
EECS 482
Introduction to Operating

Systems

Winter 2018

Harsha V. Madhyastha

Recap: CPU Scheduling
● First Come First Serve (FCFS)

◆ Simple, but long waiting times for short jobs

● Round Robin
◆ Reduces waiting times for short jobs
◆ Higher context switching overhead

● Shortest Time to Completion First (STCF)
◆ Optimal average response time
◆ Use runtime of a job so far to predict remaining time

March 12, 2018 EECS 482 – Lecture 17 2

Priority
● Priority

◆ Assign external priority to each job
◆ Run high-priority jobs before low-priority ones
◆ Use, e.g., round-robin for jobs of equal priority
◆ Prone to starvation

● Methods for preventing starvation?
◆ If job has not run for time t, boost priority
◆ Handle priority inversion (lock held by low-priority)

March 12, 2018 EECS 482 – Lecture 17 3

March 12, 2018 EECS 482 – Lecture 17 4

Priority Inversion

x->Acquire()

x->Acquire()

x->Release()

x->Acquire()

x->Acquire()

pr
io
ri
ty

time

pr
io
ri
ty

time

PH

PL

PH

PL

PM

Multimedia: Soft real-time

● Examples:
◆ Audio should not skip when compiling projects
◆ Predictable: video player plays n frames per sec

● Can reserve a share of the CPU
◆ X% of the CPU over some time interval
◆ Unused CPU split among remaining jobs

March 12, 2018 EECS 482 – Lecture 17 5

Hard real-time scheduling
● Jobs have to complete before deadline

◆ Demand / deadline known in advance
◆ Example: vehicle control, aviation, etc.

● Earliest-deadline first (EDF)
◆ Always run jobs whose deadline is soonest
◆ Preempt if newly arriving job has earlier deadline
◆ Always succeeds if schedule is feasible
◆ But, may be very poor if schedule is infeasible

March 12, 2018 EECS 482 – Lecture 17 6

Scheduling: Summary
● Many different policies

◆ FCFS
◆ Round robin
◆ STCF
◆ Priority
◆ Proportional share
◆ EDF

● Scheduling strategy in grocery stores?
● OS schedulers mix all of these

◆ Many heuristics and complex tuning
March 12, 2018 EECS 482 – Lecture 17 7

OS Abstractions

● Next few lectures:
◆ What interface does file system export to apps?
◆ How does file system interact with hardware?

March 12, 2018 EECS 482 – Lecture 17 8

Operating System

Hardware

Applications

CPU DiskPhysical Memory

Threads File systemVirtual memory

Reality vs. Abstraction
● Hardware interface

◆ Small set of disks, with array of blocks on each disk
◆ Interface varies across disks
◆ Slow, and potentially inconsistent on crash

● OS abstraction
◆ Large set of files, with rich naming convention
◆ Same interface to files, irrespective of hardware
◆ Fast, and crash consistent

March 12, 2018 EECS 482 – Lecture 17 9

Dealing with heterogeneity
● Problem: Wide range of disk types and interfaces

◆ How to manage this diversity?
● Solution: Add device driver abstraction inside OS

◆ Hide differences among different brands and interfaces
◆ Minimize differences between similar types of devices

March 12, 2018 EECS 482 – Lecture 17 10

application programs

device drivers

hardware

virtual machine interface

physical machine interface

higher level of OS

March 12, 2018 EECS 482 – Lecture 17 11

Physical Hard Disk Structure

● Disk components
◆ Platters
◆ Surfaces
◆ Tracks
◆ Sectors
◆ Cylinders
◆ Arm
◆ Heads

Arm

Heads

Track

Platter

Surface

Cylinder

Sector

March 12, 2018 EECS 482 – Lecture 17 12

March 12, 2018 EECS 482 – Lecture 17 13

Hard Disk Performance
● What does disk performance depend upon?

◆ Queue – wait for the disk to be free
◆ Positioning – move the disk arm to the correct cylinder

and rotate to the right sector
◆ Access – transfer data from/to disk

● For given load, performance depends on
◆ Positioning overhead (~1-10 ms)
◆ Transfer time (~100 MBps)

March 12, 2018 EECS 482 – Lecture 17 14

Disks Heterogeneity
● Seagate Barracuda 3.5" (workstation)

◆ capacity: 250 - 750 GB
◆ rotational speed: 7,200 RPM
◆ sequential read performance: 78 MB/s (outer) - 44 MB/s (inner)
◆ seek time (average): 8.1 ms

