EECS 482
Introduction to Operating
Systems

Winter 2018

Baris Kasikci

Slides by: Harsha V. Madhyastha

What does an OS do?

e Creates abstractions to make hardware easier to use
e Manages shared hardware resources

Applications

Operating System

September 8, 2016 EECS 482 — Lecture 2 2

OS Abstractions

Process File system Virtual memory
CPU Disk RAM

September 8, 2016 EECS 482 — Lecture 2

Upcoming Schedule

e This lecture starts a class segment that covers
processes, threads, and synchronization

+ Perhaps the most important in this class
+ Basis for Projects 1 and 2

September 8, 2016 EECS 482 — Lecture 2

Managing Concurrency

e Recall: Source of OS complexity
+ Multiple users, programs, |/O devices, etc.
+ Originally for efficient use of H/W, but useful even now

e How to manage this complexity?
+ Divide and conquer
+ Modularity and abstraction

September 8, 2016 EECS 482 — Lecture 2

The Process

e The process is the OS abstraction for execution
+ Also sometimes called a job or a task

e Recall: For each area of OS, ask
+ What interface does hardware provide?

appltapp2+app3
CPU + memory

+ What interface does OS provide?
appl app?2 app3

CPU 4+ memory CPU 4+ memory CPU + memory

September 8, 2016 EECS 482 — Lecture 2 6

What is a process

e A process is a running program
+ Programs are static entities with potential for execution

e A process is like a play being acted out
+ A program is the script of the play

September 8, 2016 EECS 482 — Lecture 2 7

Process Components

e A process, named using its process ID (PID),
contains all the state for a running program

4 N
+ Set of threads (active)

» a sequence of executing instructions from a program | | Execution

» analogy: acting done by an actor

/
a ’ N
+ An address space (passive)
» the memory used by the program as it runs Memory
» analogy: all the objects on the stage

- /

September 8, 2016 EECS 482 — Lecture 2 8

Process Address Space

e What's in the address space?

cross- | » The code and input data for the executing program
thread — » The memory allocated by the executing program
state : :
_ » Open files, network connections, etc.
— » An execution stack encapsulating the state of procedure calls
Pe:::tr:ai » The program counter (PC) indicating the next instruction
__» A set of general-purpose registers with current values

September 8, 2016 EECS 482 — Lecture 2 9

Process Address Space

Stack (T1)

A

Thread 1

Thread 2

Data

Segment

Y

Stack (T2)

Stack (T3)

<— Thread 3

Heap

Static Data

PC (T2)

September 8, 2016

Y

Code

<— PC (T3)

< PC (T1)

EECS 482 — Lecture 2

10

Review of Stack Frames

A(int tmp) {
B(tmp) ;
}

B(int wval) {
C(val, val + 2);
A(val — 1);

}

C(int foo, int bar) {

int v = bar - foo;

September 8, 2016 EECS 482 — Lecture 2

A(tmp =1)

11

Review of Stack Frames

A(int tmp) {
B(tmp) ;
}

A(tmp =1)

B(int wval) {
C(val, val + 2);
A(val — 1);

}

C(int foo, int bar) {

int v = bar - foo;

September 8, 2016 EECS 482 — Lecture 2

B(val = 1)

12

Review of Stack Frames

A(int tmp) {

B (tmp) ;
\ A(tmp = 1)
B(int wval) { B(val = 1)
C(val, val + 2);
A(val — 1);
} C(foo = 1, bar = 3)

C(int foo, int bar) {

int v = bar - foo;

September 8, 2016 EECS 482 — Lecture 2 13

Review of Stack Frames

A(int tmp) {
B(tmp) ;
}

A(tmp =1)

B(int wval) {
C(val, val + 2);
A(val — 1);

}

C(int foo, int bar) {

int v = bar - foo;

September 8, 2016 EECS 482 — Lecture 2

B(val = 1)

14

Review of Stack Frames

A(int tmp) {

B(tmp) ;
\ A(tmp = 1)
B(int wval) { B(val = 1)
C(val, val + 2);
A(val — 1);
| A(tmp = 0)

C(int foo, int bar) {

int v = bar - foo;

September 8, 2016 EECS 482 — Lecture 2 15

Multiple Threads

e Can have several threads in a single address space
+ Sometimes they interact
+ Sometimes they work independently
+ Analogy: multiple roles being acted out

e What does a thread need to execute?
+ Stack (and SP)
« PC
+ Code specific to the thread

e \What does a thread need to communicate with
other threads”?
+ Data segment

September 8, 2016 EECS 482 — Lecture 2 16

Upcoming Topics

e Threads: unit of concurrency

+ How multiple threads can cooperate to accomplish a
single task? (Project 1)

+ How multiple threads can share limited number of CPUs?
(Project 2)

e Address spaces: unit of state partitioning

+ How multiple address spaces can share a single physical
memory efficiently, flexibly, and safely? (Project 3)

September 8, 2016 EECS 482 — Lecture 2 17

Announcements

e First discussion section on Friday
+ Bring your laptop

e Sign up for GitHub and

+ Must do by discussion section on Friday

o Started putting together a project group?

September 8, 2016 EECS 482 — Lecture 2

18

Big Mushy Happy Lump, Sarah Andersen

Selfies

Tak‘mc} a selfie at eye level

T“k"“ﬂ a selfie ot s‘u)kﬂy

above eye level

September 8, 2016

EECS 482 — Lecture 2

Send them to

19

Why do we need threads?

o Example: Web server
+ Receives multiple simultaneous requests
+ Reads web pages from disk to satisfy each request

September 8, 2016 EECS 482 — Lecture 2 20

Option 1: Handle one request
at a time

e Example execution schedule (single CPU):

Request 1 arrives

Server receives request 1
Server starts disk I/O 1a time
Request 2 arrives

Server waits for I/0 1a to finish

\4

e Easy to program, but slow

+ Why slow?

