
EECS 482
Introduction to Operating

Systems

Winter 2018

Baris Kasikci

Slides by: Harsha V. Madhyastha

Recap: Synchronization
● Critical sections

◆ Region of code that should execute atomically

● Avoid data races via mutual exclusion

● Goal: Broadly applicable simple solutions
◆ Build upon atomic operations provided by hardware

January 17, 2018 EECS 482 – Lecture 4 2

Locks (mutexes)
● Lock usage

◆ Initialized to free
◆ Thread acquires lock before entering

critical section (waiting if needed)
◆ Thread that has acquired lock should

release when done with critical section

● Problem:
◆ Inefficient: Waiting to acquire lock

● Solution?
3

Baris
milk.lock();
if (noMilk) {

buy milk
}
milk.unlock()

Tia
milk.lock()
if (noMilk) {

buy milk
}
milk.unlock()

EECS 482 – Lecture 4January 17, 2018

Efficiency
● Use lock to protect posting/looking up of note

4EECS 482 – Lecture 4January 17, 2018

note.lock()
if (noNote) {

leave note
note.unlock()
if (noMilk) {

buy milk
}
note.lock()
remove note
note.unlock()

}
else {

note.unlock()
}

Shared queue
struct node {

int data

struct node *next

}

struct queue {

struct node *head

}

● Empty list

● List with one node

January 17, 2018 EECS 482 – Lecture 4 5

head

NULL

head

NULL

Shared queue
enqueue(new_element) {

// find tail of queue
for (ptr = head; ptr->next != NULL; ptr = ptr->next) {}

// add new element to tail of queue
ptr->next = new_element;
new_element->next = NULL;

}

struct node dequeue() {
element = NULL;
// if something on queue, then remove it
if (head->next != NULL) {

element = head->next;
head->next = head->next->next;

}
return element;

}

Problems if two threads manipulate queue at same time?

6EECS 482 – Lecture 4January 17, 2018

head

NULL

Shared queue with locks
enqueue(new_element) {

qmutex.lock();
// find tail of queue
for (ptr=head; ptr->next != NULL; ptr = ptr->next) {}

// add new element to tail of queue
ptr->next = new_element;
new_element->next = NULL;
qmutex.unlock();

}
dequeue() {

qmutex.lock();
element = NULL;
// if something on queue, then remove it
if (head->next != NULL) {

element = head->next;
head->next = head->next->next;

}
qmutex.unlock();
return(element);

} 7EECS 482 – Lecture 4January 17, 2018

Invariants for thread-safe
queue
● When can enqueue() unlock?

◆ Must restore queue to a stable state
● Stable state is called an invariant

◆ Condition that is “always” true for the linked list
◆ Example: in a list traversal, nodes appears exactly

once, and in the order they were inserted
● Is invariant ever allowed to be false?

◆ Hold lock whenever you’re manipulating shared data,
i.e., whenever you’re breaking the invariant

● What if you’re only reading the data?
8EECS 482 – Lecture 4January 17, 2018

Hold the lock!
enqueue(new_element) {

lock
// find tail of queue

for (ptr=head; ptr->next != NULL; ptr = ptr->next) {}

unlock

lock
// add new element to tail of queue

ptr->next = new_element;
new_element->next = NULL;

unlock
}

Does this work?

9EECS 482 – Lecture 4January 17, 2018

Fine-grained locking
● Instead of one lock for entire queue, use one lock per node

◆ Why would you want to do this?

● Lock each node as the queue is traversed, then release as
soon as it’s safe, so other threads can also access the queue

1. lock A
2. read A, get pointer to B
3. unlock A
4. lock B
5. read B, get pointer to C
6. unlock B

What could go wrong?
How to fix?

10

A B C NULL

EECS 482 – Lecture 4January 17, 2018

How to fix?
● lock A
● get pointer to B
● lock B
● unlock A
● read B
● unlock B

● Hand-over-hand locking
◆ Lock next node before releasing last node
◆ Used in Project 4

11EECS 482 – Lecture 4January 17, 2018

Announcements
● Group declaration due in 5 days (Jan 22nd)

● Read handout for Project 1?
◆ After today’s lecture, we’ll have covered all material to

do the project

January 17, 2018 EECS 482 – Lecture 4 12

Ordering constraints
● What if you wanted dequeue() to wait if the

queue is empty?
dequeue() {

qmutex.lock();

// wait for queue to be non-empty

qmutex.unlock();

while(head->next == NULL);

qmutex.lock();

// remove element

element = head->next;

head->next = head->next->next;

qmutex.unlock();

return(element);

}
13EECS 482 – Lecture 4January 17, 2018

Does this work?

