all the images to≈ 700 KB
using ImageMagick [34]; this reflects the average size of normal-
quality images taken by smartphones today.3

Building the training and test data sets: We evaluate the ac-
curacy of our framework by partitioning our image data sets into a
training set and test set. We pre-upload images in the training set to
the server and evaluate the accuracy with which our framework is
able to identify images in the test set (when we try to upload these
images) as having corresponding similar images on the server.

We randomly pick 2000 images from the US cities set and 2000
images from the Kentucky set to create a test set of 4000 images.
Though images from the Kentucky data set are chosen randomly,
we ensure that no more than 2 images are taken from the same
group (the aforementioned 4 images of the same object). The re-
maining images from the Kentucky data set and the US cities data
set are used as our training set; this set is used to build the codebook
for the BoW representation and stored at the server.

To eliminate biases with a specific test set, we construct 5 dif-
ferent test sets (by randomly choosing images from the Kentucky
and US Cities data sets) and the corresponding training sets. By
default, the results reported are the average from our experiments
with these 5 different sets.

With the above, we essentially ensure that for each image in our
test set that is taken from the Kentucky set, there is at least one sim-
ilar version of the image in the server database; this can be used as
ground truth while estimating our true positive rates in identifying
similar/redundant content. For each image taken from the US cities
set, there is no similar version in the server database; thus, this set
is useful in estimating the false positive rates with our framework.

Remarks: We do recognize that the Kentucky and the US cities
data sets contain largely dissimilar images. We tried to perform ex-
periments with a large set of images from a disaster scenario (Hur-
ricane Sandy) but had difficulty in establishing the ground truth for
the purposes of quantifying true and false positive rates. While
we believe that our framework works well in such cases (based on
some limited experiments where we tried to upload about a 100
photos and manually checked for similarity), we need a set of vol-
unteer users to categorize whether the images are similar or not; for
a large set of images, this was difficult to do. Using the Kentucky
and US cities data sets allowed us to evaluate the accuracy of our
framework without human involvement in an objective way.

When emulating human feedback based on thumbnails, we again
rely on the objectivity possible with the above data sets. If two
images are indeed similar (based on the ground truth), we assume
that the user will correctly classify it to be the case; if the images
aren’t, we assume that the user will correctly decide to upload her
image.

A training set of images (and a corresponding codebook) for a
specific disaster location, can be built by using images of the same
location before the disaster and images of the same kind of disas-
ter (for example, an earthquake or a wildfire) that had previously
3With modern smartphones, the average file size of high quality
images can be between 2 and 2.5 MB [35].
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occurred at other locations. A codebook built based on the two im-
age sets is likely to contain key points that are similar to the key
points in the images captured at the disaster scene. This determi-
nation is based on results from prior research on disaster images;
specifically, Yang et al. [36] found that images of the same kind of
disaster have many similar local features.

5.2 Experimental setup

Our experimental system consists of a server with an associated
database; all the images in the training set and their global and
local features are stored in the database. We have 20 Android-
based smartphones as our client devices; the test images are di-
vided equally among these phones. The smartphones connect to an
access point (AP) on a WiFi network; the server is also connected
directly to the AP via a 100 Mbps Ethernet cable. To emulate band-
width constrained settings, we set the network bitrate to 6 Mbps.
We experiment with different workloads (upload rates) from our
smartphones. Note that we vary the network bandwidth in our sim-
ulations in Section 5.8; we also consider uploads using the cellular
infrastructure in those studies.

Remark: Unfortunately, we were unable to showcase the perfor-
mance of our framework via real experiments on cellular networks.
Specifically, we do not have a sufficiently large set of phones to cre-
ate enough load that strained the network bandwidth. Further, we
were unable to determine the bit rate on the LTE links and could
not accurately characterize the network load; thus, it was difficult
to objectively quantify the benefits from our framework. However,
in the scenarios of interest (e.g., disasters), we expect that there will
be sufficiently large user activity that will strain the capacity of the
network [7, 17].

5.3 Accuracy of detecting similar content

Detection accuracy with global features only. First, we examine
the accuracy with which Phase 1 of our framework determines if
or not the server is in possession of a similar image as compared
to one being considered for upload. Recall that image similarity is
determined here only by comparing the global OCS histogram as-
sociated with two images. Figure 5 shows the true positive rates
(correctly detecting similar content) and the false positive rates
(wrongly classifying images as containing similar content) with
different histogram distance thresholds. If we set a very low thresh-
old (meaning that the Euclidean distance between the histogram
of the image to be uploaded and a candidate image in the server
database should be very small), we will end up not identifying any
similar images; here, the true positive rate will be very low. To in-
crease the true positive rate, we will need to increase the threshold
so that we have a bigger likelihood of identifying candidate images
in the server database, but this will have the undesired effect of
increasing the false positive rate, since some wrong images in the
database will also be classified as candidates for similarity checks.