+ Can’t overlap disk requests with computation, or with
network receives

September 8, 2016 EECS 482 — Lecture 2 21

Option 2: Event-driven web
server (asynchronous 1/0)

e Issue I/Os, but don’t wait for them to complete
(single CPU)
Request 1 arrives
Server receives request 1 time
Server starts disk I/O 1a to satisfy request 1
Request 2 arrives v
Server receives request 2
Server starts disk I/O 2a to satisfy request 2

Request 3 arrives

Disk I/O 1a finishes

Web server must remember
What requests are being served, and what stage they’re in
What disk I/Os are outstanding (and which requests they belong to)

Lots of extra state!

Multi-threaded web server

e One thread per request (single CPU)
+ Thread issues disk (or n/w) 1/O, then waits for it to finish
+ Though thread is blocked on |/O, other threads can run

+ Where is the state of each request stored?

Thread 1 Thread 2 Thread 3
Request 1 arrives
Receive request 1
Start disk I/0 1a
Request 2 arrives
Receive request 2
Start disk 1/0 2a
Request 3 arrives
Receive request 3

Disk I/O 1a finishes
4 Continue handling request 1

September 8, 2016 EECS 482 — Lecture 2 23

Benefits of Threads

e Thread manager takes care of CPU sharing

+ Other threads can progress when one thread issues
blocking 1/Os

+ Private state for each thread

e Applications get a simpler programming model
+ The illusion of a dedicated CPU per thread

September 8, 2016 EECS 482 — Lecture 2

24

When are threads useful?

e Multiple things happening at once
e Usually some slow resource

e Examples:
+ Network server
+ Controlling a physical system (e.g., airplane
controller)
+ Window system

September 8, 2016 EECS 482 — Lecture 2

25

Ideal Scenario

e Split computation into threads

e Threads run independently of each other

« Divide and conquer works best if divided parts are
iIndependent

Is independence of threads practically possible?

September 8, 2016 EECS 482 — Lecture 2 26

Dependence bhetween threads

e Example 1: Microsoft Word
+ One thread formats document
+ Another thread spell checks document

e Example 2: Desktop computer
+ One thread plays World of Warcraft
+ Another thread compiles EECS 482 project

e Two types of sharing: app resource or H/W

September 8, 2016 EECS 482 — Lecture 2 27

Concurrency vs. Parallelism

e Concurrency

+ A way to reason about your program (code) as a
collection of communicating threads

+ EXxecution is not guarantees to be simultaneous
+ Could run on a single CPU

e Parallelism

+ A model of program execution
+ Execution happens simultaneously

September 8, 2016 EECS 482 — Lecture 2

28

Concurrency vs. Parallelism

e Concurrency with single CPU

Thread 1 (CPU 1) Thread 2 (CPU 1) ,
Functions
ltime f10) ~ execute
... one after
12() the other

e Concurrency with 2 CPUs -> Parallelism is

possible

i, Thread1(CPU 1) Thread 2 (CPU 2) £ nctions

simultaneously

September 8, 2016 EECS 482 — Lecture 2 29

Cooperating threads

e How can multiple threads cooperate on a single task?
+ Example: Ticketmaster's webserver

+ Assume each thread has a dedicated processor (multiple
CPUs)

e The main problem:
+ Ordering of events across threads is non-deterministic
+ Speed of each processor is unpredictable

Thread A
Thread B
Thread C

e Consequences:
+ Many possible global ordering of events
+ Some may produce incorrect results

September 8, 2016 EECS 482 — Lecture 2 30

Non-deterministic ordering -
Non-deterministic results

e Printing example Thread 1 Thread 2
Print ABC Print 123

+ Possible outputs?

» 20 outputs: ABC123, AB1C23, AB12C3, AB123C,
A1BC23, A12BC3, A123BC, 1ABC23, 1A2BC3, ...

+ Impossible outputs?
» ABC321

e Ordering within thread is sequential, but many

ways to merge per-thread order into a global order
e What's being shared between these threads?

September 8, 2016 EECS 482 — Lecture 2 31

Non-deterministic ordering -
Non-deterministic results

e Arithmetic example (y is initially 10) (=os s yoye2

+ What's being shared between these threads?
+ Possible results?

» If Aruns first: x =11 and y = 20

» If B runs first: x =21 and y = 20

o Another example (x is initially 0) ~ Thread A Thread B

September 8, 2016

EECS 482 — Lecture 2

X++

+ Possible results? x=1 X = -1
»Xx=1or-1

+ Impossible results? Thread A Thread B
»X=0 x=0 X =0

X=--

32

Atomic operations

e Atomic operations
+ Indivisible, i.e., happens in its entirety or not at all
+ No events from other threads can occur in between

e Print example:
+ What if each print statement were atomic?
+ What if printing a single character were not atomic?

e Most computers
+ Memory load and store are atomic (e.g., mov on x86)
+ Many other instructions are not atomic
» Example: double-precision floating point

+ Need a low-level atomic operation (test-and-set) to build a
high-level atomic operation (lock)

September 8, 2016 EECS 482 — Lecture 2 33

Example

Thread A Thread B

1=0 1=0

while (i1i<10) { while (1> -10) {
i++ 1--

} }

print “A finished” print “B finished”

Which thread will finish first?

Is the winner (one that reaches the end of the loop first) guaranteed to
print first?

Is it guaranteed that someone will win?

Say both threads run at exactly the same speed, and start close together
+ Is it guaranteed that both threads will loop forever?

Non-deterministic interleaving makes debugging challenging
+ Heisenbug: a bug that occurs non-deterministically

September 8, 2016 EECS 482 — Lecture 2 34

Baris Kasikci

