
EECS 482
Introduction to Operating 

Systems

Winter 2018

Harsha V. Madhyastha



Recap: RPC
● Make network communication transparent to 

developer
● Given definitions of server functions, automate

◆ Generation of client-side and server-side stubs
◆ Communication between stubs

● Example: Project 4
◆ Client library includes client-side stubs

April 2, 2018 EECS 482 – Lecture 23 2



Making a distributed system 
look like a local system

● RPC: make request/response look like 
function call/return

● DSM: make multiple memories look like a 
single memory

● DFS: make disks on multiple computers look 
like a single file system

● Parallelizing compilers: make multiple CPUs 
look like one CPU

● Process migration (and RPC): allow users to 
easily use remote processors

April 2, 2018 EECS 482 – Lecture 23 3



Example Scenario
● Consider user issuing search query to Google

● Google’s objectives in serving query?
◆ Resilience to failures
◆ Low latency
◆ Most relevant results

● What distributed systems necessary to 
achieve these goals?

April 2, 2018 EECS 482 – Lecture 23 4



Google in 1997

5April 2, 2018 EECS 482 – Lecture 23



Geo-Distributed Services

6April 2, 2018 EECS 482 – Lecture 23



Data Centers

● Spread services and data storage/processing 
across 100s of thousands of machines

April 2, 2018 EECS 482 – Lecture 23 7



April 2, 2018 EECS 482 – Lecture 23 8



April 2, 2018 EECS 482 – Lecture 23 9



Other Distributed Systems

● Internet
● Data center network

● Domain Name System

● OS for multi-core processors

April 2, 2018 EECS 482 – Lecture 23 10



Why Distributed Systems?
● Conquer geographic separation

◆ Facebook and Google customers span the planet

● Build reliable systems with unreliable components
● Aggregate systems for higher capacity

◆ CPU cycles, memory, disks, network bandwidth
◆ Cost grows non-linearly

● Customize computers for specific tasks
◆ Example: cache server, speech-to-text conversion server

April 2, 2018 EECS 482 – Lecture 23 11



Jeff Dean “Facts”

April 2, 2018 EECS 482 – Lecture 23 12



Challenge 1: Partial failures
“A distributed system is one where you can’t get 
your work done because some machine you’ve 
never heard of is broken.” – Leslie Lamport

April 2, 2018 EECS 482 – Lecture 23 13



Facebook’s Prineville Data Center

● Contents (approx.):
◆ 200K+ servers
◆ 500K+ disks
◆ 10K network switches
◆ 300K+ network cables

● At any instant, likelihood that all components 
correctly functioning?

● Personal anecdote: Tritonsort

April 2, 2018 EECS 482 – Lecture 23 14



Challenge 2: Ambiguous failures

● If a server doesn’t reply, how to tell if
◆ The server has failed
◆ The network is down
◆ Neither; they are both just slow

● Makes failure detection hard

April 2, 2018 EECS 482 – Lecture 23 15



Challenge 3: Concurrency
Why not partition users across machines?

April 2, 2018 EECS 482 – Lecture 23 16

Shared State



Challenge 3: Concurrency

● How to ensure consistency of distributed state in 
the face of concurrent operations?

● Use mutex, cv, semaphore, etc.?

● Need to synchronize based on unreliable 
messages

April 2, 2018 EECS 482 – Lecture 23 17



Distributed Abstractions
● Unify several machines from app perspective
● Enable concurrent use, hide failures

● Do “heavy lifting” so developers don’t need to

April 2, 2018 EECS 482 – Lecture 23 18

Applications



Project 4
● Use assertions to catch errors early

◆ No. of free disk blocks matches file system contents?
◆ Are you unlocking a lock that you hold?
◆ Verify initial file system is not malformed

● Use showfs to verify that contents of file system 
match your expectations

● Write test cases to get file server to crash

April 2, 2018 EECS 482 – Lecture 23 19



Distributed Mutual Exclusion

Client Replica 2

Replica 1

Replica 3

Lock service

April 2, 2018 EECS 482 – Lecture 23 20

Problems?

Client failures!



Lease

● Lock with timeout
● If lease holder fails, not a problem because 

lease will expire

● How to pick lease timeout value?
◆ Short timeout à Client needs to renew lease
◆ Long timeout à Unnecessarily block operations

April 2, 2018 EECS 482 – Lecture 23 21



Discrepancy in Lease Validity

Client Replica 2

Replica 1

Replica 3

Lease service

April 2, 2018 EECS 482 – Lecture 23 22

Scenario in which
lease server and client

differ about lease validity?



Discrepancy in Lease Validity

● Message that grants lease may have high delay

● Clock at lease holder and lease service may not 
be in sync

● How to account for potential discrepancy?

April 2, 2018 EECS 482 – Lecture 23 23



Discrepancy in Lease Validity

Client Replica 2

Replica 1

Replica 3

Lease service

April 2, 2018 EECS 482 – Lecture 23 24

Replica must check with
lease service to confirm

lease validity



Structuring a concurrent 
system

● One multi-threaded process on one computer

● Several multi-threaded processes on several 
computers

April 2, 2018 EECS 482 – Lecture 23 25

send

receive



Structuring a concurrent 
system

● Several multi-threaded process on each of several 
computers

● Why separate threads on one computer into 
separate address spaces, then use send/receive 
to communicate and synchronize?
◆ Protects modules from each other

● Microkernels
◆ OS structure that separates OS functionality into several 

server processes, each in its own address space
April 2, 2018 EECS 482 – Lecture 23 26

send

receive



Next time …

● Distributed file system

April 2, 2018 EECS 482 – Lecture 23 27


