
Matrix Transformation

is Complete for the Average Case∗

Andreas Blass†andYuri Gurevich‡

Abstract

In the theory of worst case complexity, NP completeness is used to estab-
lish that, for all practical purposes, the given NP problem is not decidable in
polynomial time. In the theory of average case complexity, average case com-
pleteness is supposed to play the role of NP completeness. However, the average
case reduction theory is still at an early stage, and only a few average case com-
plete problems are known. We present the first algebraic problem complete for
the average case under a natural probability distribution. The problem is this:
Given a unimodular matrix X of integers, a set S of linear transformations of
such unimodular matrices and a natural number n, decide if there is a product
of ≤ n (not necessarily different) members of S that takes X to the identity
matrix.

Contents

1 Introduction 2

2 Domains 5

3 Domain reductions 8

4 Search problems 13

5 Decision problems 14

6 Positive matrices 16

∗SIAM J. on Computing
†Partially supported by NSF grants DMR 88-01988 and DMS-9204276. Address: Mathematics

Department, University of Michigan, Ann Arbor, MI 48109-1003, USA; ablass@umich.edu
‡Partially supported by NSF grants CCR 89-04728, CCR 92-04742 and ONR grant N00014-91-J-

11861. Address: Electrical Engineering and Computer Science Department, University of Michigan,
Ann Arbor, MI 48109-2122, USA; gurevich@umich.edu

1

7 Positive Matrix Correspondence Problem 21

8 Matrix Correspondence Problem 24

9 Linear transformations of the modular group 27

10 Matrix Transformation 34

11 Bounded membership problem 35

1 Introduction

The theory of NP completeness is very useful. It allows one to establish that certain

NP problems are NP complete and therefore, for all practical purposes, not decidable

in polynomial time (PTime). One way around the NP completeness phenomenon is to

consider the given NP problem together with an appropriate probability distribution

and seek a decision algorithm that runs quickly on average. This works very well for

some problems (see [GS] for example), but some other randomized decision problems

appear too difficult even on average. It would be very useful to generalize the theory

of NP completeness to be able to establish that certain randomized decision problems

are, for all practical purposes, not decidable quickly on average. This is the motivation

for the theory of average case completeness.

Before we plunge into this theory, let us review briefly the NP completeness theory.

The idea is that PTime algorithms are considered easy. In particular, PTime decidable

NP problems are considered easy. One says that an NP problem Π1 reduces to an

NP problem Π2 if there is a PTime algorithm R from instances of Π1 to instances

of Π2 that takes positive instances to positive instances and negative instances to

negative instances. Such an R is a many-one PTime reduction from Π1 to Π2. A

PTime decision algorithm A for Π2 gives rise to the PTime decision algorithm R ◦A

for Π1. A decision problem is hard for NP (via many-one PTime reductions) if every

NP problem reduces to it (by means of a many-one PTime reduction). A decision

problem is complete for NP if it belongs to NP and is hard for NP. Most known

natural NP problems are either PTime decidable or NP complete.

The theory of average case completeness was pioneered by Leonid Levin in [Le].

Levin replaced NP with the class RNP of NP problems with so-called PTime com-

putable probability distributions [Le, Gu1]. He generalized PTime computability to

computability in time polynomial on average (APtime computability) and defined

many-one PTime reductions of RNP problems. Then he established that a bounded

version of the known tiling problem together with a natural probability distribution

is complete for RNP via many-one PTime reductions. (That is, the randomized tiling

problem belongs to RNP and every problem in RNP reduces to it via many-one PTime

2

reductions.) Another RNP problem, implicitly present in [Le], is Bounded Halting,

a bounded version of the standard halting problem together with natural probability

distribution; this problem is explicitly defined and proved complete in [Gu1].

Some progress has been achieved in the meantime. In particular, the restriction to

PTime computable distributions was liberalized [BCGL]; Levin’s complete problems

remained complete (we return to the issue of the liberalized RNP later in this intro-

duction). The reduction theory has been revised [Gu1, BCGL, VL, BG1, BG2]. In

particular, deterministic reductions, shown insufficient in [Gu1], have been replaced

in [VL] by randomizing reductions; in other words reduction algorithms have been

allowed to flip coins. This tuning up of the reduction theory continues in this paper.

