
EECS 482
Introduction to Operating 

Systems

Winter 2018

Baris Kasikci

Slides by: Harsha V. Madhyastha



January 10, 2018 EECS 482 – Lecture 3 2

http://knowyourmeme.com/memes/mind-blown



Recap: Processes
● Hardware interface:

● OS interface:

January 10, 2018 EECS 482 – Lecture 3 3

app1
CPU + memory

app2
CPU + memory

app3
CPU + memory

app1+app2+app3
CPU + memory



Recap: Threads
● Benefits:

◆ Simplify concurrent programming
◆ Useful when there is a slow 

resource

● Challenge:
◆ Share parts of address space
◆ How to prevent undesired 

outcomes?

January 10, 2018 EECS 482 – Lecture 3 4

Stack (T1)

Code

Data Segment

Stack (T2)

Stack (T3)



Example

● Which thread will exit its while loop first?
● Is the winner guaranteed to print first?
● Is it guaranteed that someone will win?

5

Thread A
i=0
while (i < 10) {

i++
}
print “A finished”

Thread B
i=0
while (i > -10) {

i--
}
print “B finished”

EECS 482 – Lecture 3January 10, 2018



Example

● If both threads run at the same speed and start within a few 
instructions, are they guaranteed to loop forever?

6

Thread A
i=0
while (i < 10) {

i++
}
print “A finished”

Thread B
i=0
while (i > -10) {

i--
}
print “B finished”

EECS 482 – Lecture 3January 10, 2018



Atomic operations
● Before we can reason at all about cooperating threads, 

we must know that some operation is atomic
◆ Indivisible, i.e., happens in its entirety or not at all
◆ No events from other threads can occur in between

● Most computers:
◆ Memory load and store are atomic
◆ Many other instructions are not atomic

» Example: double-precision floating point
◆ Need an atomic operation to build a bigger atomic operation

7EECS 482 – Lecture 3January 10, 2018



Debugging Multi-Threaded 
Programs
● Challenging due to non-deterministic interleaving

◆ Heisenbug: a bug that occurs non-deterministically
(and your program will be

ly soon enough).
● Something for you to worry about? YES!!!

◆ Think Murphy’s Law
● All possible interleavings must be correct

January 10, 2018 EECS 482 – Lecture 3 8



January 10, 2018 EECS 482 – Lecture 3 9

Therac 25



January 10, 2018 EECS 482 – Lecture 3 10

Northeastern Blackout



January 10, 2018 EECS 482 – Lecture 3 11



Synchronization
● Constrain interleavings between threads such that 

all possible interleavings produce a correct result
● Trivial solution?
● Challenge:

◆ Constrain thread executions as little as possible

● Insight:
◆ Some events are independent à order is irrelevant
◆ Other events are dependent à order matters

12EECS 482 – Lecture 3January 10, 2018



Announcements
● First project is out

◆ Due in 2 weeks (Jan. 29th)
◆ Office hour schedule on Google calendar on web page
◆ Get familiar with git, gdb, valgrind, etc.

● Check out Piazza if looking for project group

● Discussion section questions for this Friday posted

● Send me your picture if you haven’t already

January 10, 2018 EECS 482 – Lecture 3 13



Too much milk
● Problem definition

◆ Tia and Baris want to keep their refrigerator 
stocked with at most one milk jug

◆ If either sees fridge empty, she/he goes to buy milk
● Solution #0 (no synchronization)

14

Baris
if (noMilk) {

buy milk
}

Tia
if (noMilk) {

buy milk
}

EECS 482 – Lecture 3January 10, 2018

Problems?

Race condition!



First type of synchronization: 
Mutual exclusion

● Ensure that only 1 thread is doing a certain 
thing at any moment in time
◆ “Only 1 person goes shopping at a time”
◆ Constrains interleavings of threads

● Does this remind you of any other concept 
we’ve talked about?

15EECS 482 – Lecture 3January 10, 2018



Critical section
● Section of code that needs to be run atomically 

with respect to selected other pieces of code

● Critical sections must be atomic w.r.t each other 
because they access a shared resource

● In our example, critical section is:
◆ “if (no milk) { buy milk }”
◆ How do we make this critical section atomic?

