EECS 482
Introduction to Operating
Systems

Winter 2018

Baris Kasikci

Slides by: Harsha V. Madhyastha



OS abstraction of network

Hardware reality Abstraction
Multiple computers Single computer
connected via a network
Machine-to-machine Process-to-process
communication communication
Unreliable and unordered Reliable and ordered

delivery of finite messages delivery of byte stream

March 26, 2018 EECS 482 — Lecture 22



OS abstraction of network

e Hardware reality
Machine 1 Machine 2 Machine 3

\M

Network
e OS abstraction
Process A Process B Process C
NIC NIC NIC NIC

O —

March 26, 2018 EECS 482 — Lecture 22



Changing communication from
inter-machine to inter-process

e Every process thinks it has its own:
. Multiprocessor (threads)
. Memory (address space)
. Network interface cards (sockets)

e Socket
. Virtual network interface card
. Endpoint for communication

. NIC named by MAC address; socket named by
“port number” (via bind)

. Programming interface: BSD sockets

March 26, 2018 EECS 482 — Lecture 22



OS multiplexes multiple sockets
onto a single NIC

Process A Process B

socket 1 ‘ ‘ socket 2 ‘ socket 3‘

s

Operating system

Network interface card

e UDP (user datagram protocol): IP + sockets

e TCP (transmission control protocol): IP +
sockets + reliable, ordered streams

March 26, 2018 EECS 482 — Lecture 22 5



Ordered messages

e Hardware interface: Messages can be re-ordered by IP
Sender: A, B
Receiver: B, A

e Application interface: Messages received in order sent

e How to provide ordered messages”?
Assign sequence numbers

e Ordering of messages per-"connection”

TCP: process opens connection (via connect), sends
sequence of messages, then closes connection

Sequence number specific to a socket-to-socket connection

March 26, 2018 EECS 482 — Lecture 22 6



Ordered messages

o Example:
. Sendersends 0,1, 2, 3,4, ...
. Receiver receives 0, 1, 3, 2, 4, ...

e How should receiver deal with reordering?
. Drop 3, Deliver 2, Deliver 4
. Deliver 3, Drop 2, Deliver 4
. Save 3, Deliver 2, Deliver 3, Deliver 4

March 26, 2018 EECS 482 — Lecture 22



Reliable messages

e Hardware interface: Messages can be dropped,
duplicated, or corrupted

e Application interface: Each message is delivered
exactly once without corruption

e How to fix a dropped message?
. Have the sender re-send it

e How does sender know message was dropped?
. Have receiver ACK messages; resend after timeout

e Does timing out mean the message was dropped?

March 26, 2018 EECS 482 — Lecture 22 8



Reliable messages

e How to deal with duplicate messages?
. Detect by sequence number and drop duplicates
e How to deal with corrupted messages?

. Add redundant information (e.g., checksum)
. Fix by dropping corrupted message

e Iransform:

. Corrupted messages - dropped messages

. Potential dropped messages > potential duplicates
e Solve duplicates by dropping duplicate messages

March 26, 2018 EECS 482 — Lecture 22



Byte streams

e Hardware interface: Send/receive messages
e Application interface: Abstraction of data stream

e TCP: Sender sends messages of arbitrary size,
which are combined into a single stream

e Implementation
. Break up stream into fragments
. Sends fragments as distinct messages
. Reassembles fragments at destination

March 26, 2018 EECS 482 — Lecture 22 10



Message boundaries

e TCP has no message boundaries (unlike UDP)

. Example: Sender sends 100 bytes, then 50 bytes;
Receiver could receive 1-150 bytes

e Receiver must loop until all bytes received

e How to know # of bytes to receive?
. Convention (e.g., specified by protocol)
. Specified in header
. End-of-message delimiter
. Sender closes connection

March 26, 2018 EECS 482 — Lecture 22 11



Project 4

e Use assertions to catch errors early
. No. of free disk blocks matches file system contents?
. Are you unlocking a lock that you hold?
. Verify initial file system is not malformed

e Use showfs to verify that contents of file system
match your expectations

e There are no boundaries in TCP byte streams

e A char” is not a string!

