
EECS 482
Introduction to Operating

Systems

Winter 2018
Baris Kasikci

Slides by: Harsha V. Madhyastha

● Creates abstractions to make hardware easier to use
● Manages shared hardware resources

September 8, 2016 EECS 482 – Lecture 2 2

What does an OS do?

Operating System

Hardware

Applications

OS Abstractions

September 8, 2016 3

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

EECS 482 – Lecture 2

September 8, 2016 EECS 482 – Lecture 2 4

Upcoming Schedule
● This lecture starts a class segment that covers

processes, threads, and synchronization
◆ Perhaps the most important in this class
◆ Basis for Projects 1 and 2

Managing Concurrency
● Recall: Source of OS complexity

◆ Multiple users, programs, I/O devices, etc.
◆ Originally for efficient use of H/W, but useful even now

● How to manage this complexity?
◆ Divide and conquer
◆ Modularity and abstraction

5EECS 482 – Lecture 2September 8, 2016

September 8, 2016 EECS 482 – Lecture 2 6

The Process
● The process is the OS abstraction for execution

◆ Also sometimes called a job or a task

● Recall: For each area of OS, ask
◆ What interface does hardware provide?

◆ What interface does OS provide?

app1+app2+app3
CPU + memory

app1
CPU + memory

app2
CPU + memory

app3
CPU + memory

September 8, 2016 EECS 482 – Lecture 2 7

What is a process
● A process is a running program

◆ Programs are static entities with potential for execution

● A process is like a play being acted out
◆ A program is the script of the play

Execution

Memory

● A process, named using its process ID (PID),
contains all the state for a running program

◆ Set of threads (active)
» a sequence of executing instructions from a program
» analogy: acting done by an actor

◆ An address space (passive)
» the memory used by the program as it runs
» analogy: all the objects on the stage

September 8, 2016 EECS 482 – Lecture 2 8

Process Components

September 8, 2016 EECS 482 – Lecture 2 9

Process Address Space

● What’s in the address space?
» The code and input data for the executing program
» The memory allocated by the executing program
» Open files, network connections, etc.
» An execution stack encapsulating the state of procedure calls
» The program counter (PC) indicating the next instruction
» A set of general-purpose registers with current values

Cross-
thread
state

Per-thread
state

September 8, 2016 EECS 482 – Lecture 2 10

Process Address Space

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

Data

Segment

Review of Stack Frames
A(int tmp) {

B(tmp);

}

B(int val) {
C(val, val + 2);

A(val – 1);

}

C(int foo, int bar) {

int v = bar – foo;

}

A(tmp = 1)

September 8, 2016 EECS 482 – Lecture 2 11

Review of Stack Frames
A(int tmp) {

B(tmp);

}

B(int val) {
C(val, val + 2);

A(val – 1);

}

C(int foo, int bar) {

int v = bar – foo;

}

A(tmp = 1)

B(val = 1)

September 8, 2016 EECS 482 – Lecture 2 12

Review of Stack Frames
A(int tmp) {

B(tmp);

}

B(int val) {
C(val, val + 2);

A(val – 1);

}

C(int foo, int bar) {

int v = bar – foo;

}

A(tmp = 1)

B(val = 1)

C(foo = 1, bar = 3)

September 8, 2016 EECS 482 – Lecture 2 13

Review of Stack Frames
A(int tmp) {

B(tmp);

}

B(int val) {
C(val, val + 2);

A(val – 1);

}

C(int foo, int bar) {

int v = bar – foo;

}

A(tmp = 1)

B(val = 1)

September 8, 2016 EECS 482 – Lecture 2 14

Review of Stack Frames
A(int tmp) {

B(tmp);

}

B(int val) {
C(val, val + 2);

A(val – 1);

}

C(int foo, int bar) {

int v = bar – foo;

}

A(tmp = 1)

B(val = 1)

September 8, 2016 EECS 482 – Lecture 2 15

A(tmp = 0)

Multiple Threads
● Can have several threads in a single address space

◆ Sometimes they interact
◆ Sometimes they work independently
◆ Analogy: multiple roles being acted out

● What does a thread need to execute?
◆ Stack (and SP)
◆ PC
◆ Code specific to the thread

● What does a thread need to communicate with
other threads?
◆ Data segment

16EECS 482 – Lecture 2September 8, 2016

Upcoming Topics
● Threads: unit of concurrency

◆ How multiple threads can cooperate to accomplish a
single task? (Project 1)

◆ How multiple threads can share limited number of CPUs?
(Project 2)

● Address spaces: unit of state partitioning
◆ How multiple address spaces can share a single physical

memory efficiently, flexibly, and safely? (Project 3)

17EECS 482 – Lecture 2September 8, 2016

Announcements

● First discussion section on Friday
◆ Bring your laptop

● Sign up for GitHub and Piazza
◆ Must do by discussion section on Friday

● Started putting together a project group?

September 8, 2016 EECS 482 – Lecture 2 18

Selfies

September 8, 2016 EECS 482 – Lecture 2 19

Send them to
barisk@umich.edu

B
ig

 M
us

hy
 H

ap
py

 L
um

p,
 S

ar
ah

 A
nd

er
se

n

Why do we need threads?
● Example: Web server

◆ Receives multiple simultaneous requests
◆ Reads web pages from disk to satisfy each request

20EECS 482 – Lecture 2September 8, 2016

Option 1: Handle one request
at a time
● Example execution schedule (single CPU):

Request 1 arrives
Server receives request 1
Server starts disk I/O 1a
Request 2 arrives
Server waits for I/O 1a to finish

● Easy to program, but slow
◆ Why slow?
◆ Can’t overlap disk requests with computation, or with

network receives
21EECS 482 – Lecture 2September 8, 2016

time

Option 2: Event-driven web
server (asynchronous I/O)

● Issue I/Os, but don’t wait for them to complete
(single CPU)
Request 1 arrives
Server receives request 1
Server starts disk I/O 1a to satisfy request 1
Request 2 arrives
Server receives request 2
Server starts disk I/O 2a to satisfy request 2
Request 3 arrives
Disk I/O 1a finishes

September 8, 2016 EECS 482 – Lecture 2 22

Web server must remember
What requests are being served, and what stage they’re in
What disk I/Os are outstanding (and which requests they belong to)

Lots of extra state!

time

Multi-threaded web server
● One thread per request (single CPU)

◆ Thread issues disk (or n/w) I/O, then waits for it to finish
◆ Though thread is blocked on I/O, other threads can run
◆ Where is the state of each request stored?

