
EECS 482
Introduction to Operating

Systems

Winter 2018

Baris Kasikci

Slides by: Harsha V. Madhyastha

Multiple updates and
reliability

● File system must ensure reliability/durability

• Okay to lose data in address space

• Data in file system must survive system crashes and

power outages

● Challenge: Crashes in midst of multi-step updates

● Example: Transfer $100 from Baris’s account to

Tia’s account

1. Deduct $100 from Baris

2. Add $100 to Tia

● What happens on crash between steps 1 and 2?

• Inconsistency

March 19, 2018

Multiple updates and
reliability

● Example: Move file to new directory
1. Delete file from old directory
2. Add file to new directory

● Example: Create new (empty) file
1. Update directory to point to new file header
2. Write new file header to disk

How to fix these problems?

March 19, 2018

Maintaining free disk blocks
● Option 1:

1. Write new file header to disk
2. Update directory to point to new file header
3. Write the new free map

● Option 2:
1. Write new file header to disk
2. Write the new free map
3. Update directory to point to new file header

● What about bank account example?
March 19, 2018

The bank transfer problem
● Transfer $100 from Baris’s account to Tia’s

account
● Option 1:

1. Deduct $100 from Baris
2. Add $100 to Tia

● Option 2:
1. Add $100 to Tia
2. Deduct $100 from Baris

March 19, 2018

Does this sound familiar?
● Similar to preempting a thread in the middle of

a critical section
• Both allow other events to see shared variables in

an inconsistent state

● Can I just acquire a lock?

March 19, 2018

Atomicity

● Threads: need atomic unit of execution

● Storage: need atomic unit of storage update

● Is this even possible?

March 19, 2018

Transactions
● Commonly used in databases: ACID property
● Main aspect for file systems: atomicity and

durability (all or nothing)
begin

write disk
write disk
write disk

end (this “commits” the transaction)

● Atomic operation provided by hardware: write
a single sector to disk

● How to make a sequence of updates atomic?

March 19, 2018

Recap: Multiple updates and
reliability

● Many file system operations need multiple disk I/Os
• Example: Move file to new directory

1. Delete file from old directory
2. Add file to new directory

• Must protect consistency from failures in between
● Careful ordering of I/Os can help in simple cases
● Transactions: Atomic sequence of updates

• Build upon atomic hardware operation of reading from or
writing to a sector

March 19, 2018

Implementing transactions
with shadowing

● Keep two versions of file system (old and new)
● Store persistent pointer to the current version
● Write updates to new version
● Switch pointer to new version to commit

• Atomically

● Principle: Series of changes can be committed
with a single-sector write

• Indirection shrinks the size of the write

March 19, 2018

Optimizing shadowing

● Sector can store more
than just a 1-bit pointer

● Example: move notes
from /482/f15/ to
/482/f16/

/ inode

/ data

482 inode

f15 inode f16 inode

notes inode

March 19, 2018

Optimizing shadowing
/ inode

/ data

482 inode

f15 inode f16 inode

notes inode

March 19, 2018

Implementing transactions
with logging

● Write-ahead logging
• Write updates to append-only log before

applying updates to file system
• Write commit sector to end of log to commit

the set of changes
● Eventually, copy new data from log to

the in-place version of the file system

● Again, update committed by single
sector write

March 19, 2018

Implementing transactions
with logging

● System crash before writing commit record?

● System crash after writing commit record, but
before copying changes to in-place version?

● System crash while replaying log?

● Most recent file systems use logging for
atomic updates to file system metadata

• Called “journaling”
• Why not atomic updates to data?

March 19, 2018