In Sections 2–5 of this paper, we describe the current state of the reduction theory in

full detail and in particular define a clean notion of randomized many-one reductions

of randomized decision problems.

A number of additional natural RNP complete problem have been found [Gu1,

VL, Gu2, VR] but that number is still very small. Moreover, none of the known

complete problems, however natural they are, arose in applications. All of them

were designed specially for the purpose of finding additional average-case complete

problems. Why have not more problems been found? It is possible that the reduction

theory has to be tuned up further. It is certainly true that establishing average-

case completeness is much more difficult than establishing worst-case completeness;

the range of an average-case reduction of a problem Π1 to a problem Π2 cannot

comprise only very, very special instances of Π2. What should be done? Consider

the theory of undecidability or NP completeness. In either case, a rich collection of

complete problems (complete for recursive enumerability via recursive reductions or

NP complete, respectively) has been accumulated which are convenient for reductions

to other problems. We need, it seems, to accumulate a rich collection of various

average-case complete problems with the hope that these problems will be useful for

further reductions. In this connection, Leonid Levin challenged the second author

(who started his career an algebraist) to find an average-case complete problem of

algebraic character. Such a problem was found in [Gu2]; this paper is a full version

of the extended abstract [Gu2].

The matrix decomposition problem involves linear transformations of unimodular

matrices. The modular group is the multiplicative group SL2(Z) of two-by-two integer

matrices of determinant 1 (unimodular matrices). The notion of linear transformation

of SL2(Z) does not seem to make sense because SL2(Z) is not closed under addition,

but this difficulty is not serious. Define a linear transformation of SL2(Z) to be a

function T from SL2(Z) to SL2(Z) such that T (
∑

Xi) =
∑

T (Xi) whenever all the Xi

and
∑

Xi are unimodular matrices. We show in Section 9 that a linear transformation

T of SL2(Z) uniquely extends to a linear transformation of all two-by-two integer (or

even complex) matrices; this gives rise to the standard representation of T by a four-

by-four integer matrix. Moreover we will describe a simple (certainly PTime) test to

3

determine when a given four-by-four integer matrix represents a linear transformation

of SL2(Z). Identify linear transformations with the four-by-four integer matrices

representing them.

Now we are ready to define our randomized decision problem. An instance of

Matrix Transformation comprises three components: a unimodular matrix X, a finite

set S of linear transformation of unimodular matrices and a natural number n. The

corresponding question is whether there exists a linear transformation T ∈ Sn such

that T (X) is the unit (or identity) matrix. Here Sn comprises products T1 · · ·Tm

where m ≤ n and each Ti ∈ S.

Define the size of an integer matrix (whether it is two-by-two or four-by-four)

to be the length of the binary representation of the maximal absolute value of the

entries. The size of an instance (X,S, n) is n plus the size of X plus the sum of the

sizes of all members of S.

The probability distribution on the instances is rather natural. The three com-

ponents of a random instance (X,S, n) are chosen independently. The integer com-

ponent n is chosen with respect to the default probability function
1

n(n + 1)
. (The

choice of the default distribution does not matter much [Gu1].) To choose the uni-

modular component X, first choose a positive integer k with respect to the default

distribution and then choose X randomly (with respect to the uniform probability

distribution) among all unimodular matrices of size k. An auxiliary probability dis-

tribution on linear transformations is defined similarly; linear transformations of the

same size have the same probability and the probability to have size k equals the

default probability of k. Finally, the probability of S is proportional to the product

of the probabilities of the members of S. This completes the definition of Matrix

Transformation.

We reduce Bounded Halting to Matrix Transformation and this way prove Matrix

Transformation is complete for RNP via randomized many-one reductions. It remains

complete under various restrictions on the cardinality of S and/or the number n; see

Section 10 in this connection.