23

Thread 1
Request 1 arrives
Receive request 1
Start disk I/O 1a

Disk I/O 1a finishes
Continue handling request 1

Thread 2

Request 2 arrives
Receive request 2
Start disk I/O 2a

Thread 3

Request 3 arrives
Receive request 3

EECS 482 – Lecture 2September 8, 2016

Benefits of Threads
● Thread manager takes care of CPU sharing

◆ Other threads can progress when one thread issues
blocking I/Os

◆ Private state for each thread

● Applications get a simpler programming model
◆ The illusion of a dedicated CPU per thread

24EECS 482 – Lecture 2September 8, 2016

When are threads useful?
● Multiple things happening at once
● Usually some slow resource

● Examples:
◆ Network server
◆ Controlling a physical system (e.g., airplane

controller)
◆ Window system

September 8, 2016 EECS 482 – Lecture 2 25

Ideal Scenario
● Split computation into threads
● Threads run independently of each other

◆ Divide and conquer works best if divided parts are
independent

Is independence of threads practically possible?

September 8, 2016 EECS 482 – Lecture 2 26

Dependence between threads
● Example 1: Microsoft Word

◆ One thread formats document
◆ Another thread spell checks document

● Example 2: Desktop computer
◆ One thread plays World of Warcraft
◆ Another thread compiles EECS 482 project

● Two types of sharing: app resource or H/W

27EECS 482 – Lecture 2September 8, 2016

Concurrency vs. Parallelism
● Concurrency

◆ A way to reason about your program (code) as a
collection of communicating threads

◆ Execution is not guarantees to be simultaneous
◆ Could run on a single CPU

● Parallelism
◆ A model of program execution
◆ Execution happens simultaneously

September 8, 2016 EECS 482 – Lecture 2 28

Concurrency vs. Parallelism
● Concurrency with single CPU

● Concurrency with 2 CPUs -> Parallelism is
possible

September 8, 2016 EECS 482 – Lecture 2 29

f1()

f2()

Thread 2 (CPU 1)Thread 1 (CPU 1)

f1() f2()

Thread 2 (CPU 2)Thread 1 (CPU 1)

time

time

Functions
execute
one after
the other

Functions
execute

simultaneously

Cooperating threads
● How can multiple threads cooperate on a single task?

◆ Example: Ticketmaster’s webserver
◆ Assume each thread has a dedicated processor (multiple

CPUs)
● The main problem:

◆ Ordering of events across threads is non-deterministic
◆ Speed of each processor is unpredictable

Thread A
Thread B
Thread C

● Consequences:
◆ Many possible global ordering of events
◆ Some may produce incorrect results

30EECS 482 – Lecture 2September 8, 2016

Non-deterministic ordering à
Non-deterministic results

● Printing example

◆ Possible outputs?
» 20 outputs: ABC123, AB1C23, AB12C3, AB123C,

A1BC23, A12BC3, A123BC, 1ABC23, 1A2BC3, …
◆ Impossible outputs?

» ABC321

● Ordering within thread is sequential, but many
ways to merge per-thread order into a global order

● What’s being shared between these threads?

31

Thread 1
Print ABC

Thread 2
Print 123

EECS 482 – Lecture 2September 8, 2016

Non-deterministic ordering à
Non-deterministic results

● Arithmetic example (y is initially 10)
◆ What’s being shared between these threads?
◆ Possible results?

» If A runs first: x = 11 and y = 20
» If B runs first: x = 21 and y = 20

● Another example (x is initially 0)
◆ Possible results?

» x = 1 or -1
◆ Impossible results?

» x = 0
32

Thread A
x = y + 1

Thread B
y = y * 2

Thread A
x = 1

Thread B
x = -1

EECS 482 – Lecture 2September 8, 2016

Thread A
x = 0
x++

Thread B
x = 0
x--

Atomic operations
● Atomic operations

◆ Indivisible, i.e., happens in its entirety or not at all
◆ No events from other threads can occur in between

● Print example:
◆ What if each print statement were atomic?
◆ What if printing a single character were not atomic?

● Most computers
◆ Memory load and store are atomic (e.g., mov on x86)
◆ Many other instructions are not atomic

» Example: double-precision floating point
◆ Need a low-level atomic operation (test-and-set) to build a

high-level atomic operation (lock)
33EECS 482 – Lecture 2September 8, 2016

Example

● Which thread will finish first?
● Is the winner (one that reaches the end of the loop first) guaranteed to

print first?
● Is it guaranteed that someone will win?
● Say both threads run at exactly the same speed, and start close together

◆ Is it guaranteed that both threads will loop forever?

● Non-deterministic interleaving makes debugging challenging
◆ Heisenbug: a bug that occurs non-deterministically

34

Thread A
i=0
while (i<10) {

i++
}
print “A finished”

Thread B
i=0
while (i> -10) {

i--
}
print “B finished”

EECS 482 – Lecture 2September 8, 2016

Baris Kasikci

