
EECS 482
Introduction to Operating

Systems

Winter 2018

Baris Kasikci

Slides by: Harsha V. Madhyastha

Page table contents

February 21, 2018 EECS 482 – Lecture 18 2

Physical page # Resident Read/Write
enabled Dirty Referenced

Written by OS, Read by MMU
Written by OS/MMU

Read by OS

Page table contents

February 21, 2018 EECS 482 – Lecture 18 3

Physical page # read_enabled write_enabled

Written by OS, Read by MMU

Address Space Management
● How to manage a process’s accesses to its

address space?
• Kernel sets up page table per process and

manages which pages are resident
• MMU looks up page table to translate any virtual

address to a physical memory address

● What about kernel’s address space?
● How does MMU handle kernel’s loads and

stores?
February 21, 2018 EECS 482 – Lecture 18 4

Storing Page Tables
● Two options:

1. In physical memory
2. In kernel’s virtual address space

● Difference: Is PTBR a physical or virtual addr?
● Pros and cons of option 2?

• Can page out user page tables
• Kernel page table must be kept in physical memory

● Project 3 uses option 2
• Kernel’s address space managed by infrastructure

February 21, 2018 EECS 482 – Lecture 18 5

Kernel vs. user address spaces
● Can you evict the kernel’s virtual pages?

• Yes, except code for handling paging in/out

● How can kernel access specific physical
memory addresses (e.g., to refer to translation
data)?

• Kernel can issue untranslated address (bypass MMU)
• Kernel can map physical memory into a portion of its

virtual address space (vm_physmem in Project 3)

February 21, 2018 EECS 482 – Lecture 18 6

How does kernel access
user’s address space?
● Kernel can manually translate a user virtual address to a

physical address, then access the physical address

● Can map kernel address space into every process’s
address space

• Trap to kernel doesn’t change address spaces; it just enables
access both OS and user parts of that address space

February 21, 2018 EECS 482 – Lecture 18 7

fffff
.
.
.
80000

operating system

7ffff
.
.
.
00000

user process

Kernel vs. user mode
● How are we protecting a process’s address

space from other processes?
● Must ensure that only kernel can modify

translation data
● How does CPU know kernel is running?

• Hardware support: Mode bit

● Recap of protection:
• Address space à Translation data à Mode bit

February 21, 2018 EECS 482 – Lecture 18 8

In what mode does a root user’s process run?

How can a root user reboot the machine?

Switching from user process
into kernel

● Faults and interrupts
• Timer interrupts
• Page faults
• Why are these safe to transfer control to kernel?

● System calls
• Process management: fork/exec
• I/O: open, close, read, write
• System management: reboot
• …

February 21, 2018 EECS 482 – Lecture 18 9

System calls
● When you call cin in your C++ program:

• cin calls read(), which executes assembly-
language instruction syscall

• syscall traps to kernel at pre-specified location
• kernel’s syscall handler calls kernel’s read()

● To handle trap to kernel, hardware atomically
• Sets mode bit to kernel
• Saves registers, PC, SP
• Changes SP to kernel stack
• Changes to kernel’s address space
• Jumps to exception handler

February 21, 2018 EECS 482 – Lecture 18 10

Arguments to system calls
● Two options:

• Store in registers
• Store in memory (in whose address space?)

● Kernel must check validity of arguments
• e.g., read(int fd, void *buf, size_t size)

February 21, 2018 EECS 482 – Lecture 18 11

Protection summary
● Safe to switch from user to kernel mode because

control only transferred to certain locations
• Where are these locations stored?

» Interrupt vector table

● Who can modify interrupt vector table?

● Why is it easier to control access to interrupt
vector table than mode bit?

February 21, 2018 EECS 482 – Lecture 18 12

Address Space Protection
● How are address spaces protected?

• Separation of translation data
● How is translation data protected?

• Can update translation data only if mode bit set
● How is mode bit protected?

