EECS 482
Introduction to Operating
Systems

Winter 2018

Harsha V. Madhyastha

Recap: RPC

e Make network communication transparent to
developer

e Given definitions of server functions, automate
+ Generation of client-side and server-side stubs
+« Communication between stubs

e Example: Project 4
+ Client library includes client-side stubs

April 2, 2018 EECS 482 — Lecture 23

Making a distributed system
look like a local system

e RPC: make request/response look like
function call/return

e DSM: make multiple memories look like a
single memory

e DFS: make disks on multiple computers look
Ike a single file system

e Parallelizing compilers: make multiple CPUs
ook like one CPU

e Process migration (and RPC): allow users to
easily use remote processors

April 2, 2018 EECS 482 — Lecture 23

Example Scenario

e Consider user issuing search query to Google

e Google’s objectives in serving query?
+ Resilience to failures
+ Low latency
+ Most relevant results

e \What distributed systems necessary to
achieve these goals?

April 2, 2018 EECS 482 — Lecture 23

Google in 1997

April 2, 2018 EECS 482 — Lecture 23

Geo-Distributed Services

Data Centers

e Spread services and data storage/processing
across 100s of thousands of machines

April 2, 2018 EECS 482 — Lecture 23 7

April 2, 2018 EECS 482 — Lecture 23

L
o}
(/77

EECS 482 — Lecture 23

April 2, 2018

Other Distributed Systems

o Internet
e Data center network

e Domain Name System

e OS for multi-core processors

April 2, 2018 EECS 482 — Lecture 23 10

Why Distributed Systems?

e Conquer geographic separation
+ Facebook and Google customers span the planet

e Build reliable systems with unreliable components

e Aggregate systems for higher capacity
+ CPU cycles, memory, disks, network bandwidth
+ Cost grows non-linearly

e Customize computers for specific tasks
+ Example: cache server, speech-to-text conversion server

April 2, 2018 EECS 482 — Lecture 23 1

Jeff Dean “Facts”

Jeff Dean writes directly in binary. He then writes the
source code as a documentation for other developers.
Compilers don't warn Jeff Dean. Jeff Dean warns
compilers.

Jeff Dean builds his code before committing it, but only

to check for compiler and linker bugs.

April 2, 2018 EECS 482 — Lecture 23 12

Challenge 1: Partial failures

“A distributed system is one where you can’t get
your work done because some machine you've
never heard of is broken.” — Leslie Lamport

April 2, 2018 EECS 482 — Lecture 23 13

Facebook’s Prineville Data Center

e Contents (approx.):
+ 200K+ servers
+ 500K+ disks
+ 10K network switches
+ 300K+ network cables

e At any instant, likelihood that all components
correctly functioning?

e Personal anecdote: Tritonsort

April 2, 2018 EECS 482 — Lecture 23 14

Challenge 2: Ambiguous failures

o If a server doesn’t reply, how to tell if
+ The server has failed
+ The network is down
+ Neither; they are both just slow

e Makes failure detection hard

April 2, 2018 EECS 482 — Lecture 23

15

Challenge 3: Concurrency

Why not partition users across machines?
~ re re re re
" alh alh alh alh

Shared State

April 2, 2018 EECS 482 — Lecture 23

16

Challenge 3: Concurrency

e How to ensure consistency of distributed state in
the face of concurrent operations?

e Use mutex, cv, semaphore, etc.?

e Need to synchronize based on unreliable
messages

April 2, 2018 EECS 482 — Lecture 23 17

Distributed Abstractions

e Unify several machines from app perspective
e Enable concurrent use, hide failures

Applications

e Do “heavy lifting” so developers don't need to

April 2, 2018 EECS 482 — Lecture 23

18

Project 4

e Use assertions to catch errors early
+ No. of free disk blocks matches file system contents?
+ Are you unlocking a lock that you hold?
+ Verity initial file system is not malformed

e Use showfs to verify that contents of file system
match your expectations

o Write test cases to get file server to crash

April 2, 2018 EECS 482 — Lecture 23 19

Distributed Mutual Exclusion

Lock service

-7 Replica 1

y

Client [— Replica 2

ProbleN)
Replica 3

Client failures!

April 2, 2018 EECS 482 — Lecture 23 20

Lease

e Lock with timeout

e If lease holder fails, not a problem because
ease will expire

e How to pick lease timeout value?
+ Short timeout - Client needs to renew lease
+ Long timeout - Unnecessarily block operations

April 2, 2018 EECS 482 — Lecture 23

21

Discrepancy in Lease Validity

Lease service

P 4

I Replica 1

A

Client [— Replica 2

lease server and client
differ about lease validity?

April 2, 2018 EECS 482 — Lecture 23 22

Discrepancy in Lease Validity

e Message that grants lease may have high delay

e Clock at lease holder and lease service may not
be in sync

e How to account for potential discrepancy?

April 2, 2018 EECS 482 — Lecture 23 23

Discrepancy in Lease Validity

Lease service

v ¥
-

Replica 1

A
Client [« — Replica 2

Replica must check with

lease service to confirm
lease validity

Replica 3

April 2, 2018 EECS 482 — Lecture 23 24

Structuring a concurrent
system

e One multi-threaded process on one computer

e Several multi-threaded processes on several
computers

send

receive

April 2, 2018 EECS 482 — Lecture 23 25

Structuring a concurrent
system

e Several multi-threaded process on each of several
computers send

receive

e Why separate threads on one computer into
separate address spaces, then use send/receive
to communicate and synchronize?

+ Protects modules from each other
e Microkernels

+ OS structure that separates OS functionality into several
server processes, each in its own address space

April 2, 2018 EECS 482 — Lecture 23 26

Next time ...

e Distributed file system

April 2, 2018 EECS 482 — Lecture 23

27

