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Address space protection
● Goal: Any process must be unable to access 

any other process’s address space

● Approach:
• All reads/writes to physical memory are translated 

based on page table entries
• Enable protection by ensuring physical pages 

pointed to by P1’s PTEs are disjoint from P2’s PTEs

● Requirement: A process must be unable to 
access the entries in any page table



Page table protection
● Approach:

• Modifying page table is privileged operation
• Operation permitted only if mode bit is set

● How to protect mode bit?
• Set mode bit upon transitions into kernel space 

(interrupts, faults, and system calls)
• Transitions defined in interrupt vector table
• Interrupt vector table initialized by init process

● Protection boils down to control of system init



Summary of OS concepts
● Primary jobs performed by OS:

• Abstraction
• Management of shared resources

● Concepts involved:
• Indirection
• Concurrency and atomicity
• Protection
• Naming
• Reliability
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Virtual Machine Monitors
● Virtual Machine Monitors (VMMs) are a hot 

topic in industry and academia
• Industry commitment

» Software: VMware, Xen, Microsoft Virtual PC
» Hardware: Intel VT, AMD-V

■ If Intel and AMD add it to their chips, you know it�s serious…

• Academia: lots of VMM-based projects and papers
● An old idea, actually: developed by IBM in 60s 

and 70s



Virtual Machine Monitors
● Today

• What is a VMM, what problems have to be solved, 
how to solve them

• Survey some virtualization systems
• Briefly outline cool things you can do with 

virtualization



What is a VMM?
● OS offers illusion that each process is running 

on its own computer

● A VMM virtualizes an entire physical machine
• VMM offers illusion that OS has full control over the 

hardware
• VMM �applications� (OSes) run in virtual machines

● Implication: Can run multiple instances of 
different OSes simultaneously on a machine



Why do such a crazy thing? 
● Resource utilization

• Machines today are powerful, multiplex their hardware

» Example: Cloud services

• Migrate VMs across machines without shutdown

● Software use and development

• Can run multiple OSes simultaneously

» No need to dual boot

• Can do system (e.g., OS) development at user-level

● Many other cool applications

• Debugging, emulation, security, fault tolerance, …



Example of Cool VMM Tricks
● How to experiment with apps, protocols, and 

systems on future hardware?
● Time dilation

• VMM slows timer interrupt to make other hardware 
(CPU, disk, network) appear faster to OS and apps

• Example:
» OS reads 10 Gb of data from network in 1 second, 

but thinks only 0.1 second has elapsed, giving 
illusion of 100 Gbps of bandwidth

» But, applications run 10x slower



VMM Requirements
● Fidelity

• OSes and applications work without modification
» (although we may modify the OS a bit)

● Isolation
• VMM protects resources and VMs from each other

● Performance
• VMM is another layer of software à overhead

» As with OS, want to minimize this overhead



VMware
● VMware workstation uses hosted model

• VMM runs unprivileged, installed on base OS
• Relies upon base OS for device functionality

● VMware ESX server uses hypervisor model
• VMM runs directly on hardware

● VMware uses software virtualization
• Dynamic binary rewriting translates code executed in VM
• Rewrite only privileged instructions to reduce overhead
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VMware Hosted Architecture



Xen
● Early versions use �paravirtualization�

• Fancy word for �we have to modify & recompile OS�

● Xen hypervisor (VMM)
• VMM runs at privilege, VMs (domains) run unprivileged
• Trusted OS (Linux) runs in own domain (Domain0), 

manages privileged operations

● Most recent version does not require OS mods
• Because of Intel/AMD hardware support

● Commercialized via XenSource, but also open 
source



Xen Architecture



What needs to be virtualized?
● Exactly what you would expect

• CPU
• Events
• Memory
• I/O devices

● Isn’t this just duplicating OS functionality?
• Yes and no
• Approaches will be similar to what OS does

» Simpler functionality (VMM much smaller than OS)
• But implements a different abstraction

» Hardware interface vs. OS interface



Virtualizing Memory
● OS assumes full control over memory

● But VMM partitions memory among VMs
• VMM needs to control mappings for isolation

» OS can only map to a physical page given to it by VMM

● Solution: Need MMU support to handle two-levels of 
page tables



Shadow Page Tables



Hardware Support
● Intel and AMD implement virtualization support in their latest 

x86 chips (Intel VT-x, AMD-V)
• Goal is to fully virtualize architecture
• Transparent trap-and-emulate approach now feasible
• Echoes hardware support originally implemented by IBM

● Execution model
• New execution mode: guest mode

» Direct execution of guest OS code, including privileged insts
• Virtual machine control block (VMCB)

» Controls what operations trap, records info to handle traps in 
VMM

• New instruction vmrun enters guest mode, runs VM code
• When VM traps, CPU executes new exit instruction
• Enters VMM, which emulates operation



Hardware Support (2)
● Memory

• Intel extended page tables (EPT), AMD nested page tables (NPT)

• Original page tables map virtual to (guest) physical pages

» Managed by OS in VM, backwards-compatible

» No need to trap to VMM when OS updates its page tables

• New tables map physical to machine pages

» Managed by VMM

• Tagged TLB w/ virtual process identifiers (VPIDs)



Dalvik VM
● Dalvik is a Java Virtual Machine

• Designed to run with limited system resources

● Android applications are written in Java

● Every application runs in its own JVM



Process management
● What�s the difference between mobile app 

cycle and desktop app cycle?
• One app has focus from the user at a time

● Two key principles
• Android usually does not delete an app�s state 

even if you close it
• Android kills apps when memory usage is too high, 

but it saves app state for quick restart later on
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Memory management
● Linux kernel does most of the job

● Page-based memory management
• Virtual address to physical address mapping

● No virtual memory swapping
• Pros and cons?



Reminders
● Email me topics you’d like me to cover as part 

of the review next week


