EECS 482
Introduction to Operating
Systems

Winter 2018

Harsha V. Madhyastha

Recall: What does an OS do?

e Creates abstractions to make hardware easier to use
e Manages shared hardware resources

Applications

Operating System

January 8, 2018 EECS 482 — Lecture 2 2

OS Abstractions

Applications

Thread File system Virtual memory

Operating System

CPU Disk RAM

January 8, 2018 EECS 482 — Lecture 2

Upcoming Schedule

e This lecture starts a class segment that covers
processes, threads, and synchronization

+ Perhaps the most important in this class
+ Basis for Projects 1 and 2

January 8, 2018 EECS 482 — Lecture 2

Managing Concurrency

e Recall: Source of OS complexity

+ Multiple users, programs, |/O
devices, etc.

+ Originally for efficient use of H/W,
but useful even now

_ _ main () |
e How to manage this complexity? getInput () ;
+ Divide and conquer computeResult () ;
printOutput () ;

+ Modularity and abstraction)

January 8, 2018 EECS 482 — Lecture 2 5

The Process

e The process is the OS abstraction for execution
+ Also sometimes called a job or a task

e A process is a program in execution
+ Programs are static entities with potential for execution

e Recall: For each area of OS, ask appl+app2+app3

: : CPU + memory
+ What interface does hardware provide?

+ What interface does OS provide?

appl app2 app3
CPU + memory CPU + memory CPU + memory

January 8, 2018 EECS 482 — Lecture 2 6

Process Components

e A process, identified by process ID (PID), is an
executing program

+ Set of threads (active)
+ An address space (passive)

e What's in the address space?

Shared ™, The code for the executing program
dCrossS —<

threads |_ » The heap memory allocated by the executing program

private [» An execution stack with local variables, parameters, etc.

t&f::é\« » The program counter (PC) indicating the next instruction
_ » A set of general-purpose registers with current values

January 8, 2018 EECS 482 — Lecture 2

Process Address Space

Stack (T1)

A

Thread 1

Y

Thread 2

Data

—=

Segment

Stack (T2)

Stack (T3)

<— Thread 3

Heap

Static Data

PC (T2) >

January 8, 2018

Code

<— PC (T3)

< PC (T1)

EECS 482 — Lecture 2

Review of Stack Frames

A(int tmp) {

B (tmp) ;

\ A(tmp=1)
C(val, val + 2);
A(val - 1);

) C(fob@mp 520)= 3)

C(int foo, int bar) {

int v = bar — foo;

January 8, 2018 EECS 482 — Lecture 2

Multiple Threads

e Which of these is shared between threads?
+ Heap
+ Stack (and SP)
« PC
+ Code

e Can have several threads in a single address space
+ Sometimes they interact
+ Sometimes they work independently

January 8, 2018 EECS 482 — Lecture 2 10

Upcoming Topics

e Threads: unit of concurrency

+ How multiple threads can cooperate to accomplish a
single task?

+ How multiple threads can share limited number of CPUs?

e Address spaces: unit of state partitioning
+ How do address spaces share single physical memory?
» Efficiently
» Flexibly
» Safely

January 8, 2018 EECS 482 — Lecture 2 11

Why do we need threads?

o Example: Web server
+ Receives multiple simultaneous requests
+ Reads web pages from disk to satisfy each request

January 8, 2018 EECS 482 — Lecture 2 12

Option 1: Handle one request
at a time

Request 1 arrives

Server reads in request 1

Server starts disk I/O for request 1
Request 2 arrives

Disk I/O for request 1 finishes
Server responds to request 1 \
Server reads in request 2

time

e Pros and cons?

e Easy to program, but slow
+ Can’t overlap disk requests with computation
+ Can’t overlap either with network sends and receives

January 8, 2018 EECS 482 — Lecture 2 13

Option 2: Event-driven web
server (asynchronous 1/0)

e Issue |/Os, but don’t wait for them to complete

Request 1 arrives

Server reads in request 1

Server starts disk 1/0O for request 1
Request 2 arrives

Server reads in request 2

Server starts disk 1/O for request 2
Disk 1/O for request 1 completes

e Fast, but hard to program

time

January 8, 2018 EECS 482 — Lecture 2 14

Option 2: Event-driven web
server (asynchronous 1/0)

e Issue I/Os, but don’t wait for them to complete

Request 1 arrives

Server reads in request 1

Server starts disk 1/0O for request 1
Request 2 arrives

Server reads in request 2

Server starts disk 1/O for request 2
Disk 1/O for request 1 completes

time

Web server must remember
What requests are being served, and what stage they’re in
What disk I/Os are outstanding (and which requests they belong to)

Lots of extra state!

