
EECS 482
Introduction to Operating 

Systems

Winter 2018

Harsha V. Madhyastha



Recap: Paging
● Both address spaces and physical memory 

broken up into fixed size pages

March 7, 2018 EECS 482 – Lecture 16 2

Address Space

Page 1

Page 2

Page 3

Page N

Physical Memory



Recap: Paging
● Virtual address to physical address translation 

using page table

● Can manipulate protection bits to maintain other 
bits (resident, referenced, dirty) in OS

March 7, 2018 EECS 482 – Lecture 16 3

Virtual page # Physical page # Protection
0 105 RX
1 15 R
2 283 RW
3 invalid
... invalid
1048575 invalid



Recap: Page Replacement

● Not all virtual pages can be in physical mem.

● Steady state: Evict a page to make another 
page resident
◆ Use reference bit to identify pages to evict
◆ Use dirty bit to identify need for write-back

March 7, 2018 EECS 482 – Lecture 16 4



Recap: Process creation
● System calls to start a process:

1. Fork() creates a copy of current process
2. Exec(program, args) replaces current address 

space with specified program

If (fork() == 0) {
exec (); /* child */

} else {
/* parent */

} 

March 7, 2018 EECS 482 – Lecture 16 5



Avoiding work on fork
● Copying entire address space is expensive
● Instead, Unix uses copy-on-write

◆ Maintain reference count for each physical page
◆ On fork(), copy only the page table of parent

» Increment reference count by one
◆ On store by parent or child to page with refcnt > 1:

» Make a copy of the page with refcnt of one
» Modify PTE of modifier to point to new page
» Decrement reference count of old page

March 7, 2018 EECS 482 – Lecture 16 6



Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 1)

Physical pages

(Refcnt: 1)

(Refcnt: 1)

Parent about to fork()
March 7, 2018 EECS 482 – Lecture 16 7



Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 2)

Physical pages

(Refcnt: 2)

(Refcnt: 2)

Copy-on-write of parent address space

0x00000001
0x00000002
0x00000003

Child page table

March 7, 2018 EECS 482 – Lecture 16 8



Copy-on-write: Example

0x00000001

0x00000002

0x00000003

Parent page table

(Refcnt: 2)

Physical pages

(Refcnt: 1)

(Refcnt: 2)

Child modifies 2nd virtual page

0x00000001

0x00000002

0x00000003

Child page table

(Refcnt: 1)

March 7, 2018 EECS 482 – Lecture 16 9



Copy-on-write: Example

0x00000001

0x00000002

0x00000003

Parent page table

(Refcnt: 2)

Physical pages

(Refcnt: 1)

(Refcnt: 2)

Parent modifies 2nd virtual page

0x00000001

0x00000002

0x00000003

Child page table

(Refcnt: 1)

March 7, 2018 EECS 482 – Lecture 16 10



Copy-on-write: Example

(Refcnt: 1)

Physical pages

(Refcnt: 1)

Parent exits

0x00000001
0x00000002
0x00000003

Child page table

(Refcnt: 1)

March 7, 2018 EECS 482 – Lecture 16 11



Making exec() faster

● exec() initializes code in the address space
◆ Naive solution: read file, copy into memory
◆ Can we do better?

● Observation: most code never accessed
◆ Load code on-demand
◆ Similar to loading memory paged to disk
◆ Memory-mapped files (file-backed pages in P3)

March 7, 2018 EECS 482 – Lecture 16 12



File-backed vs. swap-backed
● Swap-backed pages

◆ Block on disk chosen by pager
◆ A process’s writes to a page visible only to that 

process
◆ Modifications lost after process exit

● File-backed pages
◆ Block on disk chosen by app
◆ Any process’s write to a page visible to other 

processes that map the same block
◆ Modifications persist across process lifetimes

March 7, 2018 EECS 482 – Lecture 16 13



Processes sharing memory
● How to divide phys. memory among processes?

◆ Goals: fairness versus efficiency

● Global replacement
◆ Can evict pages from faulting process or any other

● Local replacement
◆ Can evict pages only from faulting process
◆ Must determine how many frames each process gets

● Pros and cons?

March 7, 2018 EECS 482 – Lecture 16 14



Thrashing
● What happens if many large processes all actively 

use their entire address space?

● Performance degrades rapidly as miss rate goes up
◆ Avg access time = hit rate * hit time + miss rate * miss time
◆ E.g., hit time = .0001 ms; miss time = 10 ms

» Average access time (100% hit rate) = .0001 ms
» Average access time (1% miss rate) = .100099 ms
» Average access time (10% miss rate) = 1.00090 ms

March 7, 2018 EECS 482 – Lecture 16 15



Solutions to Thrashing
● Buy more DRAM

◆ Very common solution in cloud servers
◆ Price per GB fallen by 4x since 2009

● Run fewer processes for longer time slices
◆ Reduces page faults
◆ But, poor interactivity due to long time slices

March 7, 2018 EECS 482 – Lecture 16 16



Working set
● Thrashing depends on portion of address 

space actively used by each process
◆ What do we mean by “actively using”?

● Working set = all pages used in last T seconds
◆ Larger working set è need more memory

● Sum of all working sets should fit in memory
◆ Only run subset of processes that fit in memory

● How to measure size of working set?
◆ Periodic sweep of clock hand in LRU clock

March 7, 2018 EECS 482 – Lecture 16 17



Project 3
● Hope you have a state machine for swap-

backed pages by now???

● Things to consider:
◆ Transitions?
◆ Properties that capture state of a page?
◆ Protection bits?

