
EECS 482
Introduction to Operating

Systems

Winter 2018

Baris Kasikci

Slides by: Harsha V. Madhyastha

OS abstraction of network

March 26, 2018 EECS 482 – Lecture 22 2

Hardware reality
Multiple computers

connected via a network
Machine-to-machine

communication
Unreliable and unordered
delivery of finite messages

Abstraction
Single computer

Process-to-process
communication

Reliable and ordered
delivery of byte stream

● Hardware reality

● OS abstraction

OS abstraction of network

March 26, 2018 EECS 482 – Lecture 22 3

Network

Machine 1

NIC

Machine 3

NIC

Machine 2

NIC

Process A

NIC

Process C

NIC

Process B

NICNIC

Changing communication from
inter-machine to inter-process

● Every process thinks it has its own:
• Multiprocessor (threads)
• Memory (address space)
• Network interface cards (sockets)

● Socket
• Virtual network interface card
• Endpoint for communication
• NIC named by MAC address; socket named by

“port number” (via bind)
• Programming interface: BSD sockets

March 26, 2018 EECS 482 – Lecture 22 4

OS multiplexes multiple sockets
onto a single NIC

● UDP (user datagram protocol): IP + sockets
● TCP (transmission control protocol): IP +

sockets + reliable, ordered streams
March 26, 2018 EECS 482 – Lecture 22 5

Operating system

Network interface card

Process A

socket 1 socket 2

Process B

socket 3

Ordered messages
● Hardware interface: Messages can be re-ordered by IP

• Sender: A, B
• Receiver: B, A

● Application interface: Messages received in order sent

● How to provide ordered messages?
• Assign sequence numbers

● Ordering of messages per-”connection”
• TCP: process opens connection (via connect), sends

sequence of messages, then closes connection
• Sequence number specific to a socket-to-socket connection

March 26, 2018 EECS 482 – Lecture 22 6

Ordered messages
● Example:

• Sender sends 0, 1, 2, 3, 4, …
• Receiver receives 0, 1, 3, 2, 4, …

● How should receiver deal with reordering?
• Drop 3, Deliver 2, Deliver 4
• Deliver 3, Drop 2, Deliver 4
• Save 3, Deliver 2, Deliver 3, Deliver 4

March 26, 2018 EECS 482 – Lecture 22 7

Reliable messages
● Hardware interface: Messages can be dropped,

duplicated, or corrupted
● Application interface: Each message is delivered

exactly once without corruption

● How to fix a dropped message?
• Have the sender re-send it

● How does sender know message was dropped?
• Have receiver ACK messages; resend after timeout

● Does timing out mean the message was dropped?
March 26, 2018 EECS 482 – Lecture 22 8

Reliable messages
● How to deal with duplicate messages?

• Detect by sequence number and drop duplicates

● How to deal with corrupted messages?
• Add redundant information (e.g., checksum)

• Fix by dropping corrupted message

● Transform:
• Corrupted messages à dropped messages

• Potential dropped messages à potential duplicates

● Solve duplicates by dropping duplicate messages

March 26, 2018 EECS 482 – Lecture 22 9

Byte streams
● Hardware interface: Send/receive messages
● Application interface: Abstraction of data stream

● TCP: Sender sends messages of arbitrary size,
which are combined into a single stream

● Implementation
• Break up stream into fragments
• Sends fragments as distinct messages
• Reassembles fragments at destination

March 26, 2018 EECS 482 – Lecture 22 10

Message boundaries
● TCP has no message boundaries (unlike UDP)

• Example: Sender sends 100 bytes, then 50 bytes;

Receiver could receive 1-150 bytes

● Receiver must loop until all bytes received

● How to know # of bytes to receive?

• Convention (e.g., specified by protocol)

• Specified in header

• End-of-message delimiter

• Sender closes connection

March 26, 2018 EECS 482 – Lecture 22 11

Project 4
● Use assertions to catch errors early

• No. of free disk blocks matches file system contents?
• Are you unlocking a lock that you hold?
• Verify initial file system is not malformed

● Use showfs to verify that contents of file system
match your expectations

● There are no boundaries in TCP byte streams

● A char* is not a string!

