EECS 482
Introduction to Operating
Systems

Winter 2018

Harsha V. Madhyastha

Recap: Paging

e Both address spaces and physical memory
broken up into fixed size pages

Physical Memory
Address Space

Page 1

Page 2

Page 3

Page N

\

March 7, 2018 EECS 482 — Lecture 16

Recap: Paging

e Virtual address to physical address translation
using page table

Virtual page # | Physical page # | Protection
0 105 RX
1 15 R
2 283 RW
3 invalid
invalid
1048575 invalid

e Can manipulate protection bits to maintain other
bits (resident, referenced, dirty) in OS

March 7, 2018 EECS 482 — Lecture 16 3

Recap: Page Replacement

e Not all virtual pages can be in physical mem.

o Steady state: Evict a page to make another
page resident
+ Use reference bit to identify pages to evict
+ Use dirty bit to identify need for write-back

March 7, 2018 EECS 482 — Lecture 16

Recap: Process creation

e System calls to start a process:
1. Fork() creates a copy of current process

2. Exec(program, args) replaces current address
space with specified program

If (fork() ==0) {

exec (); [* child */
} else {

[* parent */

}

March 7, 2018 EECS 482 — Lecture 16

Avoiding work on fork

e Copying entire address space is expensive

e Instead, Unix uses copy-on-write

+ Maintain reference count for each physical page

+ On fork(), copy only the page table of parent
» Increment reference count by one

+ On store by parent or child to page with refcnt > 1:
» Make a copy of the page with refcnt of one
» Modify PTE of modifier to point to new page
» Decrement reference count of old page

March 7, 2018 EECS 482 — Lecture 16

Copy-on-write: Example

Parent page table Physical pages

0x00000001 (Refcnt: 1)
0x00000002

0x00000003

(Refcnt: 1)

(Refcnt: 1)

Parent about to fork()

March 7, 2018 EECS 482 — Lecture 16

Copy-on-write: Example

Parent page table Physical pages Child page table
0x00000001 (Refent: 2) | 0x00000001
0x00000002 0x00000002
0x00000003 0x00000003

(Refent: 2) |
(Refcnt: 2) |

Copy-on-write of parent address space

March 7, 2018 EECS 482 — Lecture 16

Copy-on-write: Example

Parent page table Physical pages Child page table

0x00000001 (Refcent: 2) | 0x00000001
0x00000002 0x00000002
0x00000003 0x00000003

(Refcnt: 1) /

(Refcnt: 2) |

(Refcnt: 1)

Child modifies 2" virtual page

March 7, 2018 EECS 482 — Lecture 16

Copy-on-write: Example

Parent page table Physical pages Child page table

0x00000001 (Refcent: 2) | 0x00000001
0x00000002 0x00000002

0x00000003 0x00000003
(Refcnt: 1) /
(Refcnt: 2) |
(Refcnt: 1)

Parent modifies 2"9 virtual page

March 7, 2018 EECS 482 — Lecture 16 10

Copy-on-write: Example

March 7, 2018

Physical pages
(Refent: 1) |

(Refcnt: 1) |

(Refcnt: 1)

Parent exits

EECS 482 — Lecture 16

Child page table

0x00000001
0x00000002
0x00000003

11

Making exec() faster

e exec() initializes code in the address space
+ Naive solution: read file, copy into memory
+ Can we do better?

e Observation: most code never accessed
+ Load code on-demand
+ Similar to loading memory paged to disk
+ Memory-mapped files (file-backed pages in P3)

March 7, 2018 EECS 482 — Lecture 16

12

File-backed vs. swap-backed

e Swap-backed pages
+ Block on disk chosen by pager

+ A process’s writes to a page visible only to that
process

+ Modifications lost after process exit

e File-backed pages
+ Block on disk chosen by app

+ Any process’s write to a page visible to other
processes that map the same block

+ Modifications persist across process lifetimes

March 7, 2018 EECS 482 — Lecture 16 13

Processes sharing memory

e How to divide phys. memory among processes?
+ Goals: fairness versus efficiency

e Global replacement
+ Can evict pages from faulting process or any other

e Local replacement
+ Can evict pages only from faulting process
+ Must determine how many frames each process gets

e Pros and cons?

March 7, 2018 EECS 482 — Lecture 16 14

Thrashing

e What happens if many large processes all actively
use their entire address space?

e Performance degrades rapidly as miss rate goes up
+ Avg access time = hit rate * hit time + miss rate * miss time
+ E.g., hittime = .0001 ms; miss time = 10 ms
» Average access time (100% hit rate) = .0001 ms
» Average access time (1% miss rate) = .100099 ms
» Average access time (10% miss rate) = 1.00090 ms

March 7, 2018 EECS 482 — Lecture 16 15

Solutions to Thrashing

e Buy more DRAM

+ Very common solution in cloud servers
+ Price per GB fallen by 4x since 2009

e Run fewer processes for longer time slices
+ Reduces page faults
+ But, poor interactivity due to long time slices

March 7, 2018 EECS 482 — Lecture 16

16

Working set

e Thrashing depends on portion of address
space actively used by each process

+ What do we mean by “actively using™?

e Working set = all pages used in last T seconds
+ Larger working set =» need more memory

e Sum of all working sets should fit in memory
+ Only run subset of processes that fit in memory

e How to measure size of working set?
+ Periodic sweep of clock hand in LRU clock

March 7, 2018 EECS 482 — Lecture 16 17

Project 3

e Hope you have a state machine for swap-
backed pages by now?7??

e Things to consider:
+ Transitions?
+ Properties that capture state of a page?
+ Protection bits?

e Don’t translate state machine into if-else cases!
e Think ahead in designing data structures

March 7, 2018 EECS 482 — Lecture 16 18

Project 3: App vs. 0OS

e Protection
+ All pages can be read from and written to
+ Using R/W bits to track reference, dirty, etc.

e Sharing
+ File-backed pages
+ Copy-on-write

March 7, 2018 EECS 482 — Lecture 16

19

CPU scheduling

e If >1 thread is ready, choose which to run

e Many possible scheduling policies
+ Goal today is to explore fundamental ones
+ Real schedulers often a complex mix of policies

March 7, 2018 EECS 482 — Lecture 16

20

Scheduling: Goals

e What are good goals for a CPU scheduler?
+ Minimize average response time
+ Maximize throughput
+ Fairness

e "Minimize latency” at odds with “maximize tput’

March 7, 2018 EECS 482 — Lecture 16

21

Throughput-response curves

350

300¢

N
Ul
o

Median Latency (ms)

0 1000 2000 3000 4000 5000 6000 7000
Requests per minute

e Collected from Facebook production service [Chow ‘16]
+ Each colored line: throughput vs. latency at different quality
+ Left of graph — adding load - little effect on response time
+ Right of graph — adding load - exponential increase in latency

March 7, 2018 EECS 482 — Lecture 16 22

Load testing

March 7, 2018

HOW DO THEY KNOW THE
LOAD LIMIT ON BRIDGES,

THEY WEIGH THE
LAST TRICK AND
REBUILD THE BRIDGE.

THEY DRIE BIGGER AND
BIGSER TRUCKS QOVER THE
BRIDGE UNTIL \T BREAKS.

EECS 482 — Lecture 16

23

Fairness

e Share CPU among threads in equitable manner

e How to share between 1 big and 1 small job?
+ Response time proportional to job size?
+ Or equal time for each job?

e Fairness often conflicts with response time

March 7, 2018 EECS 482 — Lecture 16 24

Starvation = extremely unfair

e Starvation can be outcome of synchronization
+ Example: Readers can starve writers

e Starvation can also be outcome of scheduling
+ Example: always run highest-priority thread
+ If many high priority threads, low priority starves

March 7, 2018 EECS 482 — Lecture 16 25

First-come, first-served (FCFS)

e FIFO ordering among jobs

e NO preemption (no timer interrupts)
+ Thread runs until it calls yield() or blocks

March 7, 2018 EECS 482 — Lecture 16 26

FCFS Example

e JOb A: Arrives at t=0, takes 100 seconds
e JoOb B: Arrives at t=0+, takes 1 second

A B

t=0 100 101
e A's response time = 100
e B’s response time = 101
e Average response time = 100.5

March 7, 2018 EECS 482 — Lecture 16

FCFS Summary

e Pros:
+ Simple to implement

e Cons:
+ Short jobs can be stuck behind long ones
+ Bad for interactive workloads

March 7, 2018 EECS 482 — Lecture 16

28

Round Robin

e Improve average response time for short jobs

e Add preemptions (via timer interrupts)
+ Fixed time slice (time quantum)
+ Preempt if still running when time slice is over

March 7, 2018 EECS 482 — Lecture 16

29

Round Robin Example

e JOb A: Arrives at t=0, takes 100 seconds

e JoOb B: Arrives at t=0+, takes 1 second

A

B

A

t=0 1

2

e A’s response time = 101
e B’s response time =2

e Average response time = 51.5

March 7, 2018

EECS 482 — Lecture 16

101

30

Choosing a time slice

e What's the problem with a big time slice?
+ Degenerates to FCFS (poor interactivity)

e What's the problem with a small time slice?
+ More context switching overhead (low throughput)

e OS typically compromises: e.g., Tms or 10ms

March 7, 2018 EECS 482 — Lecture 16

31

Round Robin Summary

e Pros:
+ Still pretty simple
+ Good for interactive computing

e Cons?
+ More context-switching overhead

e Comparison: Does RR always reduce average
response time vs. FCFS?

March 7, 2018 EECS 482 — Lecture 16

32

Round Robin vs. FCFS

e JoObs A and B arrive at t=0, both take 100 secs

A B

‘[WhICh IS more falr’? RR or FCFS’PJ

P]

t=0 1 3 199 200

e Average response time with FCFS = 150
e Average response time with RR = 199.5

March 7, 2018 EECS 482 — Lecture 16 33

STCF

e Shortest time to completion first

¢ Run job with least work to do
+ Preempt current job if shorter job arrives
+ Job size is time to next blocking operation

e Finish short jobs first
+ Improves response time of short jobs (by a lot)
+ Hurts response time of long jobs (by a little)

e STCF gives optimal average response time

March 7, 2018 EECS 482 — Lecture 16

34

Analysis of STCF

A

e Consider 2 jobs: A longer than B
e Average response time (2A+B)/2 vs. (A+2B)/2
e B <A, so 2" has smaller avg. response time

e Apply iteratively (e.g., bubble sort) to minimize

March 7, 2018

EECS 482 — Lecture 16

35

STCF Example

e JOb A: Arrives at t=0, takes 100 seconds
e JoOb B: Arrives at t=0+, takes 1 second

B A

t=0+1 101
e A’s response time = 101
e B's response time = 1
e Average response time = 51

March 7, 2018 EECS 482 — Lecture 16

STCF

o Pro:
+ Optimal average response time

e Cons?
+ Potential starvation for long jobs (really unfair!)
+ Needs knowledge of future

e How to estimate the time a job will run for?

March 7, 2018 EECS 482 — Lecture 16

37

Predicting job run times

e Ask the job or the user?
+ Strong incentive to lie (“will just take a minute™)

e Use past to predict future

e Can assume heavy-tailed distribution
+ If already run for n seconds, likely to run for n more

e OS schedulers often identify interactive apps
and boost their priority

March 7, 2018 EECS 482 — Lecture 16

38

