
EECS 482
Introduction to Operating

Systems

Winter 2018

Harsha V. Madhyastha

March 26, 2018 EECS 482 – Lecture 21 2

March 26, 2018 EECS 482 – Lecture 21 3

RAID
● Redundant Array of Inexpensive Disks (RAID)

◆ Sits in between hardware and the file system

● Idea: Use many disks in parallel to increase
storage bandwidth, improve reliability
◆ Files are striped across disks
◆ Each stripe portion is read/written in parallel
◆ Bandwidth increases with more disks

RAID

March 26, 2018 EECS 482 – Lecture 21 4

March 26, 2018 EECS 482 – Lecture 21 5

RAID Challenges
● Small files (small writes less than a full stripe)

◆ Need to read entire stripe, update with small write,
then write entire stripe out to disks

● Reliability
◆ More disks increase chance of failure (MTBF)
◆ Example:

» Say 1 disk has 10% chance of failing in one year
» With 10 disks, chance of any 1 disk failing in one

year is 1 – (1 – 0.1)^10 = 65%!

RAID with parity
● Improve reliability by storing redundant parity

◆ In each stripe, use one block to store parity data
» XOR of all data blocks in stripe

◆ Can recover any data block from all others + parity
◆ Introduces overhead, but disks are �inexpensive�

March 26, 2018 EECS 482 – Lecture 21 6

��� �

March 26, 2018 EECS 482 – Lecture 21 7

RAID Levels
● RAID 0: Striping

◆ Good performance but no reliability

● RAID 1: Mirroring
◆ Maintain full copy of all data
◆ Good read performance, but 100% overhead for storage

and writes

● RAID 5: Floating parity
◆ Parity blocks for different stripes written to different disks
◆ No single parity disk à no bottleneck at that disk

OS Abstractions

● Next few lectures:
◆ Abstraction of network (EECS 489)
◆ Distributed systems (EECS 491)

March 26, 2018 EECS 482 – Lecture 21 8

Operating System

Hardware

Applications

CPU DiskPhysical Memory

Threads File systemVirtual memory

OS abstraction of network
● Hardware reality:

◆ One network interface card shared by all processes
à Machine-to-machine communication

◆ Network is unreliable
◆ Unordered delivery of finite-sized messages

● OS abstraction?
◆ Process-to-process communication
◆ Reliable and ordered delivery of byte stream

March 26, 2018 EECS 482 – Lecture 21 9

● Hardware reality

● OS abstraction

OS abstraction of network

March 26, 2018 EECS 482 – Lecture 21 10

Network

Machine 1

NIC

Machine 3

NIC

Machine 2

NIC

Process A

NIC

Process C

NIC

Process B

NICNIC

Inter-machine to inter-process

● Every process thinks it has its own:
◆ Multiprocessor (threads)
◆ Memory (address space)
◆ Network interface cards (sockets)

● Socket
◆ Virtual network interface card
◆ Endpoint for communication
◆ NIC named by MAC address; socket named by

“port number” (via bind)
◆ Programming interface: BSD sockets (discussion)

March 26, 2018 EECS 482 – Lecture 21 11

OS virtualizes NIC

● UDP (user datagram protocol): IP + sockets
● TCP (transmission control protocol): IP +

sockets + reliable, ordered bytestreams
March 26, 2018 EECS 482 – Lecture 21 13

Operating system

Network interface card

Process A

socket 1 socket 2

Process B

socket 3

Socket as a bounded buffer
● How do you send data when network busy?
● How do you receive data when process busy?

March 26, 2018 EECS 482 – Lecture 21 14

Web Browser

Socket

NIC NIC

Socket

Web Server

TCP
● What guarantees does internet provide for

packet delivery?
◆ chirp, chirp, chirp... (none)
◆ Packets can be:

» Dropped/lost
» Mutilated/corrupted
» Duplicated
» Delayed/delivered out of order

● TCP must provide guarantees on top of this

March 26, 2018 EECS 482 – Lecture 21 15

Ordered messages
● Hardware reality: messages can be re-ordered

◆ Sender: A, B
◆ Receiver: B, A

● Application interface: messages recvd in order sent

● How to detect reordering of messages?
◆ Assign sequence numbers

● Ordering of messages per ”connection”
◆ TCP: process opens connection (via connect), sends

sequence of data, then closes connection
◆ Sequence number specific to a socket-to-socket

connection

March 26, 2018 EECS 482 – Lecture 21 16

Ordered messages
● Example:

◆ Sender sends 0, 1, 2, 3, 4, …
◆ Receiver receives 0, 1, 3, 2, 4, …

● How should receiver deal with reordering?
◆ Drop 3, Deliver 2, Deliver 4
◆ Deliver 3, Drop 2, Deliver 4
◆ Save 3, Deliver 2, Deliver 3, Deliver 4