• Sets/reset mode bit when transitioning from user-
level to kernel-level code and back

• Transitions limited by interrupt vector table
● Protection boils down to init process which sets

up interrupt vector table when system boots up
February 21, 2018 EECS 482 – Lecture 18 13

Project 3
● Memory management using paging

• Due March 21st

● By the end of this lecture, we will cover all the
material you need to know to do the project

● Begin drawing a state machine for a virtual
page first

• Focus on swap-backed pages first (before file-
backed pages)

● Avoid doing unnecessary work

February 21, 2018 EECS 482 – Lecture 18 14

Project 3
● Incremental development critical

• Swap-backed pages with a single process
• File-backed pages
• Fork

● Minimum amount of functionality to test
• vm_init
• vm_create (with parent process unknown)
• vm_map (with filename == NULL)
• Getting this combination right = 21/75

February 21, 2018 EECS 482 – Lecture 18 15

Process creation
● :(){ :|:&};:

• : () -> define a function called :
• { :|:&} -> the function sends its output to

the : function again and runs that in the
background.

• ; is the command separator
• : runs the function the first time

February 21, 2018 EECS 482 – Lecture 18 16

Unix process creation
● System calls to start a process:

1. Fork() creates a copy of current process
2. Exec(program, args) replaces current address space

with specified program

● Why first copy and then overwrite?
• Linux: Share code, file descriptors, etc
• Windows: CreateProcess(program, args) uses a

different mode of creating from scratch

● Any problems with child being an exact clone of
parent?

February 21, 2018 EECS 482 – Lecture 18 17

Cloning

February 21, 2018 EECS 482 – Lecture 18 18

Unix process creation
● Fork uses return code to differentiate

• Child gets return code 0
• Parent gets child’s unique process id (pid)

If (fork() == 0) {
exec (); /* child */

} else {
/* parent */

}

February 21, 2018 EECS 482 – Lecture 18 19

Subtleties in handling fork
● Buggy code from autograder:

if (!fork()) {
exec(command);

}
while(child is alive) {

if (size of child address space > max) {
print "process took too much

memory”;
kill child;
break;

}
}

● What is the bug here?
February 21, 2018 EECS 482 – Lecture 18 20

Avoiding work on fork
● Copying entire address space is expensive
● Instead, Unix uses copy-on-write

• Assign reference count to each physical page
• On fork(), copy only the page table of parent

» Increment reference count by one
• On store by parent or child to page with refcnt > 1:

» Make a copy of the page with refcnt of one
» Modify PTE of modifier to point to new page
» Decrement reference count of old page

February 21, 2018 EECS 482 – Lecture 18 21

Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 1)

Physical pages

(Refcnt: 1)

(Refcnt: 1)

Parent about to fork()
February 21, 2018 EECS 482 – Lecture 18 22

Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 2)

Physical pages

(Refcnt: 2)

(Refcnt: 2)

Copy-on-write of parent address space

0x00000001
0x00000002
0x00000003

Child page table

February 21, 2018 EECS 482 – Lecture 18 23

Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 2)

Physical pages

(Refcnt: 1)

(Refcnt: 2)

Child modifies 2nd virtual page

0x00000001
0x00000002
0x00000003

Child page table

(Refcnt: 1)

February 21, 2018 EECS 482 – Lecture 18 24

Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 2)

Physical pages

(Refcnt: 1)

(Refcnt: 2)

Parent modifies 2nd virtual page

0x00000001
0x00000002
0x00000003

Child page table

(Refcnt: 1)

February 21, 2018 EECS 482 – Lecture 18 25

Copy-on-write: Example

(Refcnt: 1)

Physical pages

(Refcnt: 1)

Parent exits

0x00000001
0x00000002
0x00000003

Child page table

(Refcnt: 1)

February 21, 2018 EECS 482 – Lecture 18 26

Implementing a shell
while (1) {

print prompt
ask user for input (cin)
parse input //split into command and args
fork a copy of current process (the shell prog.)
if (child) {

redirect output to a file/pipe, if requested
exec new program with arguments

} else { //parent
wait for child to finish, or
run child in the background and ask for

another command
}

}
February 21, 2018 EECS 482 – Lecture 18 27

● Go to the lab section on Friday for a run down
of project 3

● Have a good spring break

February 21, 2018 EECS 482 – Lecture 18 28