Ordering constraints
dequeue() {

qmutex.lock();

// wait for queue to be non-empty

while(head->next == NULL) {

qmutex.unlock();

qmutex.lock();

}

// remove element

element = head->next;

head->next = head->next->next;

qmutex.unlock();

return(element);

}

14EECS 482 – Lecture 4January 17, 2018

Does this work?

Avoiding busy waiting
● Have waiting dequeuer “go to sleep”

◆ Put dequeuer onto a waiting list, then go to sleep
if (queue is empty) {

add myself to waiting list

go to sleep

}

◆ enqueuer wakes up sleeping dequeuer

15EECS 482 – Lecture 4January 17, 2018

Avoiding busy waiting
enqueue()

lock

find tail of queue

add new element to tail of queue

if (dequeuer is waiting) {

take waiting dequeuer off waiting list

wake up dequeuer

}

unlock

dequeue()
lock

if (queue is empty) {

add myself to waiting list

sleep

}

unlock

16EECS 482 – Lecture 4January 17, 2018

Does this work?

Avoiding busy waiting
enqueue()

lock

find tail of queue

add new element to tail of queue

if (dequeuer is waiting) {

take waiting dequeuer off waiting list

wake up dequeuer

}

unlock

dequeue()
lock

if (queue is empty) {

unlock

add myself to waiting list

sleep

}

unlock
17EECS 482 – Lecture 4January 17, 2018

Does this work?

Avoiding busy waiting
enqueue()

lock

find tail of queue

add new element to tail of queue

if (dequeuer is waiting) {

take waiting dequeuer off waiting list

wake up dequeuer

}

unlock

dequeue()
lock

if (queue is empty) {

add myself to waiting list

unlock

sleep

}

unlock
18EECS 482 – Lecture 4January 17, 2018

Does this work?

Two types of synchronization
● Mutual exclusion

◆ Ensures that only one thread is in critical section
◆ “Not at the same time” relations between threads
◆ lock/unlock

● Ordering constraints
◆ Used when thread must wait for another thread to

do something
◆ “Happens-before” relations between threads
◆ E.g., dequeuer must wait for enqueuer to add

something to queue

19EECS 482 – Lecture 4January 17, 2018

Locks

Condition variables

Condition variables
● Enable thread to sleep inside a critical section, by

◆ Releasing lock
◆ Putting thread onto waiting list
◆ Going to sleep
◆ After being woken, call lock()

● Each condition variable has a list of waiting threads
◆ These threads are “waiting on that condition”

● Each condition variable is associated with a lock

20

atomic

EECS 482 – Lecture 4January 17, 2018

Operations on condition
variables

● wait()
◆ Atomically release lock, add thread to waiting list, sleep
◆ Thread must hold the lock when calling wait()
◆ Should thread re-establish invariant before calling wait()?

● signal()
◆ Wake up one thread waiting on this condition variable
◆ If no thread is currently waiting, then signal does nothing

● broadcast()
◆ Wake up all threads waiting on this condition variable
◆ If no thread is currently waiting, then broadcast does nothing

January 17, 2018 EECS 482 – Lecture 4 21

Thread-safe queue with
condition variables

cv queueCV;
enqueue() {

queueMutex.lock()

find tail of queue

add new element to tail of queue

queueCV.signal()
queueMutex.unlock()

}

dequeue() {

queueMutex.lock()

if (queue is empty) {
queueCV.wait();

}
remove item from queue

queueMutex.unlock()

return removed item

}
22EECS 482 – Lecture 4January 17, 2018

Does this work?

unlock
put thread on wait list
go to sleep
re-acquire lock

} atomic

Thread-safe queue with
condition variables

cv queueCV;
enqueue() {

queueMutex.lock()

find tail of queue

add new element to tail of queue

queueCV.signal()
queueMutex.unlock()

}

dequeue() {
queueMutex.lock()

while (queue is empty) {
queueCV.wait();

}
remove item from queue

queueMutex.unlock()

return removed item

}
23EECS 482 – Lecture 4January 17, 2018

When can you use if?

