EECS 482
Introduction to Operating
Systems

Winter 2018

Baris Kasikci

Slides by: Harsha V. Madhyastha

Producer-consumer with

monitors

Consumer
cokelock.lock ()

while (numCokes == 0) {
waitingConsé&Prod.wait ()

take coke out of machine

numCokes—-

waitingConsé&Prod.signal ()

cokelLock.unlock ()

January 24, 2018

Producer
cokelock.lock ()

while (numCokes == MAX) {
waitingConsé&Prod.wait ()

add coke to machine

numCokes++

waitingConsé&Prod.signal ()

cokelLock.unlock ()

EECS 482 — Lecture 5

Producer-consumer with
monitors

Consumer Time
cokeLock.lock ()
while (numCokes == 0) {

MAX =1, numCokes =0

consumer-1 — Waiting (lock released)

waitingCons&Prod.wait ()

) consumer-2 ——— Waiting (lock released)

take coke out of machine

mCoke s - producer-1 — numCokes =1 (lock held)

waitingConsé&Prod.signal () Signal

cokeLock.unlock () Wakes up consumer-1 (can’t grab lock
Return from producer (lock released)

Producer producer-2 ——> npumCokes = 1 (lock held)

cokeLock. lock () Can’t add coke (MAX =1)

while (numCokes == MAX) { Waiting (lock released)

waitingConsé&Prod.wait ()

| consumer-] ——s nhumCokes = 0 (lock held)
add coke to machine Signal (goal is to wake up a producer)
numCokes++ Wakes up consumer-2
waltingCons&Prod.signal () Return from consumer (lock released)
consumer-2 ——— numCokes =0 (lOCk held)

Waiting (lock released)

cokelock.unlock ()

" Both producer-2 and consumer-2 are waiting!
January 24, 2018 EECS 482 — Lecture 5 3

Producer-consumer with

monitors

Consumer
cokelock.lock ()

while (numCokes == 0) {

walitingConsumers.wait ()

take coke out of machine

numCokes—-

waltingProducers.signal ()

cokelLock.unlock ()

January 24, 2018

Producer

EECS 482 — Lecture 5

cokelock.lock ()
while (numCokes == MAX) {

waltingProducers.wait ()

add coke to machine

numCokes++

if (numCokes == 1) {
walitingConsumers.signal ()

cokelLock.unlock ()

Producer-consumer with
monitors

Consumer Tim
cokeLock.lock () Ime numCokes =0

while (numCokes == 0) {

waitingConsumers.wait ()

}
take coke out of machine

consumer-1 —— Waiting (lock released)

consumer-2 ——— Waiting (lock released)

numCokes—-

waitingProducers.signal ()

cokeLock.unlock () producer-1 —numCokes = 1 (lock held)
Signal consumer

Producer Return from producer (lock released)
cokelLock.lock ()
while (numCokes == MAX) { Consumers do not acquire the lock

waitingProducers.wait ()
}
add coke to machine producer-2 —>numCokes = 2 (IOCk hEld)
numCokes++ No Signal (numCokes == 1 fails)
if (numCokes == 1) {

Return from producer (lock released)

waitingConsumers.signal ()

}
cokeLock.unlock () Only one consumer will wake up

January 24, 2018 EECS 482 — Lecture 5 5

Implementing reader-writer
locks with monitors

e Shared data needed to implement readerStart,
readerFinish, writerStart, writerFinish?

. humReaders
. numW/riters

e Use one lock (rwlLock)
e Condition variables?

. waitingReaders: readers must wait if there are writers

. waitingWriters: writers must wait if there are readers or
writers

January 24, 2018 EECS 482 — Lecture 5 6

Implementing reader-writer
locks with monitors

readerStart () { writerStart() {
rwLock.lock() rwLock.lock()
while (numWriters > 0) { while (hnumReaders > 0 || numWriters > 0) {
waitingReaders.wait() waitingWriters.wait()
} }
numReaders++ numWriters++
rwLock.unlock() rwLock.unlock()
} }
readerFinish() { writerFinish() {
rwLock.lock() rwLock.lock()
numReaders-- numWriters--
if (numReaders == 0) { waitingReaders.broadcast()
waitingWriters.signal() waitingWriters.signal()
} rwLock.unlock()

rwLock.unlock() }

January 24, 2018 EECS 482 — Lecture 5 7

Producer-consumer with
monitors

Consumer Tim
cokeLock.lock () Ime numCokes =0

while (numCokes == 0) {

waitingConsumers.wait ()

