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Multiple updates and 
reliability

● File system must ensure reliability/durability

• Okay to lose data in address space

• Data in file system must survive system crashes and 

power outages

● Challenge: Crashes in midst of multi-step updates 

● Example: Transfer $100 from Baris’s account to 

Tia’s account

1. Deduct $100 from Baris

2. Add $100 to Tia

● What happens on crash between steps 1 and 2?

• Inconsistency
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Multiple updates and 
reliability

● Example: Move file to new directory
1. Delete file from old directory
2. Add file to new directory

● Example: Create new (empty) file
1. Update directory to point to new file header
2. Write new file header to disk

How to fix these problems?
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Maintaining free disk blocks
● Option 1:

1. Write new file header to disk
2. Update directory to point to new file header
3. Write the new free map

● Option 2:
1. Write new file header to disk
2. Write the new free map
3. Update directory to point to new file header

● What about bank account example?
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The bank transfer problem
● Transfer $100 from Baris’s account to Tia’s 

account
● Option 1:

1. Deduct $100 from Baris
2. Add $100 to Tia

● Option 2:
1. Add $100 to Tia
2. Deduct $100 from Baris
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Does this sound familiar?
● Similar to preempting a thread in the middle of 

a critical section
• Both allow other events to see shared variables in 

an inconsistent state

● Can I just acquire a lock?
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Atomicity

● Threads: need atomic unit of execution

● Storage: need atomic unit of storage update

● Is this even possible?
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Transactions
● Commonly used in databases: ACID property
● Main aspect for file systems: atomicity and 

durability (all or nothing)
begin

write disk
write disk
write disk

end (this “commits” the transaction)

● Atomic operation provided by hardware: write 
a single sector to disk

● How to make a sequence of updates atomic?
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Recap: Multiple updates and 
reliability

● Many file system operations need multiple disk I/Os
• Example: Move file to new directory

1. Delete file from old directory
2. Add file to new directory

• Must protect consistency from failures in between
● Careful ordering of I/Os can help in simple cases
● Transactions: Atomic sequence of updates

• Build upon atomic hardware operation of reading from or 
writing to a sector
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Implementing transactions 
with shadowing

● Keep two versions of file system (old and new)
● Store persistent pointer to the current version
● Write updates to new version
● Switch pointer to new version to commit

• Atomically

● Principle: Series of changes can be committed 
with a single-sector write

• Indirection shrinks the size of the write

March 19, 2018



Optimizing shadowing

● Sector can store more 
than just a 1-bit pointer

● Example: move notes
from /482/f15/ to 
/482/f16/

/ inode

/ data

482 inode

f15 inode f16 inode

notes inode
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Optimizing shadowing
/ inode

/ data

482 inode

f15 inode f16 inode

notes inode
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Implementing transactions 
with logging

● Write-ahead logging
• Write updates to append-only log before

applying updates to file system
• Write commit sector to end of log to commit 

the set of changes
● Eventually, copy new data from log to 

the in-place version of the file system

● Again, update committed by single 
sector write
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Implementing transactions 
with logging

● System crash before writing commit record?

● System crash after writing commit record, but 
before copying changes to in-place version?

● System crash while replaying log?

● Most recent file systems use logging for 
atomic updates to file system metadata

• Called “journaling”
• Why not atomic updates to data?
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