!!!Never!!! due to
spurious wakeups!

The prophet
Emin Gün Sirer

Archangel
Michael Dahlin

January 17, 2018
EECS 482 – Lecture 4 25

In the beginning, there was hardware…

And the hardware was formless and empty,
And darkness was over the surface of silicon.

And the creator said “let there be
operating systems” and there were OSes.
And the creator saw that OSes were good.

And the creator said “let there be processes
and threads.” And OSes were teeming with
processes and threads carrying out

In the beginning, there was hardware…

And the hardware was formless and empty,
And darkness was over the surface of silicon.

And the creator said “let there be
operating systems” and there were OSes.
And the creator saw that OSes were good.

And the creator said “let there be processes
and threads.” And OSes were teeming with
processes and threads carrying out

January 17, 2018 EECS 482 – Lecture 4 26

January 17, 2018 EECS 482 – Lecture 4 27

And the creator said “let there be processes
and threads.” And OSes were teeming with
processes and threads carrying out
different tasks.
Then the creator said “let the processes and
threads synchronize with each other.” For
this task, the creator appointed human-kind.
But humans were fallible, and weak, and
they failed to get synchronization correct,
and the fallen angel BSOD, ruled the day
with great evil.

So the creator sent us the 12
commandments of synchronization.

January 17, 2018 EECS 482 – Lecture 4 28

The tenth commandment

January 17, 2018 EECS 482 – Lecture 4 29

Conditional variables
eliminate busy waiting

lock

. . .

while (queue is empty) {

unlock
lock

}

. . .

unlock

lock

. . .

while (queue is empty) {

cv.wait
}

. . .

unlock

January 17, 2018 EECS 482 – Lecture 4 30

Project 1
● Now, you should know everything you need to

know to do project 1

January 17, 2018 EECS 482 – Lecture 4 31

Monitors
● Combine two types of synchronization

◆ Locks for mutual exclusion
◆ Condition variables for ordering constraints

● A monitor = a lock + the condition variables
associated with that lock

32EECS 482 – Lecture 4January 17, 2018

Mesa vs. Hoare monitors
● Mesa monitors

◆ When waiter is woken, it must contend for the lock
◆ So it must re-check the condition it was waiting for

● What would be required to ensure condition is
met when waiter starts running again?

● Hoare monitors
◆ Special priority to woken-up waiter
◆ Signaling thread immediately gives up lock
◆ Signaling thread reacquires lock after waiter unlocks

33EECS 482 – Lecture 4January 17, 2018

Mesa vs. Hoare monitors
● Mesa monitors

◆ When waiter is woken, it must contend for the lock
◆ So it must re-check the condition it was waiting for

● What would be required to ensure condition is
met when waiter starts running again?

● Hoare monitors
◆ Special priority to woken-up waiter
◆ Signaling thread immediately gives up lock
◆ Signaling thread reacquires lock after waiter unlocks

34EECS 482 – Lecture 4January 17, 2018

We (and most OSes) use Mesa monitors

Waiter is solely responsible for ensuring condition is met

How to program with
monitors
● List the shared data needed for the problem
● Assign locks to each group of shared data
● Each thread tries to go as fast as possible, without worrying

about other threads, except for two reasons

● Mutual exclusion: Enforce with lock/unlock
● Ordering conditions

» Can’t proceed because condition of shared state isn’t satisfactory
» Some other thread must do something
» Assign a condition variable for each situation

■ Belongs to lock that protects the shared data used to evaluate the condition

» Use “while(!condition) { wait }”
» Call signal() or broadcast() when a thread changes something

that another thread might be waiting for
January 17, 2018 EECS 482 – Lecture 4 35

Typical way to program with
monitors

lock

while (!condition) {

wait

}

do stuff

signal about the stuff you did

unlock

January 17, 2018 EECS 482 – Lecture 4 36

