
EECS 482
Introduction to Operating

Systems

Winter 2018

Baris Kasikci

Slides by: Harsha V. Madhyastha

Producer-consumer with
monitors
Consumer
cokeLock.lock()

while (numCokes == 0) {
waitingCons&Prod.wait()

}

take coke out of machine
numCokes--

waitingCons&Prod.signal()

cokeLock.unlock()

January 24, 2018 EECS 482 – Lecture 5 2

Producer
cokeLock.lock()

while (numCokes == MAX) {
waitingCons&Prod.wait()

}

add coke to machine
numCokes++

waitingCons&Prod.signal()

cokeLock.unlock()

Producer-consumer with
monitors
Consumer
cokeLock.lock()
while (numCokes == 0) {

waitingCons&Prod.wait()
}
take coke out of machine
numCokes--
waitingCons&Prod.signal()
cokeLock.unlock()

January 24, 2018 EECS 482 – Lecture 5 3

Producer
cokeLock.lock()
while (numCokes == MAX) {

waitingCons&Prod.wait()
}
add coke to machine
numCokes++
waitingCons&Prod.signal()
cokeLock.unlock()

MAX = 1, numCokes = 0

consumer-2 Waiting (lock released)
consumer-1 Waiting (lock released)

producer-1 numCokes = 1 (lock held)
Signal
Wakes up consumer-1 (can’t grab lock)
Return from producer (lock released)

Time

producer-2 numCokes = 1 (lock held)
Can’t add coke (MAX =1)
Waiting (lock released)

consumer-1 numCokes = 0 (lock held)
Signal (goal is to wake up a producer)
Wakes up consumer-2
Return from consumer (lock released)

consumer-2 numCokes = 0 (lock held)
Waiting (lock released)

Both producer-2 and consumer-2 are waiting!

Producer-consumer with
monitors
Consumer
cokeLock.lock()

while (numCokes == 0) {
waitingConsumers.wait()

}

take coke out of machine
numCokes--

waitingProducers.signal()

cokeLock.unlock()

January 24, 2018 EECS 482 – Lecture 5 4

Producer
cokeLock.lock()

while (numCokes == MAX) {
waitingProducers.wait()

}

add coke to machine
numCokes++

if (numCokes == 1) {
waitingConsumers.signal()

}

cokeLock.unlock()

Producer-consumer with
monitors
Consumer
cokeLock.lock()
while (numCokes == 0) {

waitingConsumers.wait()
}
take coke out of machine
numCokes--
waitingProducers.signal()
cokeLock.unlock()

January 24, 2018 EECS 482 – Lecture 5 5

Producer
cokeLock.lock()
while (numCokes == MAX) {

waitingProducers.wait()
}
add coke to machine
numCokes++
if (numCokes == 1) {

waitingConsumers.signal()
}
cokeLock.unlock()

Time numCokes = 0

consumer-2 Waiting (lock released)

consumer-1 Waiting (lock released)

producer-1 numCokes = 1 (lock held)
Signal consumer
Return from producer (lock released)

producer-2 numCokes = 2 (lock held)
No Signal (numCokes == 1 fails)
Return from producer (lock released)

Consumers do not acquire the lock

Only one consumer will wake up

Implementing reader-writer
locks with monitors
● Shared data needed to implement readerStart,

readerFinish, writerStart, writerFinish?
• numReaders
• numWriters

● Use one lock (rwLock)
● Condition variables?

• waitingReaders: readers must wait if there are writers
• waitingWriters: writers must wait if there are readers or

writers

January 24, 2018 EECS 482 – Lecture 5 6

January 24, 2018 EECS 482 – Lecture 5 7

Implementing reader-writer
locks with monitors
readerStart () {

rwLock.lock()
while (numWriters > 0) {

waitingReaders.wait()
}
numReaders++
rwLock.unlock()

}
readerFinish() {

rwLock.lock()
numReaders--
if (numReaders == 0) {

waitingWriters.signal()
}
rwLock.unlock()

}

writerStart() {
rwLock.lock()
while (numReaders > 0 || numWriters > 0) {

waitingWriters.wait()
}
numWriters++
rwLock.unlock()

}
writerFinish() {

rwLock.lock()
numWriters--
waitingReaders.broadcast()
waitingWriters.signal()
rwLock.unlock()

}

Producer-consumer with
monitors
Consumer
cokeLock.lock()
while (numCokes == 0) {

waitingConsumers.wait()
}
take coke out of machine
numCokes--
waitingProducers.signal()
cokeLock.unlock()

January 24, 2018 EECS 482 – Lecture 5 8

Producer
cokeLock.lock()
while (numCokes == MAX) {

waitingProducers.wait()
}
add coke to machine
numCokes++
if (numCokes == 1) {

waitingConsumers.signal()
}
cokeLock.unlock()

Time numCokes = 0

consumer-2 Waiting (lock released)

consumer-1 Waiting (lock released)

producer-1 numCokes = 1 (lock held)
Signal consumer
Return from producer (lock released)

producer-2 numCokes = 2 (lock held)
No Signal (numCokes == 1 fails)
Return from producer (lock released)

Consumers do not acquire the lock

Only one consumer will wake up

January 24, 2018 EECS 482 – Lecture 5 9

Implementing reader-writer
locks with monitors
readerStart () {

rwLock.lock()
while (numWriters > 0) {

waitingReaders.wait()
}
numReaders++
rwLock.unlock()

}
readerFinish() {

rwLock.lock()
numReaders--
if (numReaders == 0) {

waitingWriters.signal()
}
rwLock.unlock()

}

writerStart() {
rwLock.lock()
while (numReaders > 0 || numWriters > 0) {

waitingWriters.wait()
}
numWriters++
rwLock.unlock()

}
writerFinish() {

rwLock.lock()
numWriters--
waitingReaders.broadcast()
waitingWriters.signal()
rwLock.unlock()

}

January 24, 2018 EECS 482 – Lecture 5 10

Implementing reader-writer
locks with monitors
readerStart () {

rwLock.lock()
while (numWriters > 0) {

waitingReaders.wait()
}
numReaders++
rwLock.unlock()

}
readerFinish() {

rwLock.lock()
if (numReaders == 1) {

waitingWriters.signal()
}
numReaders--
rwLock.unlock()

}

writerStart() {
rwLock.lock()
while (numReaders > 0 || numWriters > 0) {

waitingWriters.wait()
}
numWriters++
rwLock.unlock()

}
writerFinish() {

rwLock.lock()
numWriters--
waitingReaders.broadcast()
waitingWriters.signal()
rwLock.unlock()

}

January 24, 2018 EECS 482 – Lecture 5 11

Implementing reader-writer
locks with monitors

readerStart () {
rwLock.lock()
while (numWriters > 0) {

waitingReaders.wait()
}
numReaders++
rwLock.unlock()

}
readerFinish() {

rwLock.lock()
numReaders--
if (numReaders == 0) {

waitingWriters.signal()
}
rwLock.unlock()

}

writerStart() {
rwLock.lock()
while (numReaders > 0 || numWriters > 0) {

waitingWriters.wait()
}
numWriters++
rwLock.unlock()

}
writerFinish() {

rwLock.lock()
numWriters--
waitingReaders.broadcast()
waitingWriters.signal()
rwLock.unlock()

}

Implementing reader-writer
locks with monitors

● What will happen if a writer finishes and there
are several waiting readers and writers?

● How long will a writer wait?

● How to give priority to a waiting writer?

January 24, 2018 EECS 482 – Lecture 5 12

Recap
● Multi-threaded code must synchronize access

to shared data

● High-level synchronization primitives:
• Locks: Mutual exclusion
• Condition variables: Ordering constraints
• Monitors: Lock + condition variables

● Today: Semaphores

January 24, 2018 EECS 482 – Lecture 5 13

Semaphores
● Generalized lock/unlock
● Definition:

• A non-negative integer (initialized to user-specified value)
• down(): wait for semaphore value to become positive,

then atomically decrement semaphore value by 1
do {

if (value > 0) {
value--
break

}
} while (1)

• up(): increment semaphore value by 1

January 24, 2018 EECS 482 – Lecture 5 14

Atomic

January 24, 2018 EECS 482 – Lecture 5 15

Two types of semaphores
● Mutex semaphore (or binary semaphore)

• Represents single resource (critical section)
• Guarantees mutual exclusion

● Counting semaphore (or general semaphore)
• Represents a resource with many units (e.g. Coke

machine), or a resource that allows concurrent access
(e.g., reading)

• Multiple threads can “hold” the semaphore
» Number determined by the semaphore �count�

Benefit of Semaphores
● Mutual exclusion

• Initial value is 1
down()
critical section
up()

● Ordering constraints
• Usually, initial value is 0
• Example: thread A wants to wait for thread B to finish

January 24, 2018 EECS 482 – Lecture 5 16

Thread A
down()

continue execution

Thread B

do task
up()

Time

Implementing producer-
consumer with semaphores

● Semaphore assignments
• mutex: ensures mutual exclusion around code that

manipulates coke machine

• fullSlots: counts no. of full slots in the coke machine

• emptySlots: counts no. of empty slots in machine

● Initialization values?

January 24, 2018 EECS 482 – Lecture 5 17

January 24, 2018 EECS 482 – Lecture 5 18

producer {
// wait for empty slot
emptySlots.down();

mutex.down();
Add coke to the machine
mutex.up();

// note a full slot
fullSlots.up();

}

Implementing producer-
consumer with semaphores

consumer {
// wait for full slot
fullSlots.down();

mutex.down();
Take coke out of machine
mutex.up();

// note an empty slot
emptySlots.up();

}

Semaphore mutex = 1; // mutual exclusion to shared set of slots
Semaphore emptySlots = N; // count of empty slots (all empty to start)
Semaphore fullSlots = 0; // count of full slots (none full to start)

Implementing producer-
consumer with semaphores

● Why do we need different semaphores for fullSlots
and emptySlots?

● Does the order of down() (e.g., fullSlots, mutex)
matter?

● Does the order of up() matter?
● What if there’s 1 full slot, and multiple consumers

call down() at the same time?
● What if a context switch happens between

emptySlots.down() and mutex.down()?
● What if fullSlots.up() before mutex.down()?

January 24, 2018 EECS 482 – Lecture 5 19

Reminders
● Project 1 due on Monday

● Work through discussion questions about monitors
before the discussion section

January 24, 2018 EECS 482 – Lecture 5 20

Comparing monitors and
semaphores
● Semaphores provide 1 mechanism that can

accomplish both mutual exclusion and ordering
(monitors use different mechanisms for each)

• Elegant
• Can be difficult to use

● Monitor lock = binary semaphore (initialized to 1)
• lock() = down()
• unlock() = up()

January 24, 2018 EECS 482 – Lecture 5 21

Condition variable versus
semaphore

Condition variable Semaphore
while(!cond) {wait();} down()
Can safely handle spurious wakeups No spurious wakeups
Conditional code in user program Conditional code in semaphore

definition
User writes customized condition;
more flexible

Condition specified by semaphore
definition (wait if value == 0)

User provides shared variable;
protects with lock

Semaphore provides shared variable
(integer) and thread-safe operations
on that variable (down, up)

No memory of past signals Remembers past up calls

January 24, 2018 EECS 482 – Lecture 5 22

Condition variable versus
semaphore

Condition variable Semaphore
while(!cond) {wait();} down()
Can safely handle spurious wakeups No spurious wakeups
Conditional code in user program Conditional code in semaphore

definition
User writes customized condition;
more flexible

Condition specified by semaphore
definition (wait if value == 0)

User provides shared variable;
protects with lock

Semaphore provides shared variable
(integer) and thread-safe operations
on that variable (down, up)

No memory of past signals Remembers past up calls

January 24, 2018 EECS 482 – Lecture 5 23

T1: wait()
T2: signal()
T3: signal()
T4: wait()

T1: down()
T2: up()
T3: up()
T4: down()

Implementing custom waiting
condition with semaphores

● Semaphores work best if the shared integer and
waiting condition (value==0) map naturally to
problem domain

● How to implement custom waiting condition with
semaphores?

