
EECS 482
Introduction to 

Operating Systems

Winter 2018

Baris	Kasikci
barisk@umich.edu

(Thanks,	Harsha	Madhyastha for	the	slides!)

January	3,	2018 EECS	482	– Lecture	1 1



About	Me

•Prof.	Kasikci	(Prof.	K.),	Prof.	Baris	(Prof.	Barish)
•Assistant	Professor
• Joined	Michigan	in	Fall’17
• PhD	from	EPFL
• Previously,	researcher	at	Microsoft	Research
• Previously,	an	embedded	systems	developer

• Interests:	system	reliability,	security,	performance
• Employ	a	mix	of	methods	from	Operating	Systems,	Programming	
Languages,	Software	Engineering,	Computer	Architecture

EECS	482	– Lecture	1January	3,	2018 2



About	You

•Please	take	a	selfie	an	send	me	now	to	
barisk@umich.edu
•Please	contact	eecs482@umich.edu if	you	need	
special	arrangement	for	any	disabilities
•Come	talk	to	me
• BBB	4816,	my	door	is	always	open
• Anytime	about	career,	life,	any	difficulties	you	are	facing,	hard	
decisions,	etc.
• During	office	hours	about	482

January	3,	2018 EECS	482	– Lecture	1 3



EECS	482	Staff

• Instructors
•GSIs	&	IAs

January	3,	2018 EECS	482	– Lecture	1 4



Agenda	for	Today

•Why	do	we	need	482?

•Course	syllabus	and	logistics

•Why	do	we	need	an	OS	and	what	does	it	do?

•How	did	OSes	evolve	to	what	we	have	today?

EECS	482	– Lecture	1January	3,	2018 5



Neurons	to	silicon?

Ideas

High-Level	Code

Machine	Instructions

Processors

Gates

EECS	280,	281	(programming)

EECS	483	(compilers)

EECS	370	(comp.	organization)

EECS	270	(digital	design)

EECS	482	– Lecture	1January	3,	2018 6



What	is	missing?

•Bootstrapping:
• How	does	a	computer	start	when	you	turn	it	on?
• How	to	get	a	program	into	memory	and	have	the	CPU	start	executing	it?

•Concurrent	execution	with	I/O:
• How	to	read	keyboard	or	mouse?	Print	output	to	screen?
• How	to	run	multiple	programs	at	the	same	time,	without	one	breaking	
the	other?

•Persistence	and	security:
• How	to	save	your	data	when	you	turn	the	computer	off?
• How	to	prevent	other	users	from	accessing	your	data?
• How	can	multiple	users	use	the	same	computer	securely?

EECS	482	– Lecture	1January	3,	2018 7



What	is	missing?

•Bootstrapping:
• How	does	a	computer	start	when	you	turn	it	on?
• How	to	get	a	program	into	memory	and	have	the	CPU	start	executing	it?

•Concurrent	execution	with	I/O:
• How	to	read	keyboard	or	mouse?	Print	output	to	screen?
• How	to	run	multiple	programs	at	the	same	time,	without	one	breaking	
the	other?

•Persistence	and	security:
• How	to	save	your	data	when	you	turn	the	computer	off?
• How	to	prevent	other	users	from	accessing	your	data?
• How	can	multiple	users	use	the	same	computer	securely?

EECS	482	– Lecture	1January	3,	2018 8

You	will	be	able	to	answer	all	these	
questions	by	the	end	of	EECS	482



Objectives	of	this	class

•We	will	understand	principles	of	concurrency
• One	paradigm:	multi-threaded	program
• Principles	apply	to	other	forms	(e.g.,	event-based)

•We	will	study	design	principles	of	an	OS
• This	course	is	not	about	specifics	of	any	particular	OS

•We	will	develop	an	understanding	of	OS	impact	on	
application	performance	and	reliability
• What	causes	your	program	to	crash	when	you	dereference	NULL?
• How	can	multithreaded	code	be	slower	than	single-threaded	code?

EECS	482	– Lecture	1January	3,	2018 9



Prerequisites

•EECS	281
•EECS	370
•Extensive	C/C++	programming	experience	(STL)
•Familiarity	with	UNIX
•Understanding	of	computer	architecture

• Stack	pointer
• Program	counter
• Low-level	execution	of	a	program
• Etc.

•Some	understanding	of	paging,	TLB,	caching

January	3,	2018 EECS	482	– Lecture	1 10



Class	Homepage	and	Tools

•Class	webpage
• http://web.eecs.umich.edu/~harshavm/eecs482/
• Syllabus,	slides,	homework,	etc.	posted	on	class	webpage
• Subscribe	to	Piazza!
• Announcements	and	class	discussion

EECS	482	– Lecture	1January	3,	2018 11



Lecture	Schedule

•CPU	(threads	and	concurrency)
•Memory	(address	spaces)
•Midterm
•Network	(sockets)
•Storage	(file	systems)
•Aggregation:	distributed	systems	and	case	studies

EECS	482	– Lecture	1January	3,	2018 12



Lectures

•2	sections
• Mostly	synchronized,	exams	will	have	a	few	different	questions

• Lecture	captured	(videos	online)

•Slides	and	lecture	notes	will	be	posted	on	the	
webpage

•Textbook	(highly	recommended):
• Anderson	and	Dahlin,	“Operating	Systems:	Principles	and	Practice”
• Additional	readings	posted	on	the	webpage

EECS	482	– Lecture	1January	3,	2018 13



Lab/Discussion	Sections

•OK	to	attend	any	discussion
• As	long	as	there	are	seats

Questions	posted	several	days	in	advance
• Do	them	before going	to	your	section
• This	prepares	you	well	for	exams
• Covers	some	background	knowledge

•No	Discussion	Sessions	This	Friday!

EECS	482	– Lecture	1January	3,	2018 14



Projects

•4	projects
• Writing	a	concurrent	program
• Thread	manager
• Virtual	memory	pager
• Multi-threaded	secure	network	file	system

•First	is	individual,	do	others	in	groups	of	2-3
• Register	your	GitHub	id	– we’ll	assign	repositories
• Declare	your	group	(by	1/22)	via	course	web	page
• Mail	eecs482@umich.edu if	taken	482	before
• Can’t	reuse	any	code	except	for	project	1.

EECS	482	– Lecture	1January	3,	2018 15



Project	recommendations

•Choose	group	members	carefully
• Check	schedule,	class	goals,	style,	etc.
• Use	Piazza	to	find	group	members

•We’ll	evaluate	every	member’s	contributions
• Peer	feedback
• git	log	and	GitHub	statistics

•Group	can	fire	one	of	its	members	(see	syllabus)

EECS	482	– Lecture	1January	3,	2018 16



Projects	are	HARD!

•Probably	the	hardest	class	you	will	take	at	UM	in	
terms	of	development	effort
• Projects	will	take	95%	of	your	time	in	this	class

•Reason	for	being	hard:	
• Not	number	of	lines	of	code!	
• Instead,	new	concepts:	threads,	interrupts,	address	spaces,	name	
spaces	etc.

EECS	482	– Lecture	1January	3,	2018 17



Project	recommendations

•Do	not	start	working	on	projects	at	last	minute!
• Projects	are	autograded	(must	be	mostly	correct)
• No.	of	hours	you	put	in	or	lines	of	code	don’t	count
• Testing	is	integral	process	of	development

•Make	good	use	of	help	available
• ~20	office	hours	per	week	(extra	hours	when	projects	are	due)
• There	will	be	long	queues
• Monitor	and	participate	in	discussion	on	Piazza
• Hints	during	lectures,	discussions	(also	in	textbook!)

EECS	482	– Lecture	1January	3,	2018 18



Policies

•Submission
• 1	submission	per	day	to	autograder	+	3	bonus
• Due	at	midnight	(hard	deadline!)
• 3	late	days	budget	across	all	projects	(if	you	hand	in	your	project	two	
days	late,	you	will	have	one	late	day	left)

•Collaboration
• Okay	to	clarify	problem	or	discuss	C++	syntax
• Not	okay	to	discuss	solutions
• Past	solutions	a	real	problem	(several	HC	cases)

EECS	482	– Lecture	1January	3,	2018 19



Exams	(Tentative!)

•Midterm:	February	21st (6:30-8:30pm)

•Final:	April	23th (7-9pm)

•No	makeup	exams
• Unless	dire	circumstances
• Make	sure	you	schedule	interviews	appropriately
• E-mail	me	(eecs482@umich.edu)	with	exceptions/conflicts

EECS	482	– Lecture	1January	3,	2018 20



Grading	breakdown

•Projects:
• Project	1:	3%
• Projects	2,	3,	and	4:	15%	each

•Mid-term:	26%
•Final:	26%

EECS	482	– Lecture	1January	3,	2018 21



Enrollment

Must	have	prerequisites	(281	&	370	or	equivalent)

Overrides
• Currently	near	cap	for	course	staffing
• Hope	many	can	enroll	due	to	normal	churn

EECS	482	– Lecture	1January	3,	2018 22



Pro	tips	for	success	in	482

•Start	early	on	projects

• Leverage	GitHub	and	communicate	with	team

•Take	advantage	of	available	help
• Go	to	office	hours,	post/monitor	questions	on	Piazza

•Attend	lectures	and	discussions
• Read	textbook,	solve	questions	before	discussion

•Ask	questions	when	something	is	unclear

EECS	482	– Lecture	1January	3,	2018 23



Why	have	an	OS?

•What	if	applications	ran	directly	on	hardware?

•Problems
• Portability
• Resource	sharing

Applications

Hardware

EECS	482	– Lecture	1January	3,	2018 24



What	is	an	OS?

•The	operating	system	is	the	software	layer	between	
user	applications	and	the	hardware

•OS	is	“all	the	code	that	you	don’t	have	to	write” to	
implement	your	application

Operating	System

Hardware

Applications
Virtual	
Machine	
Interface

Physical	
Machine	
Interface

EECS	482	– Lecture	1January	3,	2018 25



Roles	of	the	OS

• Illusionist:	Create	abstractions
• CPU	à Threads
• Memory	à Address	space

•Government:	Manage	shared	hardware	resources
• But	at	a	cost	(taxes)

•For	any	area	of	OS,	ask
• What	interface	does	hardware	present?
• What	interface	does	OS	present	to	applications?

EECS	482	– Lecture	1January	3,	2018 26



OS	and	Apps:	2	Perspectives

•Perspective	1:	application	is	main	program
• Gets	services	by	calling	kernel	(OS)
• Example:	print	this	to	the	screen

•Problems	with	this	view:
• How	does	application	start?
• How	do	tasks	occurring	outside	any	program	(e.g.	receiving	network	
packets)	get	done?
• How	do	multiple	programs	run	simultaneously	without	messing	each	
other	up?

EECS	482	– Lecture	1January	3,	2018 27



OS	and	Applications

•Perspective	2:	OS	is	main	program
• Calls	applications	as	subroutines
• Illusion:	every	app	runs	on	its	own	computer

• Lower	layer	(OS)	invokes	higher	layer	(apps)!
•App	or	processor	returns	control	to	OS
•Correct	perspective,	but	what	is	it	that	makes	the	
OS	the	“main”	program?

EECS	482	– Lecture	1January	3,	2018 28



Why	take	an	OS	class?	- 1

•Mastering	concurrency
• Performance	today	achieved	through	parallelism
• Mastery	required	to	be	a	top-notch	developer

•Understanding	what	you	use
• Understanding	the	OS	helps	you	write	better	apps
• Functionality,	performance	tuning,	simplicity,	etc.

•Universal	abstractions	and	optimizations
• Caching,	indirection,	naming,	atomicity,	protection,	…
• Examples:	Cloud	computing,	Web	services,	mobile

EECS	482	– Lecture	1January	3,	2018 29



Why	take	an	OS	class?	- 2

•Build	an	OS
•Concepts	reused	in	many	applications
• Google’s	web	server	farm
• Amazon	Web	Services	(time-shared)
• Hypervisors	(VMWare	ESX	server)
• NVDIA	device	driver

•Software	development
• Design	an	abstraction
• Make	it	efficiently	usable	by	others

•Design-related	interview	questions

January	3,	2018 EECS	482	– Lecture	1 30



History	of	operating	systems

•Single	operator	at	console

•Positives:
• Interactive
• Very	simple

•Downside:
• Poor	utilization	of	expensive	hardware

time

human	I/O	CPU	I/O	human	I/O	CPU

EECS	482	– Lecture	1January	3,	2018 31



History	of	operating	systems

•Batch	processing	(using	punchcards)
• Goal:	Improve	CPU	and	I/O	utilization	by	removing	user	interaction

•OS	is	batch	monitor	+	library	of	standard	services
•Protection	becomes	an	issue
• Why	wasn’t	this	an	issue	for	single	operator	at	console?

•Not	interactive

time
I/O		CPU		I/O		CPU		I/O		CPU

EECS	482	– Lecture	1January	3,	2018 32



January	3,	2018 EECS	482	– Lecture	1 33

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/



History	of	operating	systems

•Multi-programmed	batch
• Improve	utilization	by	overlapping	CPU	and	I/O

time

P1:		CPU			Disk			CPU			Print

P2:		Disk				CPU		Print				CPU		Print

P3:																							Disk													CPU													

EECS	482	– Lecture	1January	3,	2018 34



History	of	operating	systems

•Multi-programmed	batch
• Improve	utilization	by	overlapping	CPU	and	I/O

time

P1:		CPU			Disk			CPU			Print

P2:		Disk				CPU		Print				CPU		Print

P3:																							Disk													CPU													

OS	becomes	more	complex!
• Runs	multiple	processes	concurrently
• Enables	simultaneous	CPU	and	I/O
•Multiple	I/Os	take	place	simultaneously
• Protects	processes	from	each	other
• But,	still	not	interactive

EECS	482	– Lecture	1January	3,	2018 35



History	of	operating	systems

•Time	sharing
• Goal:	Allow	people	to	interact	with	programs	as	they	run
• Insight:	User	can	be	modeled	as	a	(very	slow)	I/O	device
• Switch	between	processes	while	waiting	for	user

time

P1:		CPU			Disk			CPU			Print

P2:		User			CPU		User			CPU		User

P3:													User Disk													CPU													

EECS	482	– Lecture	1January	3,	2018 36



History	of	operating	systems

•Time	sharing
• Goal:	Allow	people	to	interact	with	programs	as	they	run
• Insight:	User	can	be	modeled	as	a	(very	slow)	I/O	device
• Switch	between	processes	while	waiting	for	user

time

P1:		CPU			Disk			CPU			Print

P2:		User			CPU		User			CPU		User

P3:													User Disk													CPU													

EECS	482	– Lecture	1January	3,	2018 37

OS	is	now	even	more	complex
Lots	of	simultaneous	jobs
Multiple	sources	of	new	jobs	(people	can	start	new	jobs)
Interactivity	is	restored



History	of	operating	systems

•OS	started	out	very	simple
• Became	complex	to	use	hardware	efficiently

•Consider	PCs	and	workstations:
• Is	the	main	assumption	(hardware	is	expensive)	still	true?

•How	does	this	affect	OS	design?
• Don’t	PCs	need	to	time	share	between	multiple	jobs?
• Don’t	PCs	need	protection	between	multiple	jobs?

PCs	gradually	added	back	time-sharing	features

EECS	482	– Lecture	1January	3,	2018 38



What	about	today?

•Cloud	computing	(e.g.	Amazon	EC2)
• Is	hardware	expensive?
• What	other	OS	features	are	needed?

•Mobile	computing	(e.g.,	Android/iOS)
• What	drives	efficiency?
• What	OS	features	are	needed?

EECS	482	– Lecture	1January	3,	2018 39



Questions	to	Ponder

•Somewhat	surprisingly,	OSes	continue	to	evolve
• What	are	the	drivers	of	OS	change?
• New	hardware,	security,	energy

•What	is	part	of	an	OS?		What	is	not?
• Is	the	windowing	system	part	of	an	OS?
• OS	research	has	become	Dist.	Systems	research

EECS	482	– Lecture	1January	3,	2018 40

Linux	virtual	memory	system	overhaul:
https://www.theregister.co.uk/2018/01/02/intel_cpu_design_flaw/



TODOs

•Browse	the	course	web	page

•Subscribe	to	Piazza

•Register	your	GitHub	id

•Start	finding	partners	for	project	group	(Jan	22)

EECS	482	– Lecture	1January	3,	2018 41


