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Making a distributed system 
look like a local system

● RPC: make request/response look like function 
call/return

● Distributed Shared Memory: make multiple 
memories look like a single memory

● Distributed File System: make disks on multiple 
computers look like a single file system

● Parallelizing compilers: make multiple CPUs 
look like one CPU

● Process migration (and RPC): allow users to 
easily use remote processors
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Building distributed systems
● Why build distributed systems?
● Performance

• Aggregate performance of many 
computers can be faster than that 
of (even a fast) single computer

● Reliability
• Try to provide continuous service, even if some 

computers fail
• Try to preserve data, even if some storage fails
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What is a distributed system?
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What is a distributed system?
● A collection of distinct processes that:

• are spatially separated
• communicate with each other by exchanging 

messages
• have non-negligible communication delay
• do not share fate
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A distributed system is a 
concurrent system

● One multi-threaded process on one computer

● Several multi-threaded processes on several 
computers
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What is a distributed system?
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What does it mean for an event to
“happen before” another event?

Ordering events in a 
distributed system
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What is a distributed system?
● A collection of distinct processes that:

• are spatially separated
• communicate with each other by exchanging 

messages
• have non-negligible communication delay
• do not share fate
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(imperfect, unsynchronized)

What is a distributed system?
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● A collection of distinct processes that:
• are spatially separated
• communicate with each other by exchanging 

messages
• have non-negligible communication delay
• do not share fate
• have separate physical clocks



Single machine    Distributed system

! A single clock

! Each event has a 

timestamp

! Compare timestamps to 

order events

! Each process has its own clock

! Each clock runs at a different 

speed

! Cannot directly compare clocks

an absolute temporal ordering is not what 
you want in a distributed system anyway

Leslie Lamport
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an absolute temporal ordering is not what 
you want in a distributed system anyway

Leslie Lamport

Why not?

Because temporal ordering is 
not observable.  You cannot 
read two separate clocks 
simultaneously!

High-level point:
if a system is to meet a specification 
correctly, then that specification must 
be given in terms of events 
observable within the system
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Modeling a process:

! A set of instantaneous events with an a priori total 
ordering

! Events can be local, sends, or receives.

Ordering events without 
physical clocks
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“Happened-before” relation, denoted:

! If    and    are events on the same process 
and    comes before   , then 

Ordering events without 
physical clocks
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“Happened-before” relation, denoted:

! If    is the sending of a message by one process and    
is the receipt of the same message by another 
process, then

Ordering events without 
physical clocks
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“Happened-before” relation, denoted:

! If           and          , then 

Ordering events without 
physical clocks

March 28, 2018

Part 3



Putting it all together

Ordering events without 
physical clocks
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Can arrows go backwards?

Ordering events without 
physical clocks
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Can cycles be formed?

No, because the same event would happen at two
different times

Ordering events without 
physical clocks
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Are all events related by      ?

Ordering events without 
physical clocks
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The set of events    such that            are the events that
could have influenced     in some way

A partial order
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A partial order
If two events could not have influenced each other, it doesn’t
matter when they happened relatively to each other

and     are concurrent:        ,

CAUSAL
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Goal
● Generate a total order that is consistent with 

the happened-before partial order
• E.g.                  …

March 28, 2018



Define a function LC such that:

(the Clock condition)

Lamport clocks
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Define a function LC such that:

(the Clock condition)

Implement LC by keeping a local LCi at each process i

Lamport clocks
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Single process

Lamport clocks
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Across processes

Lamport clocks
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Putting it all together
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Is this correct?
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! Order messages by LC

! Ties are broken by unique process ID

Generating a total order
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Generating a total order
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! Total order:


