
EECS 482
Introduction to Operating

Systems

Winter 2018

Harsha V. Madhyastha

Multiple updates and
reliability

● Data must survive crashes and power outages
◆ Assume: update of one block atomic and durable
◆ Challenge: Crashes in midst of multi-step updates

● Move file from directory a to directory b
1. Delete file from a
2. Add file to b

● Create new (empty) file
1. Update directory to point to new file header
2. Write new file header to disk

March 21, 2018 EECS 482 – Lecture 20 2

Ordering of updates
● Careful ordering can fix some problems:

◆ For example, creating file 482.txt in dir harshavm
◆ Create inode first

March 21, 2018 EECS 482 – Lecture 20 3

Directory

Inode
Size: 0
...

OK to modify unreachable blocks on disk

Ordering of updates
● Careful ordering can fix some problems:

◆ For example, creating file 482.txt in dir harshavm
◆ Create inode first, then link to it

March 21, 2018 EECS 482 – Lecture 20 4

Inode
Size: 0
...

Careful ordering goes from one consistent state to another

Directory
harshavm 1024

Ordering not always enough

● Example: Create file and update free block list
1. Write new file header to disk
2. Update directory to point to new file header
3. Write the new free map

● No ordering is safe

March 21, 2018 EECS 482 – Lecture 20 5

Transactions
● Commonly used to mean ACID property
● Main aspect for file systems: atomicity and

durability (all or nothing)
begin

write disk
write disk
write disk

end (this “commits” the transaction)

● Writes to single sector to disk are atomic
◆ How to make a sequence of updates atomic?
◆ Two main methods: shadowing and logging

March 21, 2018 EECS 482 – Lecture 20 6

Shadowing
● Replicate the data across two stores:

◆ One is current version, other is backup
◆ Current pointer points to the current version

March 21, 2018 EECS 482 – Lecture 20 7

Accounts
Savings: $500
Checking: $500

Accounts
Savings: $500
Checking: $500

Pointer

Current: 1

At beginning of transaction, both replicas are identical

Shadowing
● Transaction updates the backup (shadow)

◆ First add $100 to savings

March 21, 2018 EECS 482 – Lecture 20 8

Accounts
Savings: $500
Checking: $500

Accounts
Savings: $600
Checking: $500

Pointer

Current: 1

Note: modifying “unreachable” block

Shadowing
● Transaction updates the backup (shadow)

◆ Next remove $100 from checking

March 21, 2018 EECS 482 – Lecture 20 9

Accounts
Savings: $500
Checking: $500

Accounts
Savings: $600
Checking: $400

Pointer

Current: 1

Note: modifying “unreachable” block

Shadowing
● Transaction commit switches the pointer

◆ At this point updates become durable

March 21, 2018 EECS 482 – Lecture 20 10

Accounts
Savings: $500
Checking: $500

Accounts
Savings: $600
Checking: $400

Pointer

Current: 2

Note: updating single block = atomic update

Shadowing
● Finally, must update new shadow

◆ First, update savings

March 21, 2018 EECS 482 – Lecture 20 11

Accounts
Savings: $600
Checking: $500

Accounts
Savings: $600
Checking: $400

Pointer

Current: 2

Note: again, updating unreachable block

Shadowing
● Finally, must update new shadow

◆ Next, update checking

March 21, 2018 EECS 482 – Lecture 20 12

Accounts
Savings: $600
Checking: $400

Accounts
Savings: $600
Checking: $400

Pointer

Current: 2

Note: again, updating unreachable block

Shadowing summary
● Can make arbitrary set of updates in txn

◆ Pointer switch is always atomic commit

● Downside?
◆ Requires replicating data store

● Can reduce cost by shadowing on demand
◆ Sometimes called shadow paging
◆ Used in modern file systems (WAFL, ZFS, ...)

March 21, 2018 EECS 482 – Lecture 20 13

Optimizing shadowing

● Block can store more
than just a 1-bit pointer

● Example: move notes
from /482/w17/ to
/482/w18/
◆ Which blocks need to be

updated?
◆ Which block can be

updated in-place?

March 21, 2018 EECS 482 – Lecture 20 14

/ inode

/ data

482 inode

w17 inode w18 inode

notes inode

Optimizing shadowing

March 21, 2018 EECS 482 – Lecture 20 15

/ inode

/ data

482 inode

w17 inode w18 inode

notes inode

Shadowing summary
● Need to propagate shadowing up tree

◆ Can stop at common ancestor
◆ May be root of the file system

» For example, what if free block list persistent?
◆ Coalesce multiple transactions for efficiency

● Instead of deallocating, can keep old blocks
◆ Snapshot (past version) of file system state

March 21, 2018 EECS 482 – Lecture 20 16

Transactions via Logging
● Divide storage into:

◆ Data store: Persistent copy of data
◆ Log: Sequential region that enables txn updates

March 21, 2018 EECS 482 – Lecture 20 17

Log

Data
Store

Checking
$500

Saving
$500

Logging example
● Step 1: Append updates to log

◆ E.g., <LBN, data> tuples (value logging)
◆ Data store not updated, so no changes if crash

March 21, 2018 EECS 482 – Lecture 20 18

Log

Data
Store

Checking
$500

Saving
$500

Checking
$400

Saving
$600

Logging example
● Step 2: To commit transaction

◆ Append “commit” record to log
● Step 3: Apply updates in log to data store

March 21, 2018 EECS 482 – Lecture 20 19

Log

Data
Store

Checking
$500

Saving
$500

Checking
$400

Saving
$600 Commit

Logging example
● What if we crash before applying all updates?

