
EECS 482
Introduction to Operating 

Systems

Winter 2018

Harsha V. Madhyastha



Recap: Paging
● Both address spaces and physical memory 

broken up into fixed size pages

March 7, 2018 EECS 482 – Lecture 16 2

Address Space

Page 1

Page 2

Page 3

Page N

Physical Memory



Recap: Paging
● Virtual address to physical address translation 

using page table

● Can manipulate protection bits to maintain other 
bits (resident, referenced, dirty) in OS

March 7, 2018 EECS 482 – Lecture 16 3

Virtual page # Physical page # Protection
0 105 RX
1 15 R
2 283 RW
3 invalid
... invalid
1048575 invalid



Recap: Page Replacement

● Not all virtual pages can be in physical mem.

● Steady state: Evict a page to make another 
page resident
◆ Use reference bit to identify pages to evict
◆ Use dirty bit to identify need for write-back

March 7, 2018 EECS 482 – Lecture 16 4



Recap: Process creation
● System calls to start a process:

1. Fork() creates a copy of current process
2. Exec(program, args) replaces current address 

space with specified program

● How to optimize execution of fork?

March 7, 2018 EECS 482 – Lecture 16 5



Processes sharing memory
● How to divide phys. memory among processes?

◆ Goals: fairness versus efficiency

● Global replacement
◆ Can evict pages from faulting process or any other

● Local replacement
◆ Can evict pages only from faulting process
◆ Must determine how many frames each process gets

● Pros and cons?

March 7, 2018 EECS 482 – Lecture 16 6



Thrashing
● What happens if many large processes all actively 

use their entire address space?

● Performance degrades rapidly as miss rate goes up
◆ Avg access time = hit rate * hit time + miss rate * miss time
◆ E.g., hit time = .0001 ms; miss time = 10 ms

» Average access time (100% hit rate) = .0001 ms
» Average access time (1% miss rate) = .100099 ms
» Average access time (10% miss rate) = 1.00090 ms

March 7, 2018 EECS 482 – Lecture 16 7



Solutions to Thrashing
● Buy more DRAM

◆ Very common solution in cloud servers
◆ Price per GB fallen by 4x since 2009

● Run fewer processes for longer time slices
◆ Reduces page faults
◆ But, poor interactivity due to long time slices

March 7, 2018 EECS 482 – Lecture 16 8



Working set
● Thrashing depends on portion of address 

space actively used by each process
◆ What do we mean by “actively using”?

● Working set = all pages used in last T seconds
◆ Larger working set è need more memory

● Sum of all working sets should fit in memory
◆ Only run subset of processes that fit in memory

● How to measure size of working set?

March 7, 2018 EECS 482 – Lecture 16 9



Project 3
● Hope you have a state machine for swap-

backed pages by now???

● Things to consider:
◆ Transitions?
◆ Properties that capture state of a page?
◆ Protection bits?

● Don’t translate state machine into if-else cases!
● Think ahead in designing data structures

March 7, 2018 EECS 482 – Lecture 16 10



Project 3: App vs. OS

● Protection
◆ All pages can be read from and written to
◆ Using R/W bits to track reference, dirty, etc.

● Sharing
◆ File-backed pages
◆ Copy-on-write

March 7, 2018 EECS 482 – Lecture 16 11



CPU scheduling

● If >1 thread is ready, choose which to run

● Many possible scheduling policies
◆ Goal today is to explore fundamental ones
◆ Real schedulers often a complex mix of policies

March 7, 2018 EECS 482 – Lecture 16 12



Scheduling: Goals

● What are good goals for a CPU scheduler?
◆ Minimize average response time
◆ Maximize throughput 
◆ Fairness

● “Minimize latency” at odds with “maximize tput”

March 7, 2018 EECS 482 – Lecture 16 13



Throughput-response curves

● Collected from Facebook production service [Chow ‘16]
◆ Each colored line: throughput vs. latency at different quality
◆ Left of graph – adding load à little effect on response time
◆ Right of graph – adding load à exponential increase in latency

March 7, 2018 EECS 482 – Lecture 16 14



Load testing

March 7, 2018 EECS 482 – Lecture 16 15



Fairness

● Share CPU among threads in equitable manner

● How to share between 1 big and 1 small job?
◆ Response time proportional to job size?
◆ Or equal time for each job?

