
EECS 482
Introduction to Operating

Systems

Winter 2018

Baris Kasikci

Slides by: Harsha V. Madhyastha

Recap: inodes

/*
* Definitions for on-disk data structures.
*/

struct fs_direntry {
char name[FS_MAXFILENAME + 1]; // name of this file or directory
uint32_t inode_block; // disk block that stores the inode for

// this file or directory
};

struct fs_inode {
char type; // file ('f') or directory ('d')
char owner[FS_MAXUSERNAME + 1];
uint32_t size; // size of this file or directory

// in blocks
uint32_t blocks[FS_MAXFILEBLOCKS]; // array of data blocks for this

// file or directory
};

March 21, 2018 EECS 482 – Lecture 22 2

Implementing transactions
with logging

● Write-ahead logging
• Write updates to append-only log before

applying updates to file system
• Write commit sector to end of log to commit

the set of changes
● Eventually, copy new data from log to

the in-place version of the file system

● Again, update committed by single
sector write

March 21, 2018 EECS 482 – Lecture 22 3

Case study: Log-structured
file system
● Goal: Make (almost) all I/Os sequential

• File system can write to any free disk block
• In general, not possible for reads; leverage caching

● Basic idea: Treat disk as an append-only log
• Append all writes to log

● What does it take to update the data in
/home/barisk/482/notes?

March 21, 2018 EECS 482 – Lecture 22 4

Updating Data in
/home/barisk/482/notes

March 21, 2018 EECS 482 – Lecture 22 5

New
data

Old
“notes”
inode

Old
“notes”

New
“notes”
inode

Data blocks
For 482

New
“482”
inode

The inode map
● New data structure: inode map (indirection!)

• Directory entries contain inode number
• inode map translates inode number to disk block

● Where should inode map be stored?
• Fixed location

● Problems with storing inode map in fixed
location on disk?

• All writes are not perfectly sequential

March 21, 2018 EECS 482 – Lecture 22 6

March 21, 2018 EECS 482 – Lecture 22 7

LFS: Other challenges

● LFS append-only quickly runs out of disk space
• Need to recover deleted/overwritten blocks

● Need aggressive defragmentation of the disk
• The whole point of LFS is to have large contiguous

areas where you can write sequentially

● Cleaning is expensive if high disk space utilization

March 21, 2018 EECS 482 – Lecture 22 8

Write Cost Comparison

Write cost of 2
if 20% full Write cost of 10

if 80% full

March 21, 2018 EECS 482 – Lecture 22 10

RAID
● Redundant Array of Inexpensive Disks (RAID)

• Sits in between hardware and the file system

● Idea: Use many disks in parallel to increase
storage bandwidth, improve reliability

• Files are striped across disks
• Each stripe portion is read/written in parallel
• Bandwidth increases with more disks

RAID-0: Striping

March 21, 2018 EECS 482 – Lecture 22 11

March 21, 2018 EECS 482 – Lecture 22 12

RAID Challenges
● Small writes (less than a full stripe) don’t

benefit from striping

● Reliability
• More disks increase chance of failure (MTBF)
• Example:

» Say 1 disk has 10% chance of failing in one year
» With 10 disks, chance of any 1 disk failing in one

year is 1 – (1 – 0.1)10 = 65%!

RAID-1: Mirroring

March 21, 2018 EECS 482 – Lecture 22 13

RAID with parity
● Improve reliability by storing redundant parity

• In each stripe, use one block to store parity data
» XOR of all data blocks in stripe

• Can recover any data block from all others + parity

March 21, 2018 EECS 482 – Lecture 22 14

� � =

March 21, 2018 EECS 482 – Lecture 22 15

RAID Levels
● RAID 0: Striping

• Good performance but no reliability

● RAID 1: Mirroring
• Maintain full copy of all data
• Good read performance, but 100% storage overhead

and no benefit to writes

March 21, 2018 EECS 482 – Lecture 22 16

RAID Levels

● RAID 5: Floating parity
• Introduces some overhead, but disks are �inexpensive�
• Parity blocks for different stripes written to different disks
• No single parity disk à no bottleneck at that disk
• Not ideal for small writes (less than a full stripe)

» Need to read entire stripe, update with small write,
then write entire stripe out to disks