● Don’t translate state machine into if-else cases!
● Think ahead in designing data structures

March 7, 2018 EECS 482 – Lecture 16 18



Project 3: App vs. OS

● Protection
◆ All pages can be read from and written to
◆ Using R/W bits to track reference, dirty, etc.

● Sharing
◆ File-backed pages
◆ Copy-on-write

March 7, 2018 EECS 482 – Lecture 16 19



CPU scheduling

● If >1 thread is ready, choose which to run

● Many possible scheduling policies
◆ Goal today is to explore fundamental ones
◆ Real schedulers often a complex mix of policies

March 7, 2018 EECS 482 – Lecture 16 20



Scheduling: Goals

● What are good goals for a CPU scheduler?
◆ Minimize average response time
◆ Maximize throughput 
◆ Fairness

● “Minimize latency” at odds with “maximize tput”

March 7, 2018 EECS 482 – Lecture 16 21



Throughput-response curves

● Collected from Facebook production service [Chow ‘16]
◆ Each colored line: throughput vs. latency at different quality
◆ Left of graph – adding load à little effect on response time
◆ Right of graph – adding load à exponential increase in latency

March 7, 2018 EECS 482 – Lecture 16 22



Load testing

March 7, 2018 EECS 482 – Lecture 16 23



Fairness

● Share CPU among threads in equitable manner

● How to share between 1 big and 1 small job?
◆ Response time proportional to job size?
◆ Or equal time for each job?

● Fairness often conflicts with response time

March 7, 2018 EECS 482 – Lecture 16 24



Starvation = extremely unfair

● Starvation can be outcome of synchronization
◆ Example: Readers can starve writers

● Starvation can also be outcome of scheduling
◆ Example: always run highest-priority thread
◆ If many high priority threads, low priority starves

March 7, 2018 EECS 482 – Lecture 16 25



First-come, first-served (FCFS)

● FIFO ordering among jobs

● No preemption (no timer interrupts)
◆ Thread runs until it calls yield() or blocks

March 7, 2018 EECS 482 – Lecture 16 26



FCFS Example
● Job A: Arrives at t=0, takes 100 seconds
● Job B: Arrives at t=0+, takes 1 second

● A’s response time = 100
● B’s response time = 101
● Average response time = 100.5

March 7, 2018 EECS 482 – Lecture 16 27

t = 0 100 101

A B



FCFS Summary

● Pros:
◆ Simple to implement

● Cons:
◆ Short jobs can be stuck behind long ones
◆ Bad for interactive workloads

March 7, 2018 EECS 482 – Lecture 16 28



Round Robin

● Improve average response time for short jobs

● Add preemptions (via timer interrupts)
◆ Fixed time slice (time quantum)
◆ Preempt if still running when time slice is over

March 7, 2018 EECS 482 – Lecture 16 29



Round Robin Example
● Job A: Arrives at t=0, takes 100 seconds
● Job B: Arrives at t=0+, takes 1 second

● A’s response time = 101
● B’s response time = 2
● Average response time = 51.5

March 7, 2018 EECS 482 – Lecture 16 30

t = 0 1 2

A B A

101



Choosing a time slice

● What’s the problem with a big time slice?
◆ Degenerates to FCFS (poor interactivity)

● What’s the problem with a small time slice?
◆ More context switching overhead (low throughput)

● OS typically compromises: e.g., 1ms or 10ms

March 7, 2018 EECS 482 – Lecture 16 31



Round Robin Summary
● Pros: 

◆ Still pretty simple
◆ Good for interactive computing

● Cons?
◆ More context-switching overhead

● Comparison: Does RR always reduce average 
response time vs. FCFS?

March 7, 2018 EECS 482 – Lecture 16 32



Round Robin vs. FCFS
● Jobs A and B arrive at t=0, both take 100 secs

● Average response time with FCFS = 150
● Average response time with RR = 199.5
March 7, 2018 EECS 482 – Lecture 16 33

t = 0 1 2

A B A

3

t = 0 100 200

A B

A B

199 200

Which is more fair? RR or FCFS?



STCF
● Shortest time to completion first

● Run job with least work to do
◆ Preempt current job if shorter job arrives
◆ Job size is time to next blocking operation

● Finish short jobs first
◆ Improves response time of short jobs (by a lot)
◆ Hurts response time of long jobs (by a little)

● STCF gives optimal average response time

March 7, 2018 EECS 482 – Lecture 16 34



Analysis of STCF

● Consider 2 jobs: A longer than B
● Average response time (2A+B)/2 vs. (A+2B)/2
● B < A, so 2nd has smaller avg. response time
● Apply iteratively (e.g., bubble sort) to minimize

March 7, 2018 EECS 482 – Lecture 16 35

A B

AB



STCF Example
● Job A: Arrives at t=0, takes 100 seconds
● Job B: Arrives at t=0+, takes 1 second

● A’s response time = 101
● B’s response time = 1
● Average response time = 51

March 7, 2018 EECS 482 – Lecture 16 36

t = 0+ 1

B A

101



STCF
● Pro: 

◆ Optimal average response time

● Cons?
◆ Potential starvation for long jobs (really unfair!)
◆ Needs knowledge of future

● How to estimate the time a job will run for?

March 7, 2018 EECS 482 – Lecture 16 37



Predicting job run times
● Ask the job or the user?

◆ Strong incentive to lie (“will just take a minute”)

● Use past to predict future
● Can assume heavy-tailed distribution

◆ If already run for n seconds, likely to run for n more

● OS schedulers often identify interactive apps 
and boost their priority

March 7, 2018 EECS 482 – Lecture 16 38