● Fairness often conflicts with response time

March 7, 2018 EECS 482 – Lecture 16 16



Starvation = extremely unfair

● Starvation can be outcome of synchronization

● Starvation can also be outcome of scheduling

March 7, 2018 EECS 482 – Lecture 16 17



First-come, first-served (FCFS)

● FIFO ordering among jobs

● No preemption (no timer interrupts)
◆ Thread runs until it calls yield() or blocks

March 7, 2018 EECS 482 – Lecture 16 18



FCFS Example
● Job A: Arrives at t=0, takes 100 seconds
● Job B: Arrives at t=0+, takes 1 second

March 7, 2018 EECS 482 – Lecture 16 19

t = 0 101



FCFS Summary

● Pros:
◆ Simple to implement

● Cons:

March 7, 2018 EECS 482 – Lecture 16 20



Round Robin

● Improve average response time for short jobs

● Add preemptions (via timer interrupts)
◆ Fixed time slice (time quantum)
◆ Preempt if still running when time slice is over

March 7, 2018 EECS 482 – Lecture 16 21



Round Robin Example
● Job A: Arrives at t=0, takes 100 seconds
● Job B: Arrives at t=0+, takes 1 second

March 7, 2018 EECS 482 – Lecture 16 22

t = 0 101



Choosing a time slice

● What’s the problem with a big time slice?

● What’s the problem with a small time slice?

● OS typically compromises: e.g., 1ms or 10ms

March 7, 2018 EECS 482 – Lecture 16 23



Round Robin Summary
● Pros: 

◆ Still pretty simple
◆ Good for interactive computing

● Cons?

● Comparison: Does RR always reduce average 
response time vs. FCFS?

March 7, 2018 EECS 482 – Lecture 16 24



Round Robin vs. FCFS

March 7, 2018 EECS 482 – Lecture 16 25



STCF
● Shortest time to completion first

● Run job with least work to do
◆ Preempt current job if shorter job arrives
◆ Job size is time to next blocking operation

● Finish short jobs first
◆ Improves response time of short jobs (by a lot)
◆ Hurts response time of long jobs (by a little)

● STCF gives optimal average response time

March 7, 2018 EECS 482 – Lecture 16 26



Analysis of STCF

● Consider 2 jobs: A longer than B

March 7, 2018 EECS 482 – Lecture 16 27

A B

AB



STCF
● Pro: 

◆ Optimal average response time

● Cons?

March 7, 2018 EECS 482 – Lecture 16 28



Predicting job run times
● Ask the job or the user?

● OS schedulers often identify interactive apps 
and boost their priority

March 7, 2018 EECS 482 – Lecture 16 29



Priority
● Priority

◆ Assign external priority to each job
◆ Run high-priority jobs before low-priority ones
◆ Use, e.g., round-robin for jobs of equal priority
◆ Prone to starvation

● Methods for preventing starvation?

March 7, 2018 EECS 482 – Lecture 16 30



Multimedia: Soft real-time

● Examples:
◆ Audio should not skip when compiling projects
◆ Predictable: video player plays n frames per sec

● Can reserve a share of the CPU
◆ X% of the CPU over some time interval
◆ Unused CPU split among remaining jobs

March 7, 2018 EECS 482 – Lecture 16 31



Hard real-time scheduling
● Jobs have to complete before deadline

◆ Demand / deadline known in advance
◆ Example: vehicle control, aviation, etc.

● Earliest-deadline first (EDF)
◆ Always run jobs whose deadline is soonest
◆ Preempt if newly arriving job has earlier deadline
◆ Always succeeds if schedule is feasible
◆ But, may be very poor if schedule is infeasible

March 7, 2018 EECS 482 – Lecture 16 32



Scheduling: Summary
● Many different policies

◆ FCFS
◆ Round robin
◆ STCF
◆ Priority
◆ Proportional share
◆ EDF

● Scheduling strategy in grocery stores?
● OS schedulers mix all of these

◆ Many heuristics and complex tuning
March 7, 2018 EECS 482 – Lecture 16 33



Next time …

● File systems

March 7, 2018 EECS 482 – Lecture 16 34


