
EECS 482
Introduction to Operating 

Systems

Winter 2018

Harsha V. Madhyastha



Recap
● How to leverage hardware support to implement 

high-level synchronization primitives?

● For mutual exclusion inside critical section:
◆ Disable interrupts to prevent context switches
◆ test_and_set(guard) for atomicity across CPUs

● To wait inside critical section:
◆ Add self to waiting queue and switch to next ready 

thread or suspend CPU

February 5, 2018 EECS 482 – Lecture 9 2



Switch invariant
● Before switching to another thread

◆ Disable interrupts and acquire guard

● When call to swapcontext returns, can assume
◆ Interrupts disabled and guard acquired

● Before returning to user-level code
◆ Release guard and enable interrupts

February 5, 2018 EECS 482 – Lecture 9 3



Lock implementation #4
//guard is initialized to 0
lock() {

while (test_and_set(guard)) {}
disable interrupts

if (status == FREE) {
status = BUSY

} else {
add thread to queue of threads waiting for lock
switch to next ready thread

}
guard = 0
enable interrupts

}

February 5, 2018 EECS 482 – Lecture 9 4



Project 2

● Work on the project incrementally
● CPU and thread

◆ 1 CPU, no interrupts
◆ 1 CPU + interrupts

● Implement mutex and cv
● Add support for multiple CPUs

● Due in 12 days!

February 5, 2018 EECS 482 – Lecture 9 5



Constraining schedules
● So far, we have made programs correct by 

constraining schedules
◆ Allow only correct orderings
◆ Maximize concurrency 

● But, also possible to over-constrain schedules
◆ A must happen before B
◆ B must happen before A
◆ Deadlock is a common result of over-constraint

February 5, 2018 EECS 482 – Lecture 9 6



Deadlock
● Resources

◆ Things needed by a thread that it waits for
◆ Examples: locks, disk space, memory, CPU

● Deadlock
◆ Cyclical waiting for resources which prevents progress
◆ Results in starvation: threads wait forever

● Example: Swapping classes
◆ Alice is in 482, Bob is in 484, and they want to switch

February 5, 2018 EECS 482 – Lecture 9 7



Class example
● Resources are seats in class

● Both Alice and Bob wait forever
◆ Deadlock always leads to starvation
◆ Not all starvation is deadlock (e.g., R/W lock)

● Not all threads are starved
◆ Other students can add/drop other classes

February 5, 2018 EECS 482 – Lecture 9 8



Deadlock example

● Will a deadlock always occur?

February 5, 2018 EECS 482 – Lecture 9 9

Thread A
x.lock
y.lock
...
y.unlock
x.unlock

Thread B
y.lock
x.lock
...
x.unlock
y.unlock





Dining philosophers

● 5 philosophers sit at 
round table

● 1 chopstick between 
each pair of philosophers

● Each philosopher needs 
2 chopsticks to eat

February 5, 2018 EECS 482 – Lecture 9 11

A

B

CD

E

2

5

4

3

1



Dining philosophers
● Algorithm for philosopher:

1. wait for chopstick on right to be free
2. pick up chopstick on right
3. wait for chopstick on left to be free
4. pick up chopstick on left
5. put both chopsticks down

● Can this deadlock?

February 5, 2018 EECS 482 – Lecture 9 12



Generic example of multi-
threaded program

phase 1:
while (!done) {

acquire some resource
work

}

phase 2:
release all resources

February 5, 2018 EECS 482 – Lecture 9 13



Waits-for graph

● Cycle represents a deadlock

February 5, 2018 EECS 482 – Lecture 9 14

thread A

thread B

resource 2resource 1



Waits-for graph

Cycle represents a deadlock

February 5, 2018 EECS 482 – Lecture 9 15

thread A

thread B

Lock xLock y

Thread A
x.lock()
y.lock()
...
y.unlock()
x.unlock()

Thread B
y.lock()
x.lock()
...
x.unlock()
y.unlock()



Waits-for graph

Cycle represents a deadlock

February 5, 2018 EECS 482 – Lecture 9 16

thread A

thread B

Lock xLock y

Thread A
x.lock()
y.lock()
...
y.unlock()
x.unlock()

Thread B
y.lock()
x.lock()
...
x.unlock()
y.unlock()



Waits-for graph

Cycle represents a deadlock

February 5, 2018 EECS 482 – Lecture 9 17

thread A

thread B

Lock xLock y

Thread A
x.lock()
y.lock()
...
y.unlock()
x.unlock()

Thread B
y.lock()
x.lock()
...
x.unlock()
y.unlock()



Waits-for graph

Cycle represents a deadlock

February 5, 2018 EECS 482 – Lecture 9 18

thread A

thread B

Lock xLock y

Thread A
x.lock()
y.lock()
...
y.unlock()
x.unlock()

Thread B
y.lock()
x.lock()
...
x.unlock()
y.unlock()



Coping with deadlocks
● Ignore

◆ Typical OS strategy for application deadlocks
◆ Do deadlocked apps consume CPU?