March 26, 2018 EECS 482 – Lecture 21 17

Ordered messages
● Example:

◆ Sender sends 0, 1, 2, 3, 4, …
◆ Receiver receives 0, 1, 3, 2, 4, …

● How should receiver deal with reordering?
◆ Drop 3, Deliver 2, Deliver 4
◆ Deliver 3, Drop 2, Deliver 4
◆ Save 3, Deliver 2, Deliver 3, Deliver 4

March 26, 2018 EECS 482 – Lecture 21 18

1

0

Ordered messages
● Example:

◆ Sender sends 0, 1, 2, 3, 4, …
◆ Receiver receives 0, 1, 3, 2, 4, …

● How should receiver deal with reordering?
◆ Drop 3, Deliver 2, Deliver 4
◆ Deliver 3, Drop 2, Deliver 4
◆ Save 3, Deliver 2, Deliver 3, Deliver 4

March 26, 2018 EECS 482 – Lecture 21 19

1

0

Ordered messages
● Example:

◆ Sender sends 0, 1, 2, 3, 4, …
◆ Receiver receives 0, 1, 3, 2, 4, …

● How should receiver deal with reordering?
◆ Drop 3, Deliver 2, Deliver 4
◆ Deliver 3, Drop 2, Deliver 4
◆ Save 3, Deliver 2, Deliver 3, Deliver 4

March 26, 2018 EECS 482 – Lecture 21 20

3

0

Ordered messages
● Example:

◆ Sender sends 0, 1, 2, 3, 4, …
◆ Receiver receives 0, 1, 3, 2, 4, …

● How should receiver deal with reordering?
◆ Drop 3, Deliver 2, Deliver 4
◆ Deliver 3, Drop 2, Deliver 4
◆ Save 3, Deliver 2, Deliver 3, Deliver 4

March 26, 2018 EECS 482 – Lecture 21 21

3

2

Reliable messages
● Hardware interface: Messages can be dropped,

duplicated, or corrupted
● Application interface: Each message is delivered

exactly once (without corruption)

● How to fix a dropped message?
◆ Have the sender re-send it

● How does sender know message was dropped?
◆ Have receiver ACK messages; resend after timeout
◆ Downside of dealing with drops this way?

March 26, 2018 EECS 482 – Lecture 21 22

Fast retransmission
● Resend if receive 3 duplicate acks

March 26, 2018 EECS 482 – Lecture 21 23

Send 1

Ack 1

Fast retransmission
● Resend if receive 3 duplicate acks

March 26, 2018 EECS 482 – Lecture 21 24

Send 1

Ack 1Send 2

Send 3

Ack 1

Fast retransmission
● Resend if receive 3 duplicate acks

March 26, 2018 EECS 482 – Lecture 21 25

Send 1

Ack 1Send 2

Send 3

Ack 1Send 4

Ack 1

Send 2
Ack 4

Reliable messages
● How to deal with duplicate messages?

◆ Detect by sequence #s and drop duplicates

● How to deal with corrupted messages?
◆ Add redundant information (e.g., checksum)
◆ Fix by dropping corrupted message

● Transformations:
◆ Corrupted messages à dropped messages
◆ Potential dropped messages à potential duplicates

◆ Solve duplicates by sequence #/dropping
March 26, 2018 EECS 482 – Lecture 21 26

Byte streams
● Hardware interface: Send/receive messages
● Application interface: Abstraction of data stream

● TCP: Sender sends messages of arbitrary size,
which are combined into a single stream

● Implementation
◆ Break up stream into fragments
◆ Sends fragments as distinct messages/packets
◆ Reassembles fragments at destination

March 26, 2018 EECS 482 – Lecture 21 27

Message boundaries
● TCP has no message boundaries (unlike UDP)

◆ Example: Sender sends 100 bytes, then 50 bytes;
Receiver could receive 1-150 bytes

● Receiver must loop until all bytes received

● How to know # of bytes to receive?
◆ Convention (e.g., specified by protocol)
◆ Specified in header
◆ End-of-message delimiter
◆ Sender closes connection

March 26, 2018 EECS 482 – Lecture 21 28

Project 4
● Start ASAP: Due in less than 3 weeks
● Project 3 scores on day project due

◆ If first submit before 3/14: mean 77, median 85
◆ If first submit on or after 3/14: mean 66, median 75

● Read man pages
● Things to keep in mind:

◆ Encrypted data is not a C-string
◆ File data can contain NULL character
◆ Data received over network is untrusted

March 26, 2018 EECS 482 – Lecture 21 29