January 24, 2018 EECS 482 – Lecture 5 24

Producer-consumer with
monitors
Consumer
cokeLock.lock()

while (numCokes == 0) {
waitingConsumers.wait()

}

take coke out of machine
numCokes--

waitingProducers.signal()

cokeLock.unlock()

January 24, 2018 EECS 482 – Lecture 5 25

Producer
cokeLock.lock()

while (numCokes == MAX) {
waitingProducers.wait()

}

add coke to machine
numCokes++

waitingConsumers.signal()

cokeLock.unlock()

Producer-consumer with
semaphores (monitor style)
Consumer
mutex.down()
while (numCokes == 0) {

go to sleep

}
take coke out of machine
numCokes—

wake up waiting producer, if any

mutex.up()
January 24, 2018 EECS 482 – Lecture 5 26

Producer
mutex.down()
while (numCokes == MAX) {

go to sleep

}
add coke to machine
numCokes++

wake up waiting consumer, if any

mutex.up()

Producer-consumer with
semaphores (monitor style)
Consumer
mutex.down()
while (numCokes == 0) {

semaphore s = 0
waitingConsumers.push(&s)

s.down()

}
take coke out of machine
numCokes—
if (!waitingProducers.empty()) {

waitingProducers.front()->up()
waitingProducers.pop()

}
mutex.up()

January 24, 2018 EECS 482 – Lecture 5 27

Producer
mutex.down()
while (numCokes == MAX) {

semaphore s = 0
waitingProducers.push(&s)

s.down()

}
add coke to machine
numCokes++
if (!waitingConsumers.empty()) {

waitingConsumers.front()->up()
waitingConsumers.pop()

}
mutex.up()

Producer-consumer with
semaphores (monitor style)
Consumer
mutex.down()
while (numCokes == 0) {

semaphore s = 0
waitingConsumers.push(&s)
mutex.up()
s.down()
mutex.down()

}
take coke out of machine
numCokes—
if (!waitingProducers.empty()) {

waitingProducers.front()->up()
waitingProducers.pop()

}
mutex.up()

January 24, 2018 EECS 482 – Lecture 5 28

Producer
mutex.down()
while (numCokes == MAX) {

semaphore s = 0
waitingProducers.push(&s)
mutex.up()
s.down()
mutex.down()

}
add coke to machine
numCokes++
if (!waitingConsumers.empty()) {

waitingConsumers.front()->up()
waitingConsumers.pop()

}
mutex.up()

The first commandment

January 24, 2018 EECS 482 – Lecture 5 29

Would you name your kid “Kid”?
Or “KidA”? Or “MyKid”? Or “k”?

The third commandment

January 24, 2018 EECS 482 – Lecture 5 30

We gave you monitors so you
don’t have to worship the
ancient gods!

The fifth commandment

January 24, 2018 EECS 482 – Lecture 5 31

This is NOT OK:
while(true) {

mutex.lock()
if(condition) {

mutex.unlock()
break;

} else {
mutex.unlock()
sleep(200);

}
}

The sixth commandment

January 24, 2018 EECS 482 – Lecture 5 32

The seventh commandment

January 24, 2018 EECS 482 – Lecture 5 33

myAtomicFunction() {
mutex.lock()
…
…
…
…
mutex.unlock()

}

January 24, 2018 EECS 482 – Lecture 5 34

The seventh commandment

January 24, 2018 EECS 482 – Lecture 5 35

myAtomicFunction() {
mutex.lock()
…
…
…
…
mutex.unlock()

}

