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Distributed file systems
● Remote storage of data that appears local
● Examples:

• AFS
• Dropbox
• Google Drive

● Benefits?



Client-server design
● Copy of every file stored on server
● FS operations (read/write/etc.) are RPCs

● Downsides?
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Caching for performance
● Can cache file system data at client:

• In memory (e.g., NFS)
• On disk (e.g., AFS)

● Benefits of client-side caching:
• Improves server scalability
• Better latency and throughput
• Reduces network traffic
• Can improve availability (disconnected operation)



Client-side caching
● Migrate or replicate:

• Migrate: Transfer sole copy from server to client

• Replicate: Create additional copy at client



Pessimistic concurrency ctrl.
● How to prevent inconsistency?

• Obtain “lock” before accessing data
• Similar to reader-writer locks 

● 3 states for each replica:
• Invalid: no cached copy
• Shared: may read cached copy 
• Exclusive: may read/write cached copy
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Invalidation protocol
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Order of operations
● Necessary to wait for invalidations?
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Order of operations
● Necessary to wait for invalidations?
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Optimistic concurrency ctrl.
● How to prevent inconsistency?

• Allow clients to modify replicas freely
• Server detects and resolves conflicting updates

● How to detect conflicts
• Assign a version to each object (file, etc.)
• Increment the version on update
• Conflict if server version >= client version



Conflicting operations
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Resolving conflicts
● Possible strategies?

• Last writer wins (AFS)
• Create multiple versions
• Automatically merge updates (git)
• Manually merge updates (also git – sigh)

● Jim Gray: no free lunch
• You either block on a lock or create a conflict

● Are current DFS’s optimistic or pessimistic?



Load balancing across servers
● Two options:

• Partition clients across servers
• Partition files across servers

● How to find a file?



Load balancing across servers
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Leveraging randomness
● Hash(server) maps to random location
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Adding a server
● Hash(server) maps to random location
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Balancing load

● Some files hotter than others
• Equal files does not imply equal load
• How to mitigate?

» Assign less regions to hot servers, more to cold



Replication across servers
● More servers à Likelihood of failure increases
● Replicate files to tolerate failures

• Example: Primary + backup
» Write data by writing to both primary AND backup
» Read data by reading from primary OR backup



Primary-Backup

Client BackupPrimary

1
1

1 Write
Write

Ack
Ack

Read

Read



Handling failures
● When primary fails

• Backup becomes new primary
• Backup handles all reads/writes
• Primary recovers, syncs state, can become backup

● When backup fails
• Primary handles all reads/writes
• Backup recovers, syncs state



Fault tolerance
● What if backup fails before primary recovers?

• Data is unavailable, lost if failures permanent

● How can we tolerate 2 failures?
• Use 2 backups
• Need f+1 servers to tolerate f failures

● What are we assuming about failures?



Byzantine generals
● Say there’s one commander C and two 

lieutenants L1 and L2
• Goal: Decide whether to attack enemy or retreat
• Attack succeeds if at least 2 attack
• 1 of the 3 is a traitor

● Solution 1: L1 and L2 follow C’s command to 
either attack or retreat

● Solution 2: C sends command to L1 and L2, 
who then exchange notes and follow majority



Byzantine generals
● C sends command to L1 and L2, who then 

exchange notes and follow majority

● Case 1: L2 is traitor
• C sends attack to both L1 and L2
• L1 receives {attack, retreat}

● Case 2: C is traitor
• C sends attack to L1 and retreat to L2
• L1 receives {attack, retreat}



Byzantine generals
● Need at least 4 generals to cope with 1 traitor

• 3f+1 generals to cope with f traitors 
• (more on this in distributed systems classes)

● Solution: C sends command to L1, L2, and L3, 
who then exchange notes and follow majority

● Three cases:
• C sends 3 attacks
• C sends 2 attacks, 1 retreat
• C sends 1 attack, 2 retreats


