EECS 482
Introduction to Operating
Systems

Winter 2018

Harsha V. Madhyastha

Multiple updates and
reliability

e Data must survive crashes and power outages
+ Assume: update of one block atomic and durable
+ Challenge: Crashes in midst of multi-step updates

e Move file from directory a to directory b

1. Delete file from a
2. Add filetob

e Create new (empty) file
1. Update directory to point to new file header
2. Write new file header to disk

March 21, 2018 EECS 482 — Lecture 20

Ordering of updates

e Careful ordering can fix some problems:
+ For example, creating file 482.txt in dir harshavm
+ Create inode first

Directory

Inode
Size: 0

OK to modify unreachable blocks on disk

March 21, 2018 EECS 482 — Lecture 20

Ordering of updates

e Careful ordering can fix some problems:
+ For example, creating file 482.txt in dir harshavm
+ Create inode first, then link to it

Directory
harshavm 1024

I

Inode
Size: 0

Careful ordering goes from one consistent state to another

March 21, 2018

EECS 482 — Lecture 20

4

Ordering not always enough

e Example: Create file and update free block list
1. Write new file header to disk
2. Update directory to point to new file header
3. Write the new free map

e No ordering is safe

March 21, 2018 EECS 482 — Lecture 20

Transactions

e Commonly used to mean ACID property

e Main aspect for file systems: atomicity and
durability (all or nothing)

begin
write disk
write disk
write disk

end (this “commits” the transaction)

e \Writes to single sector to disk are atomic
+ How to make a sequence of updates atomic?
+ Two main methods: shadowing and logging

March 21, 2018 EECS 482 — Lecture 20

Shadowing

e Replicate the data across two stores:
+ One is current version, other is backup
+ Current pointer points to the current version

Pointer

_~ Current: 1

/

Accounts
Savings: $500
Checking: $500

Accounts

Savings: $500
Checking: $500

At beginning of transaction, both replicas are identical

March 21, 2018

EECS 482 — Lecture 20

7

Shadowing

e Iransaction updates the backup (shadow)
+ First add $100 to savings

Pointer
/ _~ Current: 1
Accounts Accounts
Savings: $500 Savings: $600
Checking: $500 Checking: $500

Note: modifying “unreachable” block

March 21, 2018 EECS 482 — Lecture 20

Shadowing

e Iransaction updates the backup (shadow)
+ Next remove $100 from checking

Pointer
/ _~ Current: 1
Accounts Accounts
Savings: $500 Savings: $600
Checking: $500 Checking: $400

Note: modifying “unreachable” block

March 21, 2018 EECS 482 — Lecture 20

Shadowing

e [ransaction commit switches the pointer
+ At this point updates become durable

Pointer
Current: 2 \\
Accounts Accounts
Savings: $500 Savings: $600
Checking: $500 Checking: $400

Note: updating single block = atomic update

March 21, 2018 EECS 482 — Lecture 20

Shadowing

e Finally, must update new shadow
+ First, update savings

Pointer
Current: 2 \\
Accounts Accounts
Savings: $600 Savings: $600
Checking: $500 Checking: $400

Note: again, updating unreachable block

March 21, 2018 EECS 482 — Lecture 20

Shadowing

e Finally, must update new shadow
+ Next, update checking

Pointer
Current: 2 \\
Accounts Accounts
Savings: $600 Savings: $600
Checking: $400 Checking: $400

Note: again, updating unreachable block

March 21, 2018 EECS 482 — Lecture 20

Shadowing summary

e Can make arbitrary set of updates in txn
+ Pointer switch is always atomic commit

e Downside?
+ Requires replicating data store

e Can reduce cost by shadowing on demand

+ Sometimes called shadow paging
+ Used in modern file systems (WAFL, ZFS, ...)

March 21, 2018 EECS 482 — Lecture 20

13

Optimizing shadowing

e Block can store more
than just a 1-bit pointer

e Example: move notes

from /482/w17/ tO

w17 inode

| inode

| data

482 inode

/482 /wl8/

+ Which blocks needﬁﬁe \’

updated?

]

w18 inodg

+ Which block can be
updated in-place?

March 21, 2018

EECS 482 — Lecture 20

™

il

notes inode

14

Optimizing shadowing

S

w17 inode

March 21, 2018

/-
\

| inode
\ 4
| data
, N 482 inode
| \
W—
+—
\\ 4 \ 4
notes inode

p

EECS 482 — Lecture 20

Shadowing summary

e Need to propagate shadowing up tree
+ Can stop at common ancestor
+ May be root of the file system
» For example, what if free block list persistent?
+ Coalesce multiple transactions for efficiency

e Instead of deallocating, can keep old blocks
+ Snapshot (past version) of file system state

March 21, 2018 EECS 482 — Lecture 20

16

Transactions via Logging

e Divide storage into:
+ Data store: Persistent copy of data
+ Log: Sequential region that enables txn updates

Data Checking Saving
Store $500 $500
Log

March 21, 2018 EECS 482 — Lecture 20

Logging example

o Step 1: Append updates to log
+ E.g., <LBN, data> tuples (value logging)
+ Data store not updated, so no changes if crash

Data Checking Saving
Store $500 $500

Checking| Saving
Log | s400 | $600

March 21, 2018 EECS 482 — Lecture 20

Logging example

o Step 2: To commit transaction
+ Append “commit” record to log

o Step 3: Apply updates in log to data store

Data Checking Saving
Store $500 $500

Checking| Saving

Log | sa00 | se00 | Commit

March 21, 2018 EECS 482 — Lecture 20

Logging example

e What if we crash before applying all updates?