Based on Figure 5, we choose a threshold of τ1=14000 towards
achieving ≈ 80% true positive rate; however, this results in a 63%
false positive rate, which we seek to drastically decrease with Phase
2.

Improving detection accuracy with local features. In Phase 2
of our approach, the assessment of image similarity is refined by
calculating the similarity scores based on GVPs (see Equation 3).
Figure 6 depicts the true and false positive rates after this phase,
when different similarity score thresholds are used. We observe
that with a very low threshold, the false positive rate is very high
(images are wrongly classified as similar) but then drops drastically
as we increase the threshold. However, increasing the threshold
decreases the true positive rate as well, since similar images are
discarded for “not being good enough". To avoid missing critical
image uploads, a very low false positive rate (≈ 1%) is desirable.
If we set a threshold to achieve this, the true positive rate is ≈
47%; this implies that approximately half of the images which have
redundant content are detected and are subsequently suppressed at
the end of this phase.

Feeding back image thumbnails to further increase the true
positive rate. To further improve the detection of similar images,
in Phase 3, the server sends back thumbnails to the user for visual
inspection (Section 3.4). In our experiments, the size of an image’s
thumbnail is ≈ 11 KB; we believe that this a reasonably small vol-
ume of data needed for improving accuracy.4 Figure 7 shows the
increase in accuracy when different numbers of thumbnails are fed
back to the user. With 3 to 5 image thumbnails, we find that the
true positive rate increases to about 68% (from 47% at the end of
Phase 2). Beyond that, we find that we hit a point of diminishing
returns; for example, with 10 thumbnails, the true positive rate in-
creases to just over 70%. Note here that the false positive rates do
not change after Phase 3 (the human accurately determines if the
content is similar or not).

Detection accuracy with parallel uploads. Next, we consider
the case where multiple client devices are attempting uploads of
similar content in parallel (almost simultaneously). Specifically,
we conduct an experiment where three smartphones attempt par-
allel uploads of an ordered set of 500 images to the server. The
database on the server side does not contain any images that are
similar to the test images. We manually ensure that the images at
the same position in the ordered sets at the three clients are similar;
for example, the first image on the first client is similar to the first
image on the second and the third client and so on.

First, we conduct the experiment without performing any simi-
larity detection; as a result, all the 1500 images from the clients are
uploaded to the server. Next, we implement similarity detection
using the process described in Section 3.5. Here, we observe that
only 585 images are uploaded to the server. Specifically, 500 im-
ages with unique content and 85 images with redundant content are

4The overheads due thumbnails are discussed later.
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uploaded; this corresponds to a 17% contribution from redundant
information.

5.4 Impact of redundant content suppression on network per-
formance

In this section, we seek to understand the impact of redundant con-
tent reduction on network performance. Specifically, we seek to
quantify the impact on (i) the delay experienced during image up-
loads (where we can expect a decrease) and (ii) the total sustainable
load (where we can expect an increase). We also quantify the over-
heads due to our approach.

For the experiments in this section, each smartphone sends a test
set of 50 images, back to back to the server. The test set consists of
25 images from the Kentucky data set with similar versions on the
server, and 25 images from the US cities set. The total size of the
test set is ≈ 32 Megabytes. Subsequently, we vary the proportion
of the redundant content in the test set and quantify the impact on
network performance. First, we show the results in an ideal case
wherein all redundant content is correctly detected and suppressed;
in other words, we assume a 100% detection accuracy unlike what
we expect in practice. With our framework, the proportional im-
provements are reduced by a factor equal to the complement of the
true positive rate; we show this later in Section 5.7.

5.4.1 Delays under different network loads

The normalized network load (also referred to as simply network
load) is defined as nλ

µ
, where n is the number of devices in the

network, and λ is the load generated per device, and µ is the rate
achievable on the transfer link. To vary load, we first fix λ, but vary
the number of clients that are attempting image transfers per unit
time (n). Each client transfers/suppresses one image completely,
before attempting the next transfer. Specifically, we assume that a
new image is generated every t seconds. We set t = 6 seconds
(we have other results but do not report them as they are similar),
which implies that a client device (given the 32 MB content volume
consisting of 50 images) generates an average load of λ = 0.85
Mbps. With the wireless bandwidth of 6 Mbps (µ), this corresponds
to each client generating a normalized load of 14% (0.85/6) , on
average.

