
EECS 482
Introduction to Operating

Systems

Winter 2018

Baris Kasikci

Thanks Manos Kapritsos for the slides

Making a distributed system
look like a local system

● RPC: make request/response look like function
call/return

● Distributed Shared Memory: make multiple
memories look like a single memory

● Distributed File System: make disks on multiple
computers look like a single file system

● Parallelizing compilers: make multiple CPUs
look like one CPU

● Process migration (and RPC): allow users to
easily use remote processors

March 28, 2018

Building distributed systems
● Why build distributed systems?
● Performance

• Aggregate performance of many
computers can be faster than that
of (even a fast) single computer

● Reliability
• Try to provide continuous service, even if some

computers fail
• Try to preserve data, even if some storage fails

March 28, 2018

What is a distributed system?

March 28, 2018

What is a distributed system?
● A collection of distinct processes that:

• are spatially separated
• communicate with each other by exchanging

messages
• have non-negligible communication delay
• do not share fate

March 28, 2018

A distributed system is a
concurrent system

● One multi-threaded process on one computer

● Several multi-threaded processes on several
computers

March 28, 2018

send

receive

What is a distributed system?

March 28, 2018

A

B

What does it mean for an event to
“happen before” another event?

Ordering events in a
distributed system

March 28, 2018

A

B

What is a distributed system?
● A collection of distinct processes that:

• are spatially separated
• communicate with each other by exchanging

messages
• have non-negligible communication delay
• do not share fate

March 28, 2018

(imperfect, unsynchronized)

What is a distributed system?

March 28, 2018

● A collection of distinct processes that:
• are spatially separated
• communicate with each other by exchanging

messages
• have non-negligible communication delay
• do not share fate
• have separate physical clocks

Single machine Distributed system

! A single clock

! Each event has a

timestamp

! Compare timestamps to

order events

! Each process has its own clock

! Each clock runs at a different

speed

! Cannot directly compare clocks

an absolute temporal ordering is not what
you want in a distributed system anyway

Leslie Lamport

March 28, 2018

an absolute temporal ordering is not what
you want in a distributed system anyway

Leslie Lamport

Why not?

Because temporal ordering is
not observable. You cannot
read two separate clocks
simultaneously!

High-level point:
if a system is to meet a specification
correctly, then that specification must
be given in terms of events
observable within the system

March 28, 2018

Modeling a process:

! A set of instantaneous events with an a priori total
ordering

! Events can be local, sends, or receives.

Ordering events without
physical clocks

March 28, 2018

“Happened-before” relation, denoted:

! If and are events on the same process
and comes before , then

Ordering events without
physical clocks

March 28, 2018

Part 1

“Happened-before” relation, denoted:

! If is the sending of a message by one process and
is the receipt of the same message by another
process, then

Ordering events without
physical clocks

March 28, 2018

Part 2

“Happened-before” relation, denoted:

! If and , then

Ordering events without
physical clocks

March 28, 2018

Part 3

Putting it all together

Ordering events without
physical clocks

March 28, 2018

Can arrows go backwards?

Ordering events without
physical clocks

March 28, 2018

Can cycles be formed?

No, because the same event would happen at two
different times

Ordering events without
physical clocks

March 28, 2018

Are all events related by ?

Ordering events without
physical clocks

March 28, 2018

The set of events such that are the events that
could have influenced in some way

A partial order

March 28, 2018

A partial order
If two events could not have influenced each other, it doesn’t
matter when they happened relatively to each other

and are concurrent: ,

CAUSAL

March 28, 2018

Goal
● Generate a total order that is consistent with

the happened-before partial order
• E.g. …

March 28, 2018

Define a function LC such that:

(the Clock condition)

Lamport clocks

March 28, 2018

Define a function LC such that:

(the Clock condition)

Implement LC by keeping a local LCi at each process i

Lamport clocks

March 28, 2018

Single process

Lamport clocks

March 28, 2018

Across processes

Lamport clocks

March 28, 2018

Putting it all together

March 28, 2018

Is this correct?

March 28, 2018

A

B

C

! Order messages by LC

! Ties are broken by unique process ID

Generating a total order

March 28, 2018

A

B

C

Generating a total order

March 28, 2018

! Total order:

