
EECS 482
Introduction to Operating 

Systems

Fall 2018

Baris Kasikci

Slides by: Harsha V. Madhyastha



Base and bounds
● Load each process into contiguous region of 

physical memory
• Prevent process from accessing data outside its region
• Base register: starting physical address
• Bound register: size of region

physical
memory

base + bound

base

0

bound
virtual

memory

0

February 12, 2018 EECS 482 – Lecture 12 2



Base and bounds
● Pros?

• Fast
• Simple hardware support

● Cons?
• Virtual address space limited by physical memory
• No controlled sharing
• External fragmentation

February 12, 2018 EECS 482 – Lecture 12 3



Base and bounds
● Can’t share part of an address space between 

processes

physical
memory

data (P2)

data (P1)

code

virtual
address
space 1

data

code

virtual
address
space 2

data

code

February 12, 2018 EECS 482 – Lecture 12 4



External fragmentation
● Processes come and go, leaving a mishmash 

of available memory regions
• Wasted memory between allocated regions

P2

P3

P1

P4

February 12, 2018 EECS 482 – Lecture 12 5

P5



Growing address space

How can stack and heap grow independently?

February 12, 2018 EECS 482 – Lecture 12 6

physical
memory

base + bound

base

0

bound
virtual

memory

0

Stack
Heap



Segmentation
● Divide address space into segments

● Segment: region of memory contiguous in both 
physical memory and in virtual address space

• Multiple segments of memory with different base and 
bounds.

February 12, 2018 EECS 482 – Lecture 12 7



Segmentation
physical
memory

46ff

4000
code

2fff

2000

stack

4ff
0 data

virtual
memory 

segment 3

fff

0

stack

virtual
memory 

segment 1
4ff
0 data

virtual
memory 

segment 0
6ff

0
code

EECS 482 – Lecture 12 8February 12, 2018



Segmentation

● Virtual address is of the form: (segment #, offset)
• Physical address = base for segment + offset

● Many ways to specify the segment #
• High bits of address
• Special register
• Implicit to instruction opcode

February 12, 2018 EECS 482 – Lecture 12 9

Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
2 n/a n/a unused
3 2000 1000 stack segment



Segmentation

● Physical address for virtual address (3, 100)?
• 2100

● Physical address for virtual address (0, ff)?
• 40ff

● Physical address for virtual address (2, ff)?
● Physical address for virtual address (1, 2000)?

February 12, 2018 EECS 482 – Lecture 12 10

Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
2 n/a n/a unused
3 2000 1000 stack segment



Segmentation
● Not all virtual addresses are valid

• Valid à region is part of process’s address space
• Invalid à virtual address is illegal to access

» Accessing an invalid virtual address causes a 
trap to OS (usually resulting in core dump)

● Reasons for virtual address being invalid?
• Invalid segment number
• Offset within valid segment beyond bound

February 12, 2018 EECS 482 – Lecture 12 11



Segmentation
● How to grow a segment?

● Different segments can have different protection
• E.g., code is usually read only (allows fetch, load)
• E.g., data is usually read/write (allows fetch, load, store)
• Fine-grained protection in base and bounds?

● What must be changed on a context switch?

February 12, 2018 EECS 482 – Lecture 12 12



Benefits of Segmentation
● Multiple areas of address space can grow 

separately
● Easy to share part of address space

February 12, 2018 EECS 482 – Lecture 12 13

Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
3 2000 1000 stack segment

Segment # Base Bounds Description
0 4000 700 code segment
1 1000 300 data segment
3 500 1000 stack segment

Process 1

Process 2



Drawbacks of Segmentation
● Have we eliminated external fragmentation?

● Can an address space be larger than physical 
memory?

● How can we:
• Make memory allocation easy
• Not have to worry about external fragmentation
• Allow address space size to be > physical memory

February 12, 2018 EECS 482 – Lecture 12 14



Project 2
● Due in 6 days

• Check calendar on web page for extra office hours

● For every thread, think about “where is the 
current context?”

● Think about memory leaks and how to test if 
they exist

● Think about why your thread library may cause 
a program to run for longer than correct library

February 12, 2018 EECS 482 – Lecture 12 15



Drawbacks of Segmentation
● Have we eliminated external fragmentation?

● Can an address space be larger than physical 
memory?

● How can we:
• Make memory allocation easy
• Not have to worry about external fragmentation
• Allow address space size to be > physical memory

February 12, 2018 EECS 482 – Lecture 12 16



Drawbacks of Segmentation

October 19, 2017 EECS 482 – Lecture 13 17



Paging
● Allocate physical memory in fixed-size units 

(pages)
• Any free physical page can store any virtual page

October 19, 2017 EECS 482 – Lecture 13 18



Paging
● Virtual address is split into

• Virtual page # (high bits of address, e.g., bits 31-12)
• Offset (low bits of address, e.g., bits 11-0, for 4 KB page 

size)

October 19, 2017 EECS 482 – Lecture 13 19

Address Space

Page 1

Page 2

Page 3

Page N

Physical Memory



Paging
● Translation data is the page table

● Why no column for bound?
● How do I check whether offset is within bound?
● One entry per virtual page à Lots of entries!

October 19, 2017 EECS 482 – Lecture 13 20

Virtual page # Physical page #
0 105
1 15
2 283
3 invalid
... invalid
1048575 invalid



October 19, 2017 EECS 482 – Lecture 13 21

Page Lookups

Page frame

Page number Offset
Virtual Address

Page Table
Page frame Offset

Physical Address

Physical Memory



Paging
● Translating virtual address to physical address
if (virtual page is invalid) {

trap to OS fault handler
} else {

physical page # = pageTable[virtual page #].physPageNum
}

● What must be changed on a context switch?
• Page table (but can be large)
• Use indirection: Page Table Base Register

» Points to physmem address of page table 

October 19, 2017 EECS 482 – Lecture 13 22



Paging out
● Each virtual page can be in physical memory or 

“paged out” to disk
● How does processor know that a virtual page is not in 

physical memory?

October 12, 2017 EECS 482 – Lecture 12 23

Virt. page # Phys. page # resident
0 105 1

1 15 0

2 283 1

3 invalid

… invalid
if (virtual page is invalid or non-resident) {

trap to OS fault handler; retry
} else {

physical page # = pageTable[virtual page #].physPageNum
}



Paging
● Like segments, pages can have different 

protections (e.g., read, write, execute)

if (virtual page is invalid or non-resident or protected) {
trap to OS fault handler; retry

} else {
physical page # = pageTable[virtual page #].physPageNum

}

October 12, 2017 EECS 482 – Lecture 12 24

Virt. page # Phys. page # resident protected
0 105 1 0

1 15 0 0

2 283 1 1

3 invalid

… invalid



Valid versus resident
● Valid à virtual page is legal for process to access
● Resident à virtual page is in physical memory
● Error to access invalid page, but not to access 

non-resident page

● Who makes a virtual page resident/non-resident?
● Who makes a virtual page valid/invalid?
● Why would a process want one of its virtual 

pages to be invalid?

October 12, 2017 EECS 482 – Lecture 12 25



Picking Page Size
● What happens if page size is really small?
● What happens if page size is really big?

● Typically a compromise, e.g., 4 KB or 8 KB
• Some architectures support multiple page sizes

October 19, 2017 EECS 482 – Lecture 13 26

What must be changed on a context switch?



October 19, 2017 EECS 482 – Lecture 13 27

Growing Address Space

Stack

Code

Heap

Virtual page # Physical page #
0 105
1 15
2 283
3 invalid
... invalid
1048572 invalid
1048573 1078
1048574 48136
1048575 60

How is this better than base and bounds?



Paging
● Pros?

• Flexible memory allocation/growing address space
• Virtual memory
• No external fragmentation
• Flexible sharing

● Cons?
• Large page tables

● How to modify paging to reduce space needed for 
translation data?

October 19, 2017 EECS 482 – Lecture 13 28



Multi-level Paging
● Standard page table is a simple array
● Multi-level paging generalizes this into a tree

● Example: Two-level page table with 4KB pages
• Index into level 1 page table: virtual address bits 31-22
• Index into level 2 page table: virtual address bits 21-12
• Page offset: bits 11-0

October 19, 2017 EECS 482 – Lecture 13 29



Multi-level Paging

How does this let translation data take less space?
October 19, 2017 EECS 482 – Lecture 13 30

level 1
page table 0 1 2 3

virtual 
address
bits 21-
12

physical 
page #

0 10
1 15
2 20
3 2

level 2
page tables

virtual 
address
bits 21-
12

physical 
page #

0 30
1 4
2 8
3 3



October 19, 2017 EECS 482 – Lecture 13 31

Sparse Address Space

Stack

Code

Heap

Virtual page # Physical page #
0 105
1 15
2 283
3 invalid
... invalid
1048572 invalid
1048573 1078
1048574 48136
1048575 60



Sparse Address Space

October 19, 2017 EECS 482 – Lecture 13 32

Bits 21-12 Physical page #
0 105
1 15
2 283
3 invalid
... invalid

Bits 31-22 Physical page #
0 389
1 invalid
2 invalid
… invalid
1021 invalid
1022 invalid
1023 7046

Bits 21-12 Physical page #
... invalid
1020 invalid
1021 1078
1022 48136
1023 60



Multi-level paging
● How to share memory between address spaces?

● What must be changed on a context switch?

● Pros:
• Easy memory allocation
• Flexible sharing
• Space efficient for sparse address spaces

● Cons?
• Two extra lookups per memory reference

October 19, 2017 EECS 482 – Lecture 13 33



Translation lookaside buffer
● TLB caches virtual page # to PTE mapping

• Cache hit à Skip all the translation steps
• Cache miss à Get PTE, store in TLB, restart 

instruction

● Does this change what happens on a context 
switch?

October 19, 2017 EECS 482 – Lecture 13 34