+ Upon restart, apply all updates in log until last
commit record

Data Checking Saving
Store $400 $500

Checking| Saving

Log | sa00 | se00 | Commit

March 21, 2018 EECS 482 — Lecture 20

Logging example

o After applying updates

+ Checkpoint log (remove records written to store)

Data
Store

Checking
$400

Saving
$600

Log

March 21, 2018

EECS 482 — Lecture 20

21

Transactions with logging

o \Write updates to append-only log
before updating file system (@

e Write commit sector to end of log

e Eventually, copy new data from log
to file system

March 21, 2018 EECS 482 — Lecture 20

22

Transactions with logging

e System crash before writing commit record?
+ Store unmodified, recovery ignores log records

e System crash after writing commit record, but
before applying updates to data store?

+ Updates before commit record will be written to
store during replay

e Iransaction committed by single sector write
e System crash while replaying log?

March 21, 2018 EECS 482 — Lecture 20

23

Format of log records

e Why is the following logging incorrect?
+ Crash after updating checking = lose $100!
+ Log operations should be idempotent

Data Checking Saving
Store $500 $500

Checking| Saving
Log | .s100 | +$100

Commit

March 21, 2018 EECS 482 — Lecture 20

Journaling

e Many file systems implement txn via logging
+ Ext3, Ext4, NTFS, etc.
+ Often referred to as journaling

e Journaling all updates felt to be too slow
+ Why might this be?
» Large file writes: 2x disk writes
+ Ext4 has 3 modes:
» Journal all updates
» Journal just metadata (default)
» No journaling

March 21, 2018 EECS 482 — Lecture 20

25

Project 4

e Secure, multi-threaded network file server

+ Network programming, file systems, client-server,
threads/concurrency, even a little security

+ Experience writing significant concurrent program

e Good news: concepts simpler than project 3
e Bad news: more code than project 3

e Make sure to try out Friday’s lab question

March 21, 2018 EECS 482 — Lecture 20

26

Log-structured file system

e Goal: Make (almost) all I/Os sequential
+ File system can write to any free disk block
+ In general, not possible for reads; leverage caching

e Basic idea: Treat disk as an append-only log
+ Append all writes to log, no data store

e What does it take to update the data Iin
/home/harshavm/482/notes?

March 21, 2018 EECS 482 — Lecture 20

27

LFS Write Example

e \What does it take to update the data in
/home/harshavm/482/notes?

1. Write data block for notes
» But, now inode points to wrong block

notes
Log | plock 0

March 21, 2018 EECS 482 — Lecture 20

LFS Write Example

e \What does it take to update the data in
/home/harshavm/482/notes?
1. Write data block for notes
2. Write inode for notes
» But, now 482 directory contains wrong LBN

A

notes notes
Log | block 0 | inode

March 21, 2018 EECS 482 — Lecture 20

LFS Write Example

e \What does it take to update the data in
/home/harshavm/482/notes?

1. Write data block for notes

2. Write inode for notes

3. Write data block, inode for 482
4. Etc. all the way to root inode

AWAVA

notes notes 482 482
Log | block 0 | inode | block0 | inode

March 21, 2018 EECS 482 — Lecture 20

Finding data in LFS

e New data structure: inode map (indirection!)
+ Directory entries contain inode number
+ Inode map translates inode number to disk block

e Inode map is periodically checkpointed
+ Cached in memory for performance

March 21, 2018 EECS 482 — Lecture 20

31

LFS: Garbage collection

e LFS append-only quickly runs out of disk space
+ Overwriting, deletion creates garbage
+ Need an efficient garbage collector (cleaner)

e LFS divides log into large segments
+ Choose clean segment, write sequentially
+ Background cleaner creates new clean segments
» Read in full segments, Copy live data to end of log

e Cleaning is expensive for high utilization

March 21, 2018 EECS 482 — Lecture 20

32

Write Cost Comparison

Write cost of 2

if 20% full 1 Write cost of 10

if 80% full

R e .
00 02 04 06 08 1.

Fraction alive in segment cleaned (u)

March 21, 2018 EECS 482 — Lecture 20 33

LFS on SSDs

e LFS rarely used for hard drives

e But characteristics of SSDs perfect for LFS
+ Random reads very cheap, writes expensive
» LFS optimizes for write performance
+ Need to erase large chunks before overwrite
» LFS log cleaning enables background erase
+ SSDs have wearout after too many writes
» Log structure does automatic wear leveling

e Flash Translation Layer essentially an LFS

March 21, 2018 EECS 482 — Lecture 20

34

