EECS 482 Introduction to Operating Systems

Winter 2018

Baris Kasikci

Slides by: Jason Flinn & Manos Kapritsos

Final exam details

- Monday, **4/23**
- Closed book, closed notes
- No computers, phones, calculators, etc.
- 2 hr. exam start at 7pm (not 7:10pm!)
- Focus is on virtual memory to dist. systems
- But first-half topics may be needed
- Includes projects 3 and 4

Different from midterm?

- Same basic exam style, but...
 - 1st half of class has more programming
 - · 2nd half of class has more concepts
 - We will aim for a similar grade distribution as in the midterm
 - Practice exams are a representative sample

How to study

- · Do sample exams, time yourself
- Reflect on midterm strengths/weaknesses
- Redo all the discussion questions
- Review **all** of project 3 and project 4
- A lot of lecture material **not** in the projects
- Study groups: ask each other questions
 » Textbook a good source of questions

Exam-taking tips

- Skim problems answer easiest first
- Read coding questions carefully
 - · Think and design before writing code
- Don't get bogged down by any 1 question
 - · Can get partial credit even on tough questions
- Stuck? Answer part of the question well
- Familiarity helps you avoid time pressure

Topics – Address spaces

- Abstractions provided:
 - · Address independence
 - Larger (virtual) memory
 - Protection/controlled sharing
- Uniprogramming vs. multiprogramming
- Static vs. dynamic translation

Topics – Address spaces (2)

- Translation mechanisms:
 - · Base & bound
 - · Segmentation
 - · Paging
 - Multi-level paging
 - TLB
- Replacement
 - · Random, FIFO, OPT, LRU, clock

Topics – Address spaces (3)

- Deferring and avoiding work:
 - · Writebacks to disk
 - · Zero-filling
 - · Copy-on-write
- Page table bits
 - Protection, valid, resident, reference, dirty
 - How to eliminate or emulate (dirty, reference)
- Multi-process issues:
 - · Global vs. local replacement, thrashing, working set

Topics – Address spaces (4)

- MMU performs lookup
 - · if needed: triggers fault, retries operation
- Creating a process
 - Fork, exec, copy-on-write, mmap'ed files
 - · Shell code
- Kernel address space
 - Differences from user address space
 - Protecting translation data, mode bit

Topics – File systems (1)

- Storage devices
 - · Hard drives vs. solid state drives (flash storage)
- Disk scheduling
 - · FIFO, SSTF, SCAN
- File system design

Topics – File systems (2)

- File system structure
 - · Files, directories, metadata, inodes
 - · Organization within a file:
 - » Contiguous, indexed files, multi-level indexing
 - · Organization of files:
 - » Hierarchical directories, traversing pathnames
 - File caching

Topics – File systems (3)

- Transactions
 - . Limits of careful ordering of updates
 - · Shadowing
 - · Logging
- Log-structured file systems
- RAID

Topics – networking

- UNIX API
- Sockets
 - · Like a virtual network card
 - · Connect to (hostname, port) pair
- TCP
 - · Reliability
 - · Ordering
 - · Byte stream abstraction

Topics – distributed systems

- Client-server
 - Server structure
 - · RPC and stub generation
- Synchronization via messages
- Happens-before and Lamport clocks
- Distributed file systems
 - · Caching
- Fault tolerance
 - · Types of faults

Questions?

482 – The Big Ideas

- Abstraction virtualizing a resource
- Concurrency and consistency
- Caching and exploiting locality
- Indirection
 - Gains power, hurts performance
 - Recover performance via caching
- Ordering, atomicity, and transactions
- Tolerating faults through redundancy