16EECS 482 – Lecture 3January 10, 2018



Too much milk (solution #1)
● Leave note that you’re going to check on the milk, 

so other person doesn’t also buy
◆ Assume only atomic operations are load and store

17

Baris
if (noNote) {

leave note
if (noMilk) {

buy milk
}
remove note

}

Tia
if (noNote) {

leave note
if (noMilk) {

buy milk
}
remove note

}

EECS 482 – Lecture 3January 10, 2018

Does this work?
Better solution than #0?



Too much milk (solution #2)
● Change the order of “leave note” and “check note”
● Notes need to be labelled (otherwise you’ll see 

your note and think the other person left it)

18

Baris
leave noteBaris
if (no noteTia) {

if (noMilk) {
buy milk

}
}
remove noteBaris

Tia
leave noteTia
if (no noteBaris) {

if (noMilk) {
buy milk

}
}
remove noteTia

EECS 482 – Lecture 3January 10, 2018

Problems?



Critical
SectionCritical

Section

Too much milk (solution #3)
● Decide who will buy milk when both leave notes at the 

same time. Baris hangs around to make sure job is done.

● Baris’s “while (noteTia)” prevents him from entering the 
critical section at the same time as Tia

19

Baris
leave noteBaris
while (noteTia) {

do nothing
}
if (noMilk) {

buy milk
}
remove noteBaris

Tia
leave noteTia

if (no noteBaris) {
if (noMilk) {

buy milk
}

}
remove noteTia

EECS 482 – Lecture 3January 10, 2018



Proof of correctness
● Tia

◆ if no noteBaris, then Baris hasn’t started yet, so safe to buy
» Baris will wait for Tia to be done before checking

◆ if noteBaris, then Baris will eventually buy milk if needed
» Note that Baris may be waiting for Tia to exit

● Baris
◆ if no noteTia, safe to buy

» Already left noteBaris, which Tia will check
◆ if noteTia, Baris waits to see what Tia does and accordingly 

decides whether to buy
20EECS 482 – Lecture 3January 10, 2018



Analysis of solution #3
● Good

◆ It works!
◆ Relies on simple atomic operations

● Bad
◆ Complicated; not obviously correct
◆ Asymmetric
◆ Not obvious how to scale to three people
◆ Baris consumes CPU time while waiting

» Called busy-waiting

21EECS 482 – Lecture 3January 10, 2018



Higher-level synchronization
● Raise the level of abstraction to make life easier 

for programmers

22EECS 482 – Lecture 3January 10, 2018

Operating System

Hardware

Applications

Atomic operations
(load/store, interrupt enable/

disable, test&set)

Concurrent programs

Higher-level synchronization
primitives

(lock, monitor, semaphore)



Locks (mutexes)
● A lock prevents another thread from entering a 

critical section
◆ “Lock fridge while checking milk status and shopping”

● Two operations
◆ lock(): wait until lock is free, then acquire it
do {

if (lock is free) {

acquire lock

break

}
} while (1)

◆ unlock(): release lock
23

Atomic

EECS 482 – Lecture 3January 10, 2018



Locks (mutexes)
● A lock prevents another thread from entering a 

critical section
◆ “Lock fridge while checking milk status and shopping”

● Two operations
◆ lock(): wait until lock is free, then acquire it
do {

if (lock is free) {

acquire lock

break

}
} while (1)

◆ unlock(): release lock
24

Atomic

EECS 482 – Lecture 3January 10, 2018

Why was the note in Too much milk (solutions #1 and #2)
not a good lock?



Locks (mutexes)
● How to use a lock

◆ Initialized to free
◆ Thread acquires lock before entering 

critical section (waiting if needed)
◆ Thread that has acquired lock should 

release when done with critical section

● All synchronization involves waiting
● Thread can be running or blocked

25

Baris
milk.lock();
if (noMilk) {

buy milk
}
milk.unlock()

Tia
milk.lock()
if (noMilk) {

buy milk
}
milk.unlock()

EECS 482 – Lecture 3January 10, 2018



Efficiency
● But this prevents Tia from doing things while 

Baris is buying milk

● How to minimize the time the lock is held?

26EECS 482 – Lecture 3January 10, 2018



Efficiency
● Use lock to protect posting/looking up of note

27EECS 482 – Lecture 3January 10, 2018

note.lock()
if (noNote) {

leave note
note.unlock()
if (noMilk) {

buy milk
}
note.lock()
remove note
note.unlock()

}
else {

note.unlock()
}


