
EECS 482
Introduction to Operating

Systems

Winter 2018

Baris Kasikci
(Thanks, Harsha Madhyastha and

Jason Flinn for the slides!)

Distributed file systems
● Remote storage of data that appears local
● Examples:

• AFS
• Dropbox
• Google Drive

● Benefits?

Client-server design
● Copy of every file stored on server
● FS operations (read/write/etc.) are RPCs

● Downsides?

EECS 482 – Lecture 24

Client ClientServer

Write A

OK Read A

Data

Caching for performance
● Can cache file system data at client:

• In memory (e.g., NFS)
• On disk (e.g., AFS)

● Benefits of client-side caching:
• Improves server scalability
• Better latency and throughput
• Reduces network traffic
• Can improve availability (disconnected operation)

Client-side caching
● Migrate or replicate:

• Migrate: Transfer sole copy from server to client

• Replicate: Create additional copy at client

Pessimistic concurrency ctrl.
● How to prevent inconsistency?

• Obtain “lock” before accessing data
• Similar to reader-writer locks

● 3 states for each replica:
• Invalid: no cached copy
• Shared: may read cached copy
• Exclusive: may read/write cached copy

State machine for cached copy
invalid

sharedexclusive

this client
reads the file

this client
writes the file

this client writes the file

another client
writes the file

another client
writes the file

another client reads the file

Invalidation protocol

Client Client

Read file

Server

Read file
A

A

Shared?
Shared?

Shared, val=A
Shared, val=A

A

Exclusive?
Invalidate

AckAck
B

Write file

Read fileShared?
Downgrade

Ack, val=B B

Ack, val=B B

Order of operations
● Necessary to wait for invalidations?

Client Client

Read file

Server

Read file
A

A

Shared?
Shared?

Shared, val=A
Shared, val=A

A

Exclusive?
Invalidate

B

Write file

Read fileShared?
Downgrade

Ack, val=B B

Ack, val=B B

Order of operations
● Necessary to wait for invalidations?

Client Client

Read file

Server

Read file
A

A

Shared?
Shared?

Shared, val=A
Shared, val=A

A

Exclusive?

Invalidate
B

Write file

Read file (A not B!)

Optimistic concurrency ctrl.
● How to prevent inconsistency?

• Allow clients to modify replicas freely
• Server detects and resolves conflicting updates

● How to detect conflicts
• Assign a version to each object (file, etc.)
• Increment the version on update
• Conflict if server version >= client version

Conflicting operations

Client Client

Read file

Server

Read file
1

1

Fetch
Fetch

data,ver=1
data,ver=1

1

2

Write file

Write,ver=2

2

Write,ver=2 2

Write file

Resolving conflicts
● Possible strategies?

• Last writer wins (AFS)
• Create multiple versions
• Automatically merge updates (git)
• Manually merge updates (also git – sigh)

● Jim Gray: no free lunch
• You either block on a lock or create a conflict

● Are current DFS’s optimistic or pessimistic?

Load balancing across servers
● Two options:

• Partition clients across servers
• Partition files across servers

● How to find a file?

Load balancing across servers

A B C D E

0 1 2 3

4 5 6 7

8 9 10 11

Leveraging randomness
● Hash(server) maps to random location

server3

server2

server4

server1

file1

file3

file2

file4

file5

0x00000xffff

Adding a server
● Hash(server) maps to random location

server3

server2

server4

server1

file1

file3

file2

file4

file5

0x00000xffff

server5

Balancing load

● Some files hotter than others
• Equal files does not imply equal load
• How to mitigate?

» Assign less regions to hot servers, more to cold

Replication across servers
● More servers à Likelihood of failure increases
● Replicate files to tolerate failures

• Example: Primary + backup
» Write data by writing to both primary AND backup
» Read data by reading from primary OR backup

Primary-Backup

Client BackupPrimary

1
1

1 Write
Write

Ack
Ack

Read

Read

Handling failures
● When primary fails

• Backup becomes new primary
• Backup handles all reads/writes
• Primary recovers, syncs state, can become backup

● When backup fails
• Primary handles all reads/writes
• Backup recovers, syncs state

Fault tolerance
● What if backup fails before primary recovers?

• Data is unavailable, lost if failures permanent

● How can we tolerate 2 failures?
• Use 2 backups
• Need f+1 servers to tolerate f failures

● What are we assuming about failures?

Byzantine generals
● Say there’s one commander C and two

lieutenants L1 and L2
• Goal: Decide whether to attack enemy or retreat
• Attack succeeds if at least 2 attack
• 1 of the 3 is a traitor

● Solution 1: L1 and L2 follow C’s command to
either attack or retreat

● Solution 2: C sends command to L1 and L2,
who then exchange notes and follow majority

Byzantine generals
● C sends command to L1 and L2, who then

exchange notes and follow majority

● Case 1: L2 is traitor
• C sends attack to both L1 and L2
• L1 receives {attack, retreat}

● Case 2: C is traitor
• C sends attack to L1 and retreat to L2
• L1 receives {attack, retreat}

Byzantine generals
● Need at least 4 generals to cope with 1 traitor

• 3f+1 generals to cope with f traitors
• (more on this in distributed systems classes)

● Solution: C sends command to L1, L2, and L3,
who then exchange notes and follow majority

● Three cases:
• C sends 3 attacks
• C sends 2 attacks, 1 retreat
• C sends 1 attack, 2 retreats

