EECS 482
Introduction to Operating
Systems

Winter 2018

Harsha V. Madhyastha



Recap: Paging

e Both address spaces and physical memory
broken up into fixed size pages

Physical Memory
Address Space

Page 1

Page 2

Page 3

Page N

\

March 7, 2018 EECS 482 — Lecture 16



Recap: Paging

e Virtual address to physical address translation
using page table

Virtual page # | Physical page # | Protection
0 105 RX
1 15 R
2 283 RW
3 invalid
invalid
1048575 invalid

e Can manipulate protection bits to maintain other
bits (resident, referenced, dirty) in OS

March 7, 2018 EECS 482 — Lecture 16 3



Recap: Page Replacement

e Not all virtual pages can be in physical mem.

o Steady state: Evict a page to make another
page resident
+ Use reference bit to identify pages to evict
+ Use dirty bit to identify need for write-back

March 7, 2018 EECS 482 — Lecture 16



Recap: Process creation

e System calls to start a process:
1. Fork() creates a copy of current process

2.  Exec(program, args) replaces current address
space with specified program

e How to optimize execution of fork?

March 7, 2018 EECS 482 — Lecture 16



Processes sharing memory

e How to divide phys. memory among processes?
+ Goals: fairness versus efficiency

e Global replacement
+ Can evict pages from faulting process or any other

e Local replacement
+ Can evict pages only from faulting process
+ Must determine how many frames each process gets

e Pros and cons?

March 7, 2018 EECS 482 — Lecture 16 6



Thrashing

e What happens if many large processes all actively
use their entire address space?

e Performance degrades rapidly as miss rate goes up
+ Avg access time = hit rate * hit time + miss rate * miss time
+ E.g., hittime = .0001 ms; miss time = 10 ms
» Average access time (100% hit rate) = .0001 ms
» Average access time (1% miss rate) = .100099 ms
» Average access time (10% miss rate) = 1.00090 ms

March 7, 2018 EECS 482 — Lecture 16 7



Solutions to Thrashing

e Buy more DRAM

+ Very common solution in cloud servers
+ Price per GB fallen by 4x since 2009

e Run fewer processes for longer time slices
+ Reduces page faults
+ But, poor interactivity due to long time slices

March 7, 2018 EECS 482 — Lecture 16



Working set

e Thrashing depends on portion of address
space actively used by each process

+ What do we mean by “actively using™?

e Working set = all pages used in last T seconds
+ Larger working set =» need more memory

e Sum of all working sets should fit in memory
+ Only run subset of processes that fit in memory

e How to measure size of working set?

March 7, 2018 EECS 482 — Lecture 16 9



Project 3

e Hope you have a state machine for swap-
backed pages by now?7??

e Things to consider:
+ Transitions?
+ Properties that capture state of a page?
+ Protection bits?

e Don’t translate state machine into if-else cases!
e Think ahead in designing data structures

March 7, 2018 EECS 482 — Lecture 16 10



Project 3: App vs. 0OS

e Protection
+ All pages can be read from and written to
+ Using R/W bits to track reference, dirty, etc.

e Sharing
+ File-backed pages
+ Copy-on-write

March 7, 2018 EECS 482 — Lecture 16

11



CPU scheduling

e If >1 thread is ready, choose which to run

e Many possible scheduling policies
+ Goal today is to explore fundamental ones
+ Real schedulers often a complex mix of policies

March 7, 2018 EECS 482 — Lecture 16

12



Scheduling: Goals

e What are good goals for a CPU scheduler?
+ Minimize average response time
+ Maximize throughput
+ Fairness

e "Minimize latency” at odds with “maximize tput’

March 7, 2018 EECS 482 — Lecture 16

13



Throughput-response curves

350

300¢

N
Ul
o

Median Latency (ms)

0 1000 2000 3000 4000 5000 6000 7000
Requests per minute

e Collected from Facebook production service [Chow ‘16]
+ Each colored line: throughput vs. latency at different quality
+ Left of graph — adding load - little effect on response time
+ Right of graph — adding load - exponential increase in latency

March 7, 2018 EECS 482 — Lecture 16 14



Load testing

March 7, 2018

HOW DO THEY KNOW THE
LOAD LIMIT ON BRIDGES,

THEY WEIGH THE
LAST TRICK AND
REBUILD THE BRIDGE.