Actually, we prove only that Matrix Transformation is hard for RNP. It is obvious

that (the unrandomized version of) Matrix Transformation is NP. Checking that the

probability distribution is PTime is routine and we ignore it. We mentioned already

that the definition of RNP has been liberalized in [BCGL] by allowing more general

distributions called samplable. Impagliazzo and Levin proved that every NP search

problem with samplable distribution reduces via many-one PTime computable re-

ductions to an NP search problem with PTime computable distribution [IL] (see also

[BG2]). In an appropriate sense a search problem with a PTime computable distri-

bution reduces to a decision problems with PTime computable distribution [BCGL].

Thus, Matrix Transformation is hard for the class of NP search problems with sam-

plable distributions. Our reduction of Bounded Halting to Matrix Transformation can

4

be easily modified to obtain a many-one randomized reduction of the search version

of Bounded Halting to the search version of Matrix Transformation. Thus, the search

version of Matrix Transformation is complete for the class of NP search problems with

samplable distributions. The question remains whether Matrix Transformation (or

Bounded Halting) is complete for the class of NP decision problems with samplable

distributions. In the usual NP theory, decision problems are easily reducible to search

problems. The situation is different in the average-case theory. We intend to consider

these issues in [BG3].

A simpler version of Matrix Transformation is obtained by making S just a set

of unimodular matrices and asking whether another unimodular matrix X can be

represented as a product of at most n matrices from S. This bounded version of the

classical membership problem [Mi, p. 511] for SL2(Z) is NP complete; see Section 11 in

this connection. However, we don’t think that the naturally randomized version of the

bounded membership (Section 11) problem is complete for the average case. Indeed,

there are indications that it is solvable in time polynomial on average. However,

Venkatesan and Rajagopalan proved that the same problem for higher-dimension

matrices is complete for the average case [VR].

Since we deal almost exclusively with randomized decision problems, the term

“decision problem” will usually mean “randomized decision problem”; similarly, the

term “search problem” will usually mean “randomized search problem”.

Acknowledgment We thank Suzanne Zeitman for allowing us to publish her

proof that Integer Sum is NP complete. We thank Abraham Sharell, the team of

Belanger and Wang, and the referees for pointing out various flaws in the previous

versions of this paper.

2 Domains

As a general framework for the study of average case complexity, we use domains

[Gu2, BG1, BG2].

Definition 2.1 A domain X consists of:

• An underlying set, the universe of X, often called X as well, comprising strings

in some alphabet ΣX ;

• A size function, assigning to each x ∈ X a positive integer |x| = |x|X called the

size of x; and

• A probability distribution PX on X.

We require elements of the domain to be strings in order to use the usual com-

putation model based on the Turing machine. In the rest of the paper, an algorithm

5

is a Turing machine. Traditional concepts of (worst-case) complexity are defined by

means of the size function |x|. Concepts of average-case complexity are defined by

averaging with respect to the probability distribution PX . As was pointed out by

Levin [Le] and discussed in some detail in [BCGL, Gu1], the most obvious definition

of the concept “polynomial time on average” has inappropriate consequences, and

some care is needed to obtain a suitable definition. We use the following definition

due to Levin [Le], as modified in [BG1] to allow ∞ as a value.

Definition 2.2 Let T be a function from a domain X to the interval [0,∞] of the

real line augmented with∞. T is linear on average if T (x)/|x| has finite expectation,

E
x

1

|x|
T (x) =

∑
x

PX(x)
1

|x|
T (x) <∞,

and T is polynomial on average, abbreviated AP, if it is bounded by a polynomial of

a function that is linear on average. In other words, T is AP if, for some ε > 0,

E
x

1

|x|
(Tx)ε =

∑
x

PX(x)
1

|x|
(Tx)ε <∞ .

We use the convention that 0 ·∞ = 0; thus, an AP function can take the value∞
but only at points of probability 0.

Lemma 2.3 ([Gu1]) • If E(|T (x)| | |x| = l) is bounded by a polynomial of l,

then T is AP.

• On any domain, the collection of AP functions is closed under addition and

multiplication.

Definition 2.4 A (deterministic) algorithm, taking elements of a domain X as in-

puts, is polynomial time on average or AP time if its running time on input x is an

AP function of x.

We consider the running time to be ∞ if the algorithm fails to terminate, so an

AP time algorithm must terminate on all inputs of nonzero probability. In general, we

take the point of view that instances of zero probability do not matter. By following

that line consistently, which we try to do, one often has the luxury of throwing

elements of zero probability out and supposing, when convenient, that no element of

the domain X in question has zero probability or throwing elements of zero probability

in and supposing, when convenient, that every string over ΣX is an element of X.

However, we do not go so far as to identify two domains if one of them is obtained

from the other by eliminating some elements of zero probability.

In the case of domains with finitely many elements, it would be natural to call a

domain uniform if all elements have the same probability. This definition makes no

6

sense in the case of infinite domains, which is the only case of interest to us. Another

natural way to define uniform domains requires a default probability distribution on

positive integers; it is customary to assign the probability
1

n(n + 1)
to a positive

integer n. The choice of the default probability distribution does not matter much;

see [Gu1] in this connection.

Definition 2.5 PI is the domain of positive integers such that |n| = n and the

probability of any n is 1/[n(n+1)]. The probability of a number n in PI is called the

default probability of n.

Definition 2.6 A domain is uniform if it has a finite number of elements of any

given size, all elements of a given size have the same probability, and P{x : |x| = n}
equals the default probability of n.

Here are two examples of uniform domains.

Definition 2.7 BS is the uniform domain of non-empty binary strings where the size

of a string is its length. FRACTION is the uniform domain of fractions a/b where

a, b are relatively prime positive integers, a ≤ b and the size of a/b is the length

dlog2(b + 1)e of the (shortest) binary notation for b.

Definition 2.8 A domain Y with universe V is a subdomain of a domain X if V

is a subset of (the universe of) X and PX(V) > 0 and |x|Y = |x|X , PY (x) =

PX(x)/PX(V) for every x ∈ V . Y is also called the restriction X|V of X to V .

Definition 2.9 The direct product X × Y of domains X and Y is the domain of

pairs (x, y), where x ∈ X and y ∈ Y , such that |(x, y)| = |x| + |y| and P(x, y) =

PX(x)×PY (y).

The direct product construction allows us to define powers X2, X3, . . . of a given

domain X. Sometimes it is more natural to deal with subsets rather than sequences

of elements of a given domain.

Definition 2.10 For each positive integer σ, Setσ(X) is the domain of σ-element

subsets S of a given domain X such that the size |S| = ∑
x∈S |x| and the probability

P(S) is proportional to the product
∏

x∈S PX(x), i.e., P(S) ∝ ∏x∈S PX(x).

There are various natural domains D of all finite nonempty subsets of a given

domain X such that each Setσ(X) is a subdomain of D.

Definition 2.11 Set(X) is the domain of nonempty subsets of X such that |S| =∑
x∈S |x| and P(S) ∝ ∏x∈S PX(x).

7

We need to check that
∑

S P(S) converges. For each positive integer n, we have

1 =

(∑
x∈X

P(x)

)n

=
∑

x1,...,xn∈X

P(x1) · · · · ·P(xn).

In the sum on the right, each P(S) occurs n! times (and there are some additional

terms with repeated x’s). So
∑

S: |S|=n P(S) ≤ 1
n!

.

Another possibility is to define a probability distribution on the collection of

nonempty finite subsets of X which corresponds to the following experiment: first

choose a positive integer n with respect to the default probability and then choose

an n-element subset with respect to Setn(X); call this alternative domain Set′(X).

In many respects, AP functions differ from polynomially bounded functions. Here

is one illustration.

Proposition 2.12 For every countable family {f1, f2, . . .} of AP functions on BS

there exists an AP function F on BS that is not majorized by any fi.

Proof By induction on i, select elements xi of BS such that:

1. |xi| > |xj| for all j < i, and

2. 2|xi| > fi(xi).

Such elements exist because each fi is AP. Define

F (x) =

{
2|x| if ∃i(x = xi)

0 otherwise.

No fi majorizes F because F (xi) > fi(xi). It remains to check that F is AP. We

have ∑
x

1

|x|
F (x)P(x) ≈

∑
i

1

|xi|
2|xi| 1

|xi|2
2−|xi| =

∑
i

1

|xi|3

and the last sum is finite because all elements xi are of different lengths. 2

3 Domain reductions

In this section, we define and discuss many-one reductions, both deterministic and

randomizing, between domains. These are the only sort of reductions used in this

paper.

Definition 3.1 A function f from domain X to domain Y satisfies the domination

condition if PX [f−1(fx)]/PY (fx) is AP on X.

Corollary 3.2 An injective function f from domain X to domain Y satisfies the

domination condition if and only if PX(x)/PY (fx) is AP on X.

8

Theorem 3.3 ([BG1]) Let f be an arbitrary function from a domain X to a domain

Y . The following statements are equivalent:

• For every AP function T on Y , the composition T ◦ f is AP on X, and

• |f(x)|Y is AP on X and f satisfies the domination condition.

This theorem, with T regarded as the running time of an algorithm on Y , suggests

Definition 3.4 A deterministic reduction from a domain X to a domain Y is an AP

time computable function f from X to Y such that |f(x)|Y is AP on X and f satisfies

the domination condition.

Such a reduction and an AP time algorithm on Y yield an AP time algorithm on

X.

Corollary 3.5 Deterministic reductions of domains compose. Therefore the relation

of deterministic reducibility of domains is transitive.

Recall also the two domains Set(X) and Set′(X) of finite nonempty subsets S of

X defined above.

Lemma 3.6 The identity function reduces Set(X) to Set′(X) and Set′(X) to Set(X).

Proof is obvious. 2

Lemma 3.7 Let a function f reduce a domain X to a domain Y and suppose that f

is one-to-one. Then, for each positive integer σ, the function

F{x1, . . . , xσ} = {f(x1), . . . , f(xσ)}

reduces Setσ(X) to Setσ(Y).

Proof Let σ be an arbitrary positive integer, A = Setσ(X) and B = Setσ(Y). It

suffices to prove that F satisfies the domination condition. Since F is one-to-one, it

suffices to prove that
PA(S)

PB(F (S))
is AP on Setσ(X).

Since f satisfies the domination condition, the ratio ρ(x) = PX(x)/PY (fx) is AP

on X. Ignoring constant factors, we have

PA(S)

PB(FS)
≈

∏
x∈S PX(x)∏

x∈S PY (fx)
=
∏
x∈S

ρ(x).

It remains to prove that the last product is AP on A.

Let δ witness that ρ is AP so that
∑

x∈X ρ(x)δ 1
|x|P(x) < ∞. It follows that∑

x∈X ρ(x)δ/σ 1
|x|1/σ P(x) < ∞. For, the terms where ρ(x) 1

|x| ≤ 1 remain ≤ 1 and

9

therefore sum up to at most 1, and the other terms become smaller. The number

ε = δ/σ witnesses that
∏

x∈S ρ(x) is AP on Setσ(X).

∑
S

(∏
x∈S

ρ(x)

)ε
1

|S|
∏
x∈S

P(x) ≤
∑
S

∏
x∈S

ρ(x)εP(x)

|x|1/σ
≤
[∑

z∈X

ρ(z)εP(z)

|z|1/σ

]σ

<∞.

The first of the three inequalities holds because the geometric mean
∏

x∈S |x|1/σ

is bounded by the arithmetical mean of the same numbers |x| which is bound by

the size |S|. To prove the second inequality, notice that every summand on the left

side is obtained when you multiply the σ copies of the infinite series. Concerning the

third inequality, we have already checked that the infinite series in square brackets

converges. It remains to apply Lemma 2.3. 2

Lemma 3.8 Suppose that domains X and Y have