EECS 482 Introduction to Operating Systems

Winter 2018

Baris Kasikci

Slides by: Harsha V. Madhyastha

Naming and directories

- How to specify file to be accessed?
 - · File name, click on icon, or describe contents
- File name is usually hierarchical
 - · E.g., /home/barisk/482/notes
 - · Allows users to group related files into one folder
 - · Allows easy searching, e.g., "Is /home/barisk/482"
- Must translate file name to disk block # of header
 - · What data structure to use to store mapping?
 - A hash table?
 - » Doesn't naturally represent directories
 - Tree of directories

March 14, 2018

Directories

- Directory: mapping information for a set of files
 - Name of file \rightarrow file header's disk block # for that file
 - Often a simple array of (name, file header's disk block #) entries
- Directories are stored on disk
- Directories and files are largely equivalent
 - Same storage structure
 - Directory entry can point to file or directory
- Any differences between files and directories?
 - User files are relevant to the user, OS files to the OS

Example: /home/barisk/482/notes

1.	Read file header for / (root directory)	
	 Contains pointers to data blocks of / directory 	
2.	Read data blocks of /	
	 Contains list of the files and directories in /. For each entry, contains mapping from name -> header's disk block # 	
	 One of those entries is "home" 	
3.	Read file header for /home Eliminated by	
4.	Read data blocks for /home caching file he	ader
5.	Read file header for /home/barisk for current working director	
6.	Read data blocks for /home/ barisk	Jiy
7.	Read file header for /home/ barisk /482	
8.	Read data blocks for /home/ barisk /482	
9.	Read file header for /home/ barisk /482/notes	
10.	Read first data block for /home/ barisk /482/notes	

Unified view of multiple storage devices

- Combine multiple storage devices into a file system
 - · Each device contains own file system (starting with its root)
 - A directory entry can point to the root of a different device
- Example: loginlinux.engin.umich.edu

/ (root)

bin (same device as /)
etc (same device as /)
tmp (separate storage device)
afs (network storage "device")

Directory now can map name to 1) file, 2) directory,
 or 3) device
 March 14, 2018

File caching

- File systems store lots of data structures on disk
 - · Data blocks
 - · Directories
 - File headers (inodes) and indirect blocks
 - Free lists
- How to improve performance?
 - Data layout to minimize seeking overhead
 - · Cache data in memory
- Should the file cache be in kernel's virtual address space or in physical memory?
 - Either is fine, but if virtual, pin it

March 14, 2018

File cache vs. Virtual memory

- Both use physical memory as a cache for disk
 - · Virtual memory: Use disk for increased capacity
 - File systems: Use memory for faster performance
- File cache and virtual memory compete for physical memory
 - · Local vs. global replacement
 - Why have two mechanisms that both cache disk data in memory?

Memory-mapped files

- Use the paging system to cache both virtual address space and disk
 - Map file into a virtual address space
 - Point the backing store for that part of the address space at the file's data blocks
- Example: How to load a program executable from disk to memory?

File cache design

- Normal design issues for caches
 - · e.g., cache size, block size, replacement policy
- How to keep copies on disk and in memory consistent with each other?
- Two options:
 - · Write through
 - · Write back
- Pros and cons?
- What guarantees does your Project 3 give?

Project 3 due in a week

- When we said "defer work"...
- Assert! Assert! Assert!
 - E.g. that page table is consistent with software page table
- Test multi-process cases
 - · E.g. ./myrandomtest.sh

» Find a random test_* file and run it

Project 4

- Secure, multi-threaded network file server
 - Network programming, file systems, client-server systems, and security protocols
 - Experience writing significant concurrent program
- Start soon (3x LoC as projects 2 and 3)
 - Due Apr. 14th (final on April 23rd)

Multiple updates and reliability

- File system must ensure reliability/durability
 - · Okay to lose data in address space
 - Data in file system must survive system crashes and power outages
- Challenge: Crashes in midst of multi-step updates
- Example: Transfer \$100 from Baris's account to Tia's account
 - 1. Deduct \$100 from Baris
 - 2. Add \$100 to Tia
- What happens on crash between steps 1 and 2?