}
take coke out of machine

consumer-1 —— Waiting (lock released)

consumer-2 ——— Waiting (lock released)

numCokes—-

waitingProducers.signal ()

cokeLock.unlock () producer-1 —numCokes = 1 (lock held)
Signal consumer

Producer Return from producer (lock released)
cokelLock.lock ()
while (numCokes == MAX) { Consumers do not acquire the lock

waitingProducers.wait ()
}
add coke to machine producer-2 —>numCokes = 2 (IOCk hEld)
numCokes++ No Signal (numCokes == 1 fails)
if (numCokes == 1) {

Return from producer (lock released)

waitingConsumers.signal ()

}
cokeLock.unlock () Only one consumer will wake up

January 24, 2018 EECS 482 — Lecture 5 8

Implementing reader-writer
locks with monitors

readerStart () { writerStart() {
rwLock.lock() rwLock.lock()
while (numWriters > 0) { while (hnumReaders > 0 || numWriters > 0) {
waitingReaders.wait() waitingWriters.wait()
} }
numReaders++ numWriters++
rwLock.unlock() rwLock.unlock()
} }
readerFinish() { writerFinish() {
rwLock.lock() rwLock.lock()
numReaders-- numWriters--
if (numReaders == 0) { waitingReaders.broadcast()
waitingWriters.signal() waitingWriters.signal()
} rwLock.unlock()

rwLock.unlock() }

January 24, 2018 EECS 482 — Lecture 5 9

Implementing reader-writer
locks with monitors

readerStart () {

}

rwLock.lock()

while (numWriters > 0) {
waitingReaders.wait()

}

numReaders++

rwLock.unlock()

readerFinish() {

}

rwLock.lock()

if (hnumReaders == 1) {
waitingWriters.signal()

}

numReaders--

rwLock.unlock()

January 24, 2018

writerStart() {
rwLock.lock()
while (hnumReaders > 0 || numWriters > 0) {

waitingWriters.wait()

}
numWriters++
rwLock.unlock()

}

writerFinish() {
rwLock.lock()
numWriters--
waitingReaders.broadcast()
waitingWriters.signal()
rwLock.unlock()

EECS 482 — Lecture 5 10

Implementing reader-writer
locks with monitors

readerStart () {

}

rwlLock.lock()

while (numWriters > 0) {
waitingReaders.wait()

}

numReaders++

rwLock.unlock()

readerFinish() {

}

rwlLock.lock()

numReaders--

if (humReaders == 0) {
waitingWriters.signal()

}

rwLock.unlock()

January 24, 2018

writerStart() {
rwLock.lock()
while (hnumReaders > 0 || numWriters > 0) {
waitingWriters.wait()
}
numWriters++
rwLock.unlock()
}
writerFinish() {
rwLock.lock()
numWriters--
waitingReaders.broadcast()
waitingWriters.signal()
rwLock.unlock()

EECS 482 — Lecture 5 1

Implementing reader-writer
locks with monitors

o What will happen if a writer finishes and there
are several waiting readers and writers?

e How long will a writer wait?

e How to give priority to a waiting writer?

January 24, 2018 EECS 482 — Lecture 5

12

Recap

e Multi-threaded code must synchronize access
to shared data

e High-level synchronization primitives:
. Locks: Mutual exclusion
. Condition variables: Ordering constraints
. Monitors: Lock + condition variables

e Today: Semaphores

January 24, 2018 EECS 482 — Lecture 5 13

Semaphores

e Generalized lock/unlock

e Definition:
. A non-negative integer (initialized to user-specified value)

down(): wait for semaphore value to become positive,
then atomically decrement semaphore value by 1

do {
1f (value > 0) { _
Atomic
value—-
break
}
} while (1)

up(): increment semaphore value by 1

January 24, 2018 EECS 482 — Lecture 5 14

Two types of semaphores

e Mutex semaphore (or binary semaphore)
. Represents single resource (critical section)
. Guarantees mutual exclusion

e Counting semaphore (or general semaphore)

. Represents a resource with many units (e.g. Coke
machine), or a resource that allows concurrent access

(e.g., reading)
. Multiple threads can “hold” the semaphore
» Number determined by the semaphore “count”

January 24, 2018 EECS 482 — Lecture 5 15

Benefit of Semaphores

e Mutual exclusion
Initial value is 1

down ()

critical section

up ()

e Ordering constraints
Usually, initial value is O
Example: thread A wants to wait for thread B to finish

] Thread A Thread B
Time
down ()
do task
up ()
|/ continue execution

January 24, 2018 EECS 482 — Lecture 5 16

Implementing producer-
consumer with semaphores

e Semaphore assignments

. mutex: ensures mutual exclusion around code that
manipulates coke machine

. fullSlots: counts no. of full slots in the coke machine

. emptySlots: counts no. of empty slots in machine

e Initialization values?

January 24, 2018 EECS 482 — Lecture 5 17

Implementing producer-
consumer with semaphores

Semaphore mutex = 1; // mutual exclusion to shared set of slots
Semaphore emptySlots = N; // count of empty slots (all empty to start)
Semaphore fullSlots = 0; // count of full slots (none full to start)

producer { consumer {
// wait for empty slot // wait for full slot
emptySlots.down(); fullSlots.down();
mutex.down(); mutex.down();
Add coke to the machine Take coke out of machine
mutex.up(); mutex.up();
// note a full slot // note an empty slot
fullSlots.up(); emptySlots.up();

} }

January 24, 2018 EECS 482 — Lecture 5 18

Implementing producer-
consumer with semaphores

e Why do we need different semaphores for fullSlots
and emptySlots?

e Does the order of down() (e.g., fullSlots, mutex)
matter?

e Does the order of up() matter?

e What if there’s 1 full slot, and multiple consumers
call down() at the same time?

e What if a context switch happens between
emptySlots.down() and mutex.down()?

e What if fullSlots.up() before mutex.down()?

January 24, 2018 EECS 482 — Lecture 5 19

Reminders

e Project 1 due on Monday

e Work through discussion questions about monitors
before the discussion section

January 24, 2018 EECS 482 — Lecture 5 20

Comparing monitors and
semaphores

e Semaphores provide 1 mechanism that can
accomplish both mutual exclusion and ordering
(monitors use different mechanisms for each)

. Elegant
. Can be difficult to use

e Monitor lock = binary semaphore (initialized to 1)
. lock() = down()
. unlock() = up()

January 24, 2018 EECS 482 — Lecture 5 21

Condition variable versus

semaphore

Condition variable

Semaphore

while(!cond) {wait();}

down()

Can safely handle spurious wakeups

No spurious wakeups

Conditional code in user program

Conditional code in semaphore
definition

User writes customized condition;
more flexible

Condition specified by semaphore
definition (wait if value == 0)

User provides shared variable;
protects with lock

Semaphore provides shared variable
(integer) and thread-safe operations
on that variable (down, up)

No memory of past signals

Remembers past up calls

January 24, 2018

EECS 482 — Lecture 5 22

Condition variable versus
semaphore

Condition variable Semaphore

while(!cond) {wait();} down()

Can safely handle spurious wakeups | No spurious wakeups

: signal()

: signal ()

: wait ()
User provides shared variable; Semaphore provides shared variable
protects with lock (integer) and thread-safe operations

on that variable (down, up)

No memory of past signals Remembers past up calls

January 24, 2018 EECS 482 — Lecture 5 23

Implementing custom waiting
condition with semaphores

e Semaphores work best if the shared integer and
waiting condition (value==0) map naturally to
problem domain

e How to implement custom waiting condition with
semaphores?

January 24, 2018 EECS 482 — Lecture 5 24

Producer-consumer with

monitors

Consumer
cokelock.lock ()

while (numCokes == 0) {

walitingConsumers.wait ()

take coke out of machine

numCokes—-

waltingProducers.signal ()

cokelLock.unlock ()

January 24, 2018

Producer

cokelock.lock ()
while (numCokes == MAX) {

waltingProducers.wait ()

add coke to machine

numCokes++

waltingConsumers.signal ()

cokelLock.unlock ()

EECS 482 — Lecture 5

25

Producer-consumer with
semaphores (monitor style)

Producer

mutex.down ()
{ while (numCokes == MAX) {

Consumer

mutex.down ()
while (numCokes == 0)

go to sleep go to sleep

}

add coke to machine

}

take coke out of machine

numCokes— numCokes++

wake up waiting producer, if any wake up waiting consumer, if any

mutex.up ()

mutex.up ()
26

January 24, 2018 EECS 482 — Lecture 5

Producer-consumer with
semaphores (monitor style)

