EECS 482
Introduction to Operating
Systems

Winter 2018

Baris Kasikci

Slides by: Harsha V. Madhyastha

Page table contents

Written by OS/MMU
Written by OS, Read by MMU Read by OS

A
[A \ |

: : Read/Write :
Physical page # | Resident enabled Dirty | Referenced

February 21, 2018 EECS 482 — Lecture 18

Page table contents

Written by OS, Read by MMU

\

Physical page #

read_enabled

write_enabled

February 21, 2018

EECS 482 — Lecture 18

Address Space Management

e How to manage a process’'s accesses to its
address space”?

. Kernel sets up page table per process and
manages which pages are resident

. MMU looks up page table to translate any virtual
address to a physical memory address

e \What about kernel’s address space?

¢ How does MMU handle kernel's loads and
stores?

February 21, 2018 EECS 482 — Lecture 18

Storing Page Tables

e WO options:
1. In physical memory
2. In kernel’s virtual address space

e Difference: Is PTBR a physical or virtual addr?

e Pros and cons of option 27
. Can page out user page tables
. Kernel page table must be kept in physical memory

e Project 3 uses option 2
. Kernel’'s address space managed by infrastructure

February 21, 2018 EECS 482 — Lecture 18

Kernel vs. user address spaces

e Can you evict the kernel’s virtual pages?
. Yes, except code for handling paging in/out

e How can kernel access specific physical
memory addresses (e.g., to refer to translation
data)?

. Kernel can issue untranslated address (bypass MMU)

. Kernel can map physical memory into a portion of its
virtual address space (vm_physmem in Project 3)

February 21, 2018 EECS 482 — Lecture 18 6

How does kernel access
user’s address space?

e Kernel can manually translate a user virtual address to a
physical address, then access the physical address

e Can map kernel address space into every process’s
address space

fffff
operating system

80000
Tffff

user process

00000

Trap to kernel doesn’t change address spaces; it just enables
access both OS and user parts of that address space

February 21, 2018 EECS 482 — Lecture 18 7

Kernel vs. user mode

e How are we protecting a process’s address
space from other processes?

e Must ensure that only kernel can modify

tranclatinn AAata

In what mode does a root user’s process run?

How can a root user reboot the machine?

e Recap of protection:
. Address space - Translation data - Mode bit

February 21, 2018 EECS 482 — Lecture 18

Switching from user process
into kernel

e Faults and interrupts
. Timer interrupts
. Page faults
. Why are these safe to transfer control to kernel?

e System calls
. Process management: fork/exec
. 1/0O: open, close, read, write
. System management: reboot

February 21, 2018 EECS 482 — Lecture 18

System calls

e When you call cin in your C++ program:

. cin calls read (), which executes assembly-
language instruction syscall

syscall traps to kernel at pre-specified location
. kernel's syscall handler calls kernel’s read ()

e [0 handle trap to kernel, hardware atomically
. Sets mode bit to kernel
. Saves registers, PC, SP
. Changes SP to kernel stack
. Changes to kernel's address space
. Jumps to exception handler

February 21, 2018 EECS 482 — Lecture 18

10

Arguments to system calls

e WO options:
. Store in registers
. Store in memory (in whose address space?)

e Kernel must check validity of arguments

- €.0., read(int fd, void *buf, size t size)

February 21, 2018 EECS 482 — Lecture 18 1

Protection summary

e Safe to switch from user to kernel mode because
control only transferred to certain locations

. Where are these locations stored?
» Interrupt vector table

¢ \Who can modify interrupt vector table?

e Why is it easier to control access to interrupt
vector table than mode bit?

February 21, 2018 EECS 482 — Lecture 18 12

Address Space Protection

e How are address spaces protected?
. Separation of translation data

e How is translation data protected?
. Can update translation data only if mode bit set

e How is mode bit protected?

. Sets/reset mode bit when transitioning from user-
level to kernel-level code and back

. Transitions limited by interrupt vector table

e Protection boils down to init process which sets
up interrupt vector table when system boots up

February 21, 2018 EECS 482 — Lecture 18 13

Project 3

e Memory management using paging
. Due March 21st

e By the end of this lecture, we will cover all the
material you need to know to do the project

e Begin drawing a state machine for a virtual
page first
. Focus on swap-backed pages first (before file-
backed pages)

e Avoid doing unnecessary work

February 21, 2018 EECS 482 — Lecture 18

14

Project 3

e Incremental development critical
. Swap-backed pages with a single process
. File-backed pages
. Fork

e Minimum amount of functionality to test
. vm_init
. vm_create (with parent process unknown)
.- vm_map (with filename == NULL)
. Getting this combination right = 21/75

February 21, 2018 EECS 482 — Lecture 18 15

Process creation

o (N :|:&}::
. () -> define a function called :

. {:]:&} ->the function sends its output to
the : function again and runs that in the
background.