◆ Upon restart, apply all updates in log until last
commit record

March 21, 2018 EECS 482 – Lecture 20 20

Log

Data
Store

Checking
$400

Saving
$500

Checking
$400

Saving
$600 Commit

Logging example
● After applying updates

◆ Checkpoint log (remove records written to store)

March 21, 2018 EECS 482 – Lecture 20 21

Log

Data
Store

Checking
$400

Saving
$600

Transactions with logging
● Write updates to append-only log
before updating file system

● Write commit sector to end of log

● Eventually, copy new data from log
to file system

March 21, 2018 EECS 482 – Lecture 20 22

Transactions with logging
● System crash before writing commit record?

◆ Store unmodified, recovery ignores log records

● System crash after writing commit record, but
before applying updates to data store?
◆ Updates before commit record will be written to

store during replay

● Transaction committed by single sector write
● System crash while replaying log?

March 21, 2018 EECS 482 – Lecture 20 23

Format of log records
● Why is the following logging incorrect?

◆ Crash after updating checking = lose $100!
◆ Log operations should be idempotent

March 21, 2018 EECS 482 – Lecture 20 24

Log

Data
Store

Checking
$500

Saving
$500

Checking
-$100

Saving
+$100 Commit

Journaling
● Many file systems implement txn via logging

◆ Ext3, Ext4, NTFS, etc.
◆ Often referred to as journaling

● Journaling all updates felt to be too slow
◆ Why might this be?

» Large file writes: 2x disk writes
◆ Ext4 has 3 modes:

» Journal all updates
» Journal just metadata (default)
» No journaling

March 21, 2018 EECS 482 – Lecture 20 25

Project 4
● Secure, multi-threaded network file server

◆ Network programming, file systems, client-server,
threads/concurrency, even a little security

◆ Experience writing significant concurrent program

● Good news: concepts simpler than project 3
● Bad news: more code than project 3

● Make sure to try out Friday’s lab question

March 21, 2018 EECS 482 – Lecture 20 26

Log-structured file system
● Goal: Make (almost) all I/Os sequential

◆ File system can write to any free disk block
◆ In general, not possible for reads; leverage caching

● Basic idea: Treat disk as an append-only log
◆ Append all writes to log, no data store

● What does it take to update the data in
/home/harshavm/482/notes?

March 21, 2018 EECS 482 – Lecture 20 27

LFS Write Example

● What does it take to update the data in
/home/harshavm/482/notes?
1. Write data block for notes

» But, now inode points to wrong block

March 21, 2018 EECS 482 – Lecture 20 28

Log
notes

block 0

LFS Write Example

● What does it take to update the data in
/home/harshavm/482/notes?
1. Write data block for notes
2. Write inode for notes

» But, now 482 directory contains wrong LBN

March 21, 2018 EECS 482 – Lecture 20 29

Log
notes

block 0
notes
inode

LFS Write Example

● What does it take to update the data in
/home/harshavm/482/notes?
1. Write data block for notes
2. Write inode for notes
3. Write data block, inode for 482
4. Etc. all the way to root inode

March 21, 2018 EECS 482 – Lecture 20 30

Log
notes

block 0
notes
inode

482
block 0

482
inode

Finding data in LFS

● New data structure: inode map (indirection!)
◆ Directory entries contain inode number
◆ inode map translates inode number to disk block

● inode map is periodically checkpointed
◆ Cached in memory for performance

March 21, 2018 EECS 482 – Lecture 20 31

March 21, 2018 EECS 482 – Lecture 20 32

LFS: Garbage collection

● LFS append-only quickly runs out of disk space
◆ Overwriting, deletion creates garbage
◆ Need an efficient garbage collector (cleaner)

● LFS divides log into large segments
◆ Choose clean segment, write sequentially
◆ Background cleaner creates new clean segments

» Read in full segments, Copy live data to end of log

● Cleaning is expensive for high utilization

March 21, 2018 EECS 482 – Lecture 20 33

Write Cost Comparison

Write cost of 2
if 20% full Write cost of 10

if 80% full

LFS on SSDs
● LFS rarely used for hard drives
● But characteristics of SSDs perfect for LFS

◆ Random reads very cheap, writes expensive
» LFS optimizes for write performance

◆ Need to erase large chunks before overwrite
» LFS log cleaning enables background erase

◆ SSDs have wearout after too many writes
» Log structure does automatic wear leveling

● Flash Translation Layer essentially an LFS
March 21, 2018 EECS 482 – Lecture 20 34