Consumer Producer

mutex.down () mutex.down ()

while (numCokes == 0) { while (numCokes == MAX) {
semaphore s = 0 semaphore s = 0

waltingConsumers.push (&s) waltingProducers.push (&s)

s.down () s.down ()

}

add coke to machine

}

take coke out of machine

numCokes— numCokes++
1f (!waitingProducers.empty()) { if (!'waitingConsumers.empty()) {
waitingProducers.front () ->up () waitingConsumers.front () ->up ()

waitingProducers.pop () waitingConsumers.pop ()

}

mutex.up ()

}

mutex.up ()
January 24, 2018 EECS 482 — Lecture 5 27

Producer-consumer with
semaphores (monitor style)

Consumer Producer

mutex.down () mutex.down ()

while (numCokes == 0) { while (numCokes == MAX) {
semaphore s = 0

semaphore s = 0

waltingConsumers.push (&s) waltingProducers.push (&s)

mutex.up ()
s.down ()
mutex.down ()

mutex.up ()
s.down ()
mutex.down ()

}

add coke to machine

}

take coke out of machine

numCokes— numCokes++
1f (!waitingProducers.empty()) { if (!'waitingConsumers.empty()) {
waitingProducers.front () ->up () waitingConsumers.front () ->up ()

waitingProducers.pop () waitingConsumers.pop ()

}

mutex.up ()

}

mutex.up ()
January 24, 2018 EECS 482 — Lecture 5 28

The first commandment

Would you name your kid “Kid”?
Or “KidA”? Or “MyKid”? Or “k”?

NIZATEHON
VARIABLE‘9
PROPERLY

January 24, 2018 EECS 482 — Lecture 5 29

The third commandment

. Y .
Pis -t We gave you monitors so you
\ L i~ 4]
b;&% TSI '.“.F don’t have to worship the

MONITORS o ancient gods!

INSTHAD OF. 4'
SENVARTIORES
WHENEVER: :
POSSIBLE

January 24, 2018 EECS 482 — Lecture 5

30

The fifth commandment

This is NOT OK:
while(true) {
mutex.lock()

e b if(condition) {
Triqt '1‘- J. mutex.unlock()
E%:‘,;:“Q(I)q ; break;
a8 } else {
mutex.unlock()
sleep(200);
}

}

January 24, 2018 EECS 482 — Lecture 5

31

The sixth commandment

%HARE’D

STATE \1(‘%’1‘3
BE LS _
PRO‘TFCTED ~

January 24, 2018 EECS 482 — Lecture 5

32

The seventh commandment

myAtomicFunction() {

IO Lo § mutex.lock()
‘SHAL’l CI{AB"A’
T S 9“
MONITOR = 8
LOCK 'PON‘.J.

ENTRY 05§

AND s

VPON EXET - x.unlock()
FIROM A }

PROCEDURE

)

January 24, 2018
EECS 482 — Lecture 5

IRQL NOT DISPATCH_ LEVEL

If this is the first time you've seen this error screen, restart your computer. If
this screen appears again, follow these steps:

Check to make sure any new hardware or software is properly installed. If this is a
new installation, ask your hardware or software manufacturer for any Windows
updates you might need.

If problems continue, disable or remove any newly installed hardware. Disable BIOS
memory options such as caching or shadowing. If you need to use Safe Mode to remove
or disable components, restart your computer, press F8 to select Ndvanced Startup
Options, and then select Safe Mode.

Technical Information:

**%* STOP: 0X00000ed (0X80F128D0, 0xc000009c, 0x00000000, 0x0000000)

Beginning dump of physical memory

Physical memory dump complete.

Contact your system administrator or technical support group for further
assistance.

More Info : https://msdn.microsoft.com/en-us/library/windows/hardware/£f£559278
(v=vs.85) .aspx

For technical support assistance call : 1-855-596-2695 (USA-Canada)

January 24, 2018 EECS 482 — Lecture 5

The seventh commandment

myAtomicFunction() {

IO Lo § mutex.lock()
‘SHAL’l CI{AB"A’
T S 9“
MONITOR = 8
LOCK 'PON‘.J.

ENTRY 05§

AND s

VPON EXET - x.unlock()
FIROM A }

PROCEDURE

)

January 24, 2018
EECS 482 — Lecture 5