Figure 8 demonstrates the reduction in the delay experienced
under different normalized network loads, due to similarity detec-
tion/redundancy elimination. The delay experienced by an image
is defined as the duration between when the image is generated and
when it reaches the server; the delay is computed for only those
images that are transferred to the server. Under light network load
(e.g., below 40%), sending the images directly without any simi-
larity detection/redundancy suppression is faster! This is because
in these regimes, there is no congestion and it is possible to trans-
fer images without much delay; the process of similarity detection

adds processing/metadata exchange delays but does not contribute
to a reduction in congestion.

However, when the load > 50%, the network transitions into a
congested state; this is the regime where redundant content reduc-
tion will benefit performance. The figure demonstrates that simi-
larity detection and redundancy suppression allow us to tolerate up
to a 100% increase in load. Similarly, at high loads (e.g., at loads>
1.0), more than a 100% reduction in the experienced delay is pos-
sible. Note that these results are based on about 50% of the images
to be uploaded having similar counterparts at the server.

5.4.2 Varying the proportion of similar images available at the
server

Next, we vary the fraction of uploaded images that have similar
counterparts at the server. In these experiments, we use tcpdump
to capture network traffic transferred over the wireless network. We
show the results when the normalized load is 0.6; the behavioral
results are similar at other loads. The results are shown in Figure 9.

First, the figure depicts a case where the server does not contain
any image that is similar to any image being considered for upload.
In this case, there is an overhead associated with each image due
to the metadata, but this overhead serves no purpose (images are
ultimately uploaded). In this extreme case, we find that the per-
formance with our framework is only slightly worse than in the
case without it; the upload data volume increases from 692 MB
to 694 MB. Second, as one might expect, as the likelihood of the
server finding a similar image increases (the proportion of similar
images present is increased), the performance with our framework
improves in terms of a drastic reduction in network load. The fig-
ure shows that when the redundancy in content is about 50%, the
decrease in network traffic (because of redundancy elimination) is
in fact slightly higher than 50%. The main reason for this artifact is
that the reduction in network load also reduces the overheads due to
retransmissions of corrupted packets that are typically incurred, if
an image is in fact uploaded. These experiments also inherently ac-
count for the uplink overheads with our framework; the results sug-
gest that these overheads are extremely low (because the gains are
as expected in an ideal setting with no overhead). Finally, the meta-
data overhead consumed in the reverse direction (from the server to
the smartphones) is also depicted; this corresponds to a very small
fraction of the upload content volume (≈ 3%).

We also examine the delays incurred in transferring images, while
varying the proportion of similar images available to the server.
The results are shown in Figure 10. Again, if no similar images are
present at the server for any of the images being considered for up-
load, there is a very slight increase in delay (from 8.41 seconds to
9.12 seconds) due to the metadata exchange and processing. This
demonstrates the extremely low overheads with our approach. As
the proportion of similar images increase, drastic reductions (54%
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when this proportion is 50%) in image transfer delays are realized
with our framework as depicted in the figure.

5.5 Impact on energy consumption

Our next set of experiments capture the impact of our framework
on the energy consumption on the client devices. Specifically, we
pay particular attention to the (i) energy consumed due to process-
ing, towards extracting local and global features, and (ii) the energy
consumed by the network interfaces due to content/metadata trans-
fers. We compare the energy consumed on smartphones with and
without our framework.

We use the PowerTutor tool [37] to capture the energy usage on
our smartphones. For clarity, we only show the results with a Sony
Ericsson Xperia Arc phone in our test bed. However, we observe
similar results on different phones from different vendors as well.
Figure 11 shows total energy consumed and the energy breakdown
when a set of 50 images is uploaded from the phone. It is observed
that our approach only induces a very small energy overhead on
client devices when the similarity detection fails in all cases (server
does not have any similar images to the ones considered for up-
load). As the volume of the transferred data is reduced, the energy
consumed by the WiFi connection is also reduced. However, the
energy consumed due to processing increases (due to the compu-
tation of global/local features of the images). The highest differ-
ence in energy consumption is between when no similarity detec-
tion is deployed and when there are no images with similar ver-
sions on the server side; this is about 40 Joules. On today’s modern
smartphones, the battery capacity is around 1800mAh with a volt-
age of 3.7 Volts; the above energy overhead only only corresponds
to about 0.2% of the battery capacity. Given the large number of
image transfers considered from each phone here, the overhead is
likely to be even lower in practice and thus, will not adversely affect
user experience.

5.6 Overhead due to thumbnails

As our final experiment on our Android testbed, we seek to quantify
the overheads incurred in sending different numbers of thumbnails
from the server to the smartphone clients. In this experiment, 50%
of the images that are considered for uploads have similar versions

on the server side. Figure 12 shows the normalized (upload) load
and the corresponding overhead in terms of download load if 1,
3 and 5 thumbnails are generated for those images for which the
server comes up with a negative result at the end of Phase 2, in our
system. It is observed that when the upload rate is increases, the
overhead of generating thumbnails also increases. However, even
when the generated upload load is higher than the capacity of our
link (6Mbps), the overhead of generating 5 thumbnails is still less
than 10% of the link capacity. This demonstrates that Phase 3 of
our framework is lightweight and is a viable option in practice.