March 26, 2018 EECS 482 – Lecture 22 12

Client-server
● Common way to structure a distributed application:

• Server provides some centralized service
• Client makes request to server, then waits for response

● Example: Web server
• Server stores and returns web pages
• Clients run web browsers, which make GET/POST requests

● Example: Producer-consumer
• Server manages state associated with coke machine
• Clients call client_produce() or client_consume(),

which send request to the server and return when done
• Client requests block at the server until they are satisfied

March 26, 2018 EECS 482 – Lecture 22 14

Producer-consumer in client-
server paradigm

client_produce() {
send produce request to server
wait for response

}

server() {
receive request
if (produce request) {

add coke to machine
} else {

take coke out of machine
}
send response

}
March 26, 2018 EECS 482 – Lecture 22 15

Problems?

How to fix?

Producer-consumer in client-
server paradigm

client_produce() {
send produce request to server
wait for response

}

server() {
receive request
if (produce request) {

while(machine is full) { wait }
add coke to machine

} else {
take coke out of machine

}
send response

}
March 26, 2018 EECS 482 – Lecture 22 16

Producer-consumer in client-
server paradigm

server() {
receive request
if (produce request) {

create thread that calls server_produce()
} else {

create thread that calls server_consume()
}

}

server_produce() {
lock
while (machine is full) {

wait
}
put coke in machine
unlock
send response

}
March 26, 2018 EECS 482 – Lecture 22 17

Producer-consumer in client-
server paradigm

● How to lower overhead of creating threads?
• Maintain pool of worker threads

● There are other ways to structure the server
• Basic goal: Account for “slow” operations

● Examples:
• Polling (via select)
• Threads + Signals

March 26, 2018 EECS 482 – Lecture 22 18

Producer-consumer in client-
server paradigm

client_produce() {
send produce request to server
wait for response

}

server() {
receive request
if (produce request) {

thread(server_produce())
} else {

thread(server_consume())
}
send response

}
March 26, 2018 EECS 482 – Lecture 22 19

Remote Procedure Call
● Hide complexity of message-based communication

from developers
● Procedure calls more natural for inter-process

communication

● Goals of RPC:
• Client sending request à function call
• Client receiving response à returning from function
• Server receiving request à function invocation
• Server sending response à returning to caller

March 26, 2018 EECS 482 – Lecture 22 20

RPC abstraction via stub
functions on client and server

March 26, 2018 EECS 482 – Lecture 22 21

client

server stub

client stub

server

call

return

return

call

sendreceive

receivesend

Client machine

Server machine

RPC stubs
● Client stub:

Constructs message with function name and parameters
Sends request message to server
Receives response from server
Returns response to client

● Server stub:
Receives request message
Invokes correct function with specified parameterss
Constructs response message with return value
Sends response to client stub

March 26, 2018 EECS 482 – Lecture 22 22

RPC abstraction via stub
functions on client and server

March 26, 2018 EECS 482 – Lecture 22 23

client

server stub

client stub

server

call

return

return

call

sendreceive

receivesend

Client machine

Server machine

Producer-consumer using
RPC

● Client stub
int produce (int n) {

int status;
send (sock, &n, sizeof(n));
recv (sock, &status, sizeof(status));
return(status);

}

● Server stub
void produce_stub () {

int n;
int status;
recv (sock, &n, sizeof(n));
status = produce(n);
send (sock, &status, sizeof(status));

}

March 26, 2018 EECS 482 – Lecture 22 24

Generation of stubs
● Stubs can be generated automatically
● What do we need to know to do this?

● Interface description:
• Types of arguments and return value

● e.g. rpcgen on Linux

March 26, 2018 EECS 482 – Lecture 22 25

EECS 482 – Lecture 22 26

RPC Transparency
● RPC makes remote communication look like

local procedure calls

• Basis of CORBA, Thrift, SOAP, Java RMI, …

• Examples in this class?

● What factors break illusion?

• Failures – remote nodes/networks can fail

• Performance – remote communication is inherently

slower

• Service discovery – client stub needs to bind to server

stub on appropriate machine

March 26, 2018

RPC Arguments
● Can I have pointers as arguments?

● How to pass a pointer as argument?

• Client stub transfers data at the pointer

• Server stub stores received data and passes pointer

● Challenge:

• Data representation should be same on either end

• Example: I want to send a 4-byte integer:

» 0xDE AD BE EF

» Send byte 0, then byte 1, byte 2, byte 3

» What is byte 0?

March 26, 2018 EECS 482 – Lecture 22 27

Endianness
● int x = 0xDE AD BE EF
● Little endian:

• Byte 0 is 0xEF
● Big endian:

• Byte 0 is 0xDE

● If a little endian machine sends to a big endian:
• 0xDE AD BE EF will become 0xEF BE AD DE

March 26, 2018 EECS 482 – Lecture 22 28