● Seagate Cheetah 3.5" (server)
◆ capacity: 73 - 300 GB
◆ rotational speed: 15,000 RPM
◆ sequential read performance: 135 MB/s (outer) - 82 MB/s (inner)
◆ seek time (average): 3.8 ms

● Seagate Savvio 2.5" (smaller form factor)
◆ capacity: 73 GB
◆ rotational speed: 10,000 RPM
◆ sequential read performance: 62 MB/s (outer) - 42 MB/s (inner)
◆ seek time (average): 4.3 ms

Optimizing I/O performance
● To increase performance of slow I/O devices:

◆ Avoid doing I/O (Disks are slooooow!)
◆ Reduce overhead (minimize positioning time)
◆ Amortize overhead over larger requests

● Efficiency = transfer time / (positioning time +
transfer time)
◆ Rule of thumb: Achieve at least 50% efficiency
◆ Example: 5 ms avg. seek time and 100MBps

transfer rate à Read at least 500KB

March 12, 2018 EECS 482 – Lecture 17 15

Project 3
● Write test case for every transition in your

state machine

● Even without handling fork(), test with multiple
processes to test vm_destroy
◆ Run in multiple terminals or in background
◆ Call fork() before any calls to vm_map

● filename argument to vm_map is user-level
virtual address

March 12, 2018 EECS 482 – Lecture 17 16

Disk scheduling
● Reduce overhead by reordering requests

◆ Can be implemented in OS or hardware (Tradeoffs?)

● Pick 1 of n requests in queue:

◆ Example: 98, 183, 37, 122, 14, 124, 65, 67

◆ Start track is 53

● FCFS (first come, first served)

◆ 98, 183, 37, 122, 14, 124, 65, 67

◆ Total head movement: 640 tracks

March 12, 2018 EECS 482 – Lecture 17 17

SSTF
● Pick 1 of n requests in queue:

◆ Example: 98, 183, 37, 122, 14, 124, 65, 67
◆ Start track is 53

● SSTF (shortest seek time first)
◆ 65, 67, 37, 14, 98, 122, 124, 183
◆ Total head movement: 236 tracks

● Any drawbacks?
◆ Potential starvation

March 12, 2018 EECS 482 – Lecture 17 18

SCAN
● Pick 1 of n requests in queue:

◆ Example: 98, 183, 37, 122, 14, 124, 65, 67
◆ Start track is 53

● SCAN (like windshield wipers)
◆ 37, 14, 65, 67, 98, 122, 124, 183
◆ Total head movement: 208 tracks

● Drawbacks and fix?
◆ Blocks in the middle served more often than at ends
◆ C-SCAN: Serve requests only in one direction

March 12, 2018 EECS 482 – Lecture 17 19

SCAN vs. STCF
● SCAN typically has better throughput

◆ Minimizing total head movement

● SSTF may have better response time
◆ Servicing fastest request first
◆ But, poor throughput can cause longer queue waits

● Disk scheduling: Queueing vs. positioning
● Does CPU scheduling affect throughput?

March 12, 2018 EECS 482 – Lecture 17 20

Anticipatory scheduling
● Consider two processes with disk locality

◆ P1: read 1, compute, read 2, compute, read 3,
◆ P2: read 1001, compute, read 1002, compute,

● What behavior will SSTF give?
◆ 1, 1001, 2, 1002, 3, ... (suboptimal)

● Key idea: wait for a bit for new request
◆ 1, 2, 3, (timer expires), 1001, 1002
◆ Can improve throughput and response time

March 12, 2018 EECS 482 – Lecture 17 21

Optimizing data layout
● Keep related items together on disk

● What items will be accessed together?
◆ Can guess based on general usage patterns

» Blocks in same file often accessed together
» Files in same directory often accessed together
» Files often accessed with their directory

◆ Can guess based on past accesses of data
» Learn patterns and reorganize data on disk

March 12, 2018 EECS 482 – Lecture 17 22

Flash (solid state disks)
● Optimizations depend on specifics of a device
● Flash differs from magnetic disk

◆ Better random read performance
◆ Lower positioning overhead
◆ Starting to yield more read parallelism
◆ Lower power
◆ Better shock resistance
◆ But also wearout, cannot overwrite data in place

● OS hides physical characteristics of device
from applications

March 12, 2018 EECS 482 – Lecture 17 23

Optimizing for Flash

● Move data blocks to do wear leveling

● Write data in big blocks

● Asynchronously erase blocks

● Prefer to read data rather than write

March 12, 2018 EECS 482 – Lecture 17 24

Next time …

● File system interface and structure

March 12, 2018 EECS 482 – Lecture 17 25