., Is the command separator
.. runs the function the first time

February 21, 2018 EECS 482 — Lecture 18

16

Unix process creation

e System calls to start a process:
1. Fork() creates a copy of current process

2. Exec(program, args) replaces current address space
with specified program

e Why first copy and then overwrite?
Linux: Share code, file descriptors, etc

. Windows: CreateProcess(program, args) uses a
different mode of creating from scratch

e Any problems with child being an exact clone of
parent?

February 21, 2018 EECS 482 — Lecture 18 17

Cloning

OK HOBBES, | ARE Y0J SNRE
PRESS THE | TWIS (S SUTH
BUTTON AND | A GOOD IDEA?

February 21, 2018

BROTHER ! You DOUBTING
THOMASES GET IN THE WAY
OF MORE SCIENTVFIC AD-
VANCES WITH YOUR STuPID
ETHICAL GUESTIONS! TWIS
\S A BRILLANT 10EA' HI\T
THE BUTTON, WL YA?

AP0 Urewerin Mo Symacae

D UATE TO BE ACCUSED OF
INHIBITING SCENTIFIC
HERE 1OV GO

SCENTIFIC
PROGRESS
GOES "BOINK™?

s)

T WORKED!
I'M A GENWS!

P

IT WORKED '

NO YOU'Re
NOT, You
LIAR! I
INVENTED

™S K
y

EECS 482 — Lecture 18

18

Unix process creation

e Fork uses return code to differentiate
. Child gets return code O
. Parent gets child’s unique process id (pid)

If (fork() ==0) {

exec (); /[* child */
} else {

[* parent */

February 21, 2018 EECS 482 — Lecture 18 19

Subtleties in handling fork

e Buggy code from autograder:
if (!'fork()) {
exec (command) ;
}
while (child is alive) {
1f (size of child address space > max) {

print "process took too much
memory”;

kill child;

break;

)
e What is the bug here?

February 21, 2018 EECS 482 — Lecture 18 20

Avoiding work on fork

e Copying entire address space is expensive

e Instead, Unix uses copy-on-write

. Assign reference count to each physical page

. On fork(), copy only the page table of parent
» Increment reference count by one

. On store by parent or child to page with refcnt > 1:
» Make a copy of the page with refcnt of one
» Modify PTE of modifier to point to new page
» Decrement reference count of old page

February 21, 2018 EECS 482 — Lecture 18 21

Copy-on-write: Example

Parent page table Physical pages

0x00000001 (Refcnt: 1)
0x00000002

0x00000003

(Refcnt: 1)

(Refcnt: 1)

Parent about to fork()

February 21, 2018 EECS 482 — Lecture 18

22

Copy-on-write: Example

Parent page table Physical pages Child page table
0x00000001 (Refent: 2) | 0x00000001
0x00000002 0x00000002
0x00000003 0x00000003

(Refent: 2) |
(Refcnt: 2) |

Copy-on-write of parent address space

February 21, 2018 EECS 482 — Lecture 18 23

Copy-on-write: Example

Parent page table Physical pages Child page table

0x00000001 (Refcent: 2) | 0x00000001
0x00000002 0x00000002
0x00000003 0x00000003

(Refcnt: 1) /

(Refcnt: 2) |

(Refcnt: 1)

Child modifies 2" virtual page

February 21, 2018 EECS 482 — Lecture 18 24

Copy-on-write: Example

Parent page table Physical pages Child page table

0x00000001 (Refcent: 2) | 0x00000001
0x00000002 0x00000002

0x00000003 0x00000003
(Refcnt: 1) /
(Refcnt: 2) |
(Refcnt: 1)

Parent modifies 2"9 virtual page

February 21, 2018 EECS 482 — Lecture 18 25

Copy-on-write: Example

February 21, 2018

Physical pages
(Refent: 1) |

(Refcnt: 1) |

(Refcnt: 1)

Parent exits

EECS 482 — Lecture 18

Child page table

0x00000001
0x00000002
0x00000003

26

Implementing a shell

while (1) {

print prompt

ask user for input (cin)

parse input //split into command and args

fork a copy of current process (the shell prog.)

if (child) {
redirect output to a file/pipe, if requested
exec new program with arguments

} else { //parent
walt for child to finish, or

run child in the background and ask for
another command

}

February 21, 2018 EECS 482 — Lecture 18 27

e Go to the lab section on Friday for a run down
of project 3

e Have a good spring break

February 21, 2018 EECS 482 — Lecture 18

28