5.7 Improvement in network performance with our frame-
work in practice

Thus far, we have shown the improvements on network perfor-
mance in an idealized settings where we assume that similarity de-
tection can be performed with 100% accuracy. Next we show the
impact on network performance with our framework, using our test
set of images. Here, the true positive rate is approximately 70%
(as described in Section 5.1). Figure 13 shows the reduction in up-
load delay if the proportion of redundant content is 50%. Unlike in
an ideal case, our framework is able to eliminate ≈70% of the re-
dundant content (given the true positive rate achieved). The figure
shows that when the load is high, the upload delay without sim-
ilarity detection is about ≈44% higher (even though only ≈35%
of the data considered for upload gets suppressed). The reason for
this higher than expected delay reduction is the same as that in the
ideal case. The retransmission overheads due to corrupted packets
decrease (to significant extents in cases where the link quality is
poor) as compared to a case without similarity detection (when the
images actually get uploaded); this in turn further reduces the ag-
gregate network load and thus decreases delay. The elimination in
redundant content also allows the network to sustain a higher load.
For a target expected delay of 30 seconds, the sustainable load in-
creases by about 60% as seen in the figure. Figure 14 shows the
uplink network traffic when different amounts of redundant con-
tent are present. For the same reason as above (fewer retransmis-
sions), the reduction in the total (uplink) traffic is typically higher
than the proportion of redundant content that is suppressed except
in the case where there are no similar images at all (0% of similar



images). In this extreme case, all images are uploaded, and there
are slight overhead penalties due to our framework.

5.8 Evaluations via simulations

Finally, we examine the impact of our framework on network per-
formance using ns-3 based simulations, which allow us to experi-
ment with different network set-ups and scales.

Simulation set-up: We evaluate the network performance with
both WiFi and LTE: (i) In the WiFi set-up, all the mobile devices
connect to the same wireless access point (AP) through a 802.11b
link, which in turn connects to a server node through a dedicated
link of 100 Mbps. All the the clients are initially distributed evenly
in a square area of 50x50 meters; the AP is positioned at the center
of the area. We use a random walk mobility model for the clients;
each client moves at a random speed in a random direction inside
the area. The WiFi channel is characterized by a distance based loss
propagation model. The channel bit rate is kept constant (but varied
in different experiments) to allow us to compute the normalized
load. (ii) In our LTE set-up, all the smartphones connect to the same
base station (regarded to as an enb node in ns-3) through a LTE
network; the base station is connected to a LTE gateway, which in
turns connects to the server node via a dedicated link of 100 Mbps.
In this set-up, all the LTE clients are initially distributed evenly in
a square area of 100x100 meters; the base station is also positioned
at the center of this area. We again use the random walk mobility
model. The LTE channel is characterized by the default Friis path
loss model. Again, the channel rate is kept at a constant value (but
varied across experiments) in order to be able to characterize the
normalized load.

Impact on image delay time: We examine the impact of our
framework with different loads and with different numbers of mo-
bile devices when 50% of the content to be uploaded is redundant,
and is correctly eliminated. In all our experiments, under the same
load, we observe consistent and very similar results even if the
number of devices and data rates are changed. For simplicity, we
only show one sample result from our WiFi experiments and one re-
sult from our LTE experiments. Figure 15 shows the results with a
54 Mbps WiFi network and 200 smartphones. Figure 16 shows the
results with a 15 Mbps LTE network and 50 smartphones. In both
experiments, a new image is generated every 10 seconds. These
results match those obtained from the real experiments with our
20-phone Android testbed (shown in Figure 8); more than a 100 %
improvement in the average network delay is achieved at high loads
(> 0.8).

6 Conclusions

In this paper, we propose a framework for detecting similar content
in a distributed manner, and suppressing the transfer of such con-
tent in bandwidth constrained wireless networks. Such constraints
are likely to be imposed on networks during events such as disas-
ters. With our framework, we seek to enable the timely delivery of
every unique piece (possibly critical in some cases) of information.
In building our framework we tackle several challenges, primary
among which is the lightweight decentralized detection of redun-
dancies in image content. We leverage, but intelligently combine, a
plurality of state-of-the-art vision algorithms in tackling this chal-
lenge. We perform both experiments on a 20-node Android smart-
phone testbed and ns-3 simulations to demonstrate the effectiveness
of our approach in decreasing network congestion, and thereby en-
suring the timely delivery of unique content.
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