March 26, 2018 EECS 482 — Lecture 22 12



Client-server

e Common way to structure a distributed application:
Server provides some centralized service
Client makes request to server, then waits for response

e Example: Web server
Server stores and returns web pages
Clients run web browsers, which make GET/POST requests

e Example: Producer-consumer

Server manages state associated with coke machine

Clients call client produce () orclient consume (),
which send request to the server and return when done

Client requests block at the server until they are satisfied

March 26, 2018 EECS 482 — Lecture 22 14



Producer-consumer in client-
server paradigm

client produce () {
send produce request to server

wailt for response

}
server () { Problems?

recelve request
1f (produce request) {
add coke to machine How to fix?
} else {
take coke out of machine

}

send response

}

March 26, 2018 EECS 482 — Lecture 22 15



Producer-consumer in client-
server paradigm

client produce () {

send produce request to server

walt for response

server () {
receive request
if (produce request) {
while (machine is full) { wait }
add coke to machine

} else {

take coke out of machine
}

send response

}

March 26, 2018 EECS 482 — Lecture 22 16



Producer-consumer in client-
server paradigm

server () {
recelve request
1f (produce request) {
create thread that calls server produce ()
} else {
create thread that calls server consume ()
}
}

server produce () {
lock
while (machine is full) {
wailt
}
put coke in machine
unlock
send response

}

March 26, 2018 EECS 482 — Lecture 22 17



Producer-consumer in client-
server paradigm

e How to lower overhead of creating threads?
. Maintain pool of worker threads

e There are other ways to structure the server
. Basic goal: Account for “slow” operations

o Examples:
. Polling (via select)

. Threads + Signals

March 26, 2018 EECS 482 — Lecture 22 18



Producer-consumer in client-
server paradigm

client produce () {
send produce request to server

wait for response

}

server () {
receive request
1f (produce request) {
thread(server produce())
} else {
thread(server consume ())

}

send response

}

March 26, 2018 EECS 482 — Lecture 22 19



Remote Procedure Call

e Hide complexity of message-based communication
from developers

e Procedure calls more natural for inter-process
communication

e Goals of RPC:

. Client sending request - function call

. Client receiving response - returning from function
. Server receiving request - function invocation

. Server sending response - returning to caller

March 26, 2018 EECS 482 — Lecture 22 20



RPC abstraction via stub
functions on client and server

Client machine

call
client client stub
return
receive send
send receive
return
server server stub
call

Server machine

March 26, 2018 EECS 482 — Lecture 22 21



RPC stubs

e Client stub:

Constructs message with function name and parameters
Sends request message to server

Receives response from server

Returns response to client

e Server stub:

Receives request message

Invokes correct function with specified parameterss
Constructs response message with return value
Sends response to client stub

March 26, 2018 EECS 482 — Lecture 22

22



RPC abstraction via stub
functions on client and server

Client machine

call
client client stub
return
receive send
send receive
return
server server stub
call

Server machine

March 26, 2018 EECS 482 — Lecture 22 23



Producer-consumer using
RPC

e Client stub

int produce (int n) {

int status;
— send (sock, &n, sizeof (n));
— recv (sock, &status, sizeof (status));

—» return(status) ;

}
e Server stub

void produce stub () {

int n;

int status;
—» recv (sock, &n, sizeof(n));
— » status = produce(n);

4, send (sock, é&status, sizeof (status));

}

March 26, 2018 EECS 482 — Lecture 22

24



Generation of stubs

e Stubs can be generated automatically
e \What do we need to know to do this?

e Interface description:
. Types of arguments and return value

e €.g. rpcgen on Linux

March 26, 2018 EECS 482 — Lecture 22

25



RPC Transparency

e RPC makes remote communication look like
local procedure calls
. Basis of CORBA, Thrift, SOAP, Java RMI, ...
. Examples in this class?

e \What factors break illusion?
. Failures — remote nodes/networks can fail

. Performance — remote communication is inherently
slower

. Service discovery — client stub needs to bind to server
stub on appropriate machine

March 26, 2018 EECS 482 — Lecture 22 26



RPC Arguments

e Can | have pointers as arguments?
e How to pass a pointer as argument?
. Client stub transfers data at the pointer
. Server stub stores received data and passes pointer
e Challenge:
. Data representation should be same on either end
. Example: | want to send a 4-byte integer:
» OXxDE AD BE EF
» Send byte 0, then byte 1, byte 2, byte 3
» What is byte 07?

March 26, 2018 EECS 482 — Lecture 22 27



Endianness

e int x = 0OxDE AD BE EF

e Llittle endian:
. Byte 0is OxEF

e Big endian:
. Byte 0 is OXxDE

e If a little endian machine sends to a big endian:
. OxDE AD BE EF will become OxEF BE AD DE

March 26, 2018 EECS 482 — Lecture 22

28