THEY DRIE BIGGER AND
BIGSER TRUCKS QOVER THE
BRIDGE UNTIL \T BREAKS.

EECS 482 — Lecture 16

15



Fairness

e Share CPU among threads in equitable manner

e How to share between 1 big and 1 small job?
+ Response time proportional to job size?
+ Or equal time for each job?

e Fairness often conflicts with response time

March 7, 2018 EECS 482 — Lecture 16 16



Starvation = extremely unfair

e Starvation can be outcome of synchronization

e Starvation can also be outcome of scheduling

March 7, 2018 EECS 482 — Lecture 16 17



First-come, first-served (FCFS)

e FIFO ordering among jobs

e NO preemption (no timer interrupts)
+ Thread runs until it calls yield() or blocks

March 7, 2018 EECS 482 — Lecture 16 18



FCFS Example

e JOb A: Arrives at t=0, takes 100 seconds
e JoOb B: Arrives at t=0+, takes 1 second

n —>

March 7, 2018 EECS 482 — Lecture 16

101

19



FCFS Summary

e Pros:
+ Simple to implement

e Cons:

March 7, 2018 EECS 482 — Lecture 16

20



Round Robin

e Improve average response time for short jobs

e Add preemptions (via timer interrupts)
+ Fixed time slice (time quantum)
+ Preempt if still running when time slice is over

March 7, 2018 EECS 482 — Lecture 16

21



Round Robin Example

e JOb A: Arrives at t=0, takes 100 seconds
e JoOb B: Arrives at t=0+, takes 1 second

0 101

March 7, 2018 EECS 482 — Lecture 16

22



Choosing a time slice

e What's the problem with a big time slice?

e What's the problem with a small time slice?

e OS typically compromises: e.g., Tms or 10ms

March 7, 2018 EECS 482 — Lecture 16

23



Round Robin Summary

e Pros:
+ Still pretty simple
+ Good for interactive computing

e Cons?

e Comparison: Does RR always reduce average
response time vs. FCFS?

March 7, 2018 EECS 482 — Lecture 16

24



Round Robin vs. FCFS

March 7, 2018 EECS 482 — Lecture 16

25



STCF

e Shortest time to completion first

¢ Run job with least work to do
+ Preempt current job if shorter job arrives
+ Job size is time to next blocking operation

e Finish short jobs first
+ Improves response time of short jobs (by a lot)
+ Hurts response time of long jobs (by a little)

e STCF gives optimal average response time

March 7, 2018 EECS 482 — Lecture 16

26



Analysis of STCF

A

e Consider 2 jobs: A longer than B

March 7, 2018

EECS 482 — Lecture 16

27



STCF

o Pro:
+ Optimal average response time

e CoOns?

March 7, 2018 EECS 482 — Lecture 16

28



Predicting job run times

e Ask the job or the user?

e OS schedulers often identify interactive apps
and boost their priority

March 7, 2018 EECS 482 — Lecture 16

29



Priority

e Priority
+ Assign external priority to each job

+ Run high-priority jobs before low-priority ones

+ Use, e.g., round-robin for jobs of equal priority
+ Prone to starvation

e Methods for preventing starvation?

March 7, 2018 EECS 482 — Lecture 16

30



Multimedia: Soft real-time

e Examples:
+ Audio should not skip when compiling projects
+ Predictable: video player plays n frames per sec

e Can reserve a share of the CPU
« X% of the CPU over some time interval
+ Unused CPU split among remaining jobs

March 7, 2018 EECS 482 — Lecture 16

31



Hard real-time scheduling

e Jobs have to complete before deadline
+ Demand / deadline known in advance
+ Example: vehicle control, aviation, etc.

e Earliest-deadline first (EDF)
+ Always run jobs whose deadline is soonest

+ Preempt if newly arriving job has earlier deadline
+ Always succeeds if schedule is feasible

+ But, may be very poor if schedule is infeasible

March 7, 2018 EECS 482 — Lecture 16 32



Scheduling: Summary

e Many different policies
+ FCFS
+ Round robin
+ STCF
+ Priority
+ Proportional share
+ EDF

e Scheduling strategy in grocery stores?

e OS schedulers mix all of these
+ Many heuristics and complex tuning

March 7, 2018 EECS 482 — Lecture 16



Next time ...

o File systems

March 7, 2018

EECS 482 — Lecture 16

34