January 8, 2018 EECS 482 — Lecture 2 15

Multi-threaded web server

e One thread per request
+ Thread issues disk (or n/w) I/O, then waits for it to finish
« Though thread is blocked on |/O, other threads can run

+ Where is the state of each request stored?

Thread 1 Thread 2 Thread 3
Request 1 arrives
Read in request 1
Start disk 1/O
Request 2 arrives
Read in request 2
Start disk I/O
Request 3 arrives
Read in request 3

Disk 1/O finishes
\ 4 Respond to request 1

January 8, 2018 EECS 482 — Lecture 2 16

Benefits of Threads

e Thread manager takes care of CPU sharing

« Other threads can progress when one thread issues
blocking I/Os

+ Private state for each thread

e Applications get a simpler programming model
+ The illusion of a dedicated CPU per thread

e Downsides compared to event-driven model?
« Efficiency (thread scheduling overhead)

January 8, 2018 EECS 482 — Lecture 2

17

Announcements

e First discussion section this Friday
+ No homework questions
+ Overview of tools and techniques

e Sign up for GitHub and Piazza

e Started putting together project group?
+ Group declaration due in two weeks (Jan 22)

e Bring print out of lecture slides to class
e Speak up when something is unclear

January 8, 2018 EECS 482 — Lecture 2

18

When are threads useful?

e Multiple things happening at once

e Usually some slow resource
+ Network, disk, user, ...

e Examples:
+ Controlling a physical system (e.g., airplane controller)
+ Bank ATM server
+ Window system
+ Parallel programming

January 8, 2018 EECS 482 — Lecture 2 19

Ideal Scenario

e Split computation into threads

e Threads run independent of each other

« Divide and conquer works best if divided parts are
iIndependent

How practical is thread independence?

January 8, 2018 EECS 482 — Lecture 2

20

Dependence between threads

e Example 1: Microsoft Word
+ One thread formats document
+ Another thread spell checks document

o Example 2: Desktop computer
+ One thread plays World of Warcraft
+ Another thread compiles EECS 482 project

e Two types of sharing: app resource or H/W
e Example of non-interacting threads?

January 8, 2018 EECS 482 — Lecture 2 21

Cooperating threads

e How can multiple threads cooperate on a single task?

+ Example: Ticketmaster's webserver
+ Assume each thread has a dedicated processor

e Problem:
+ Ordering of events across threads is non-deterministic

+ Speed of each processor is unpredictable

Thread A -------mmemm e >
ThreadB- - - - - - - - - >
ThreadC------------------------ >

e Consequences:
+ Many possible global ordering of events
+ Some may produce incorrect results

January 8, 2018 EECS 482 — Lecture 2 22

Non-deterministic ordering -
Non-deterministic results

Thread 1 Thread 2
Print ABC Print 123

e Printing example

+ Possible outputs?

» 20 outputs: ABC123, AB1C23, AB12C3, AB123C,
A1BC23, A12BC3, A123BC, 1ABC23, 1A2BCS, ...

+ Impossible outputs?
» ABC321

e Ordering within thread is sequential

e Many ways to merge per-thread order into a
global order

e What's being shared between these threads?

January 8, 2018 EECS 482 — Lecture 2

Non-deterministic ordering -

Non-deterministic results

e Arithmetic example (y is initially 10)

Thread A

X=y+1

+ What's being shared between these threads?

+ Possible results?

» If Aruns first: x =11 and y = 20
» If B runs first: x =21 and y = 20

e Another example (x is initially 0)

+ Possible results?
»X=1or-1

+ Impossible results?
»X =0

January 8, 2018

EECS 482 — Lecture 2

Thread A

X =1

Thread A
x=0

X++

Thread B

y=y*2

Thread B
= -1

Thread B
x=0
X__

24

Atomic operations

e Before we can reason at all about cooperating threads,
we must know that some operation is atomic

+ Indivisible, i.e., happens in its entirety or not at all
+ No events from other threads can occur in between

e Print example:
+ What if each print statement were atomic?
+ What if printing a single character were not atomic?

e Most computers
+ Memory load and store are atomic
+ Many other instructions are not atomic
» Example: double-precision floating point
+ Need an atomic operation to build a bigger atomic operation

January 8, 2018 EECS 482 — Lecture 2

25