February 5, 2018 EECS 482 – Lecture 9 19



Coping with deadlocks
● Ignore
● Detect and fix

◆ Use waits-for graph to detect
◆ How to fix?
◆ Could kill threads but not always safe to do so

» Invariants can be broken while thread hold lock
◆ Databases often rollback work done 

» General purpose rollback is costly, difficult
● Prevent

February 5, 2018 EECS 482 – Lecture 9 20



Four necessary conditions for 
deadlock
● Limited resources

◆ Not enough to serve all threads simultaneously

● No preemption
◆ Can’t force threads to give up resources

● Hold and wait
◆ Hold resources while waiting to acquire others

● Cyclical chain of requests

February 5, 2018 EECS 482 – Lecture 9 21



Preventing deadlock
● How to prevent limited resources?

◆ Could increase # of resources
◆ E.g., buy more machines
◆ Not always feasible, e.g., increase # of locks

● How to prevent no preemption?
◆ Some resources can be preempted, e.g., CPU

» Ensure interrupts enabled
◆ Others (e.g., locks) are not preemptable

February 5, 2018 EECS 482 – Lecture 9 22



Midterm exam

● We will have covered all material for midterm 
by end of this lecture

● Two sample exams posted on web page
◆ Review session on Feb 18th or 19th

◆ Take a crack in exam setting before then

February 5, 2018 EECS 482 – Lecture 9 23



Four necessary conditions for 
deadlock
● Limited resources

◆ Not enough to serve all threads simultaneously

● No preemption
◆ Can’t force threads to give up resources

● Hold and wait
◆ Hold resources while waiting to acquire others

● Cyclical chain of requests

February 5, 2018 EECS 482 – Lecture 9 24



Eliminating hold-and-wait
● Two ways to avoid hold and wait:

◆ Wait for all resources to be free; grab all atomically
◆ If cannot get a resource, release all and start over

● Move resource acquisition to beginning
Phase 1a: acquire all resources
Phase 1b: while (!done) {

work
}

Phase 2: release all resources

February 5, 2018 EECS 482 – Lecture 9 25



Atomic acquisition
L.lock()
while left chopstick busy or right chopstick busy

cv.wait (L)
pick up left chopstick
pick up right chopstick
<eat>
drop left chopstick
drop right chopstick
cv.broadcast()
L.unlock()

Any problems with this solution?

February 5, 2018 EECS 482 – Lecture 9 26



Dining philosophers

● A and C eat

February 5, 2018 EECS 482 – Lecture 9 27

A

B

CD

E

2

5

4

3

1



Dining philosophers

● A finishes

February 5, 2018 EECS 482 – Lecture 9 28

A

B

CD

E

2

5

4

3

1



Dining philosophers

● E eats

February 5, 2018 EECS 482 – Lecture 9 29

A

B

CD

E

2

5

4

3

1



Dining philosophers

● C finishes

February 5, 2018 EECS 482 – Lecture 9 30

A

B

CD

E

2

5

4

3

1



Dining philosophers

● B eats

February 5, 2018 EECS 482 – Lecture 9 31

A

B

CD

E

2

5

4

3

1



Dining philosophers

● B finishes

February 5, 2018 EECS 482 – Lecture 9 32

A

B

CD

E

2

5

4

3

1



Dining philosophers

● C eats

February 5, 2018 EECS 482 – Lecture 9 33

A

B

CD

E

2

5

4

3

1



Dining philosophers

● E finishes

February 5, 2018 EECS 482 – Lecture 9 34

A

B

CD

E

2

5

4

3

1



Dining philosophers

● A eats
◆ Back where we started
◆ D starves!

February 5, 2018 EECS 482 – Lecture 9 35

A

B

CD

E

2

5

4

3

1



Eliminating circular chain
● Define a global order over all resources

◆ All threads acquire resources in this order
◆ Thread with highest # resource can make progress

February 5, 2018 EECS 482 – Lecture 9 36

Thread A
x.lock()
y.lock()
...
y.unlock()
x.unlock()

Thread B
x.lock()
y.lock()
...
y.unlock()
x.unlock()



Dining philosophers
● Pick up lower # chopstick first
● Pick up higher # chopstick second

February 5, 2018 EECS 482 – Lecture 9 37

A

B

CD

E

2

5

4

3

1



Global ordering of resources
● If every thread acquires resources in order

◆ How can we be sure that some thread can progress?

February 5, 2018 EECS 482 – Lecture 9 38

T1

R1 R2 R3 R4 R5 R6 R7

T2 T3 T4



Preventing deadlock
● What if we don’t grant resources that will lead 

to cycle in waits-for-graph?

February 5, 2018October 4, 2016 EECS 482 – Lecture 9 39

thread A

thread B

Lock xLock y

Thread A
x.lock()
y.lock()
...
y.unlock()
x.unlock()

Thread B
y.lock()
x.lock()
...
x.unlock()
y.unlock()

EECS 482 – Lecture 9 39



Next time …

● We’ll move on to how OS abstracts use of 
memory

February 5, 2018 EECS 482 – Lecture 9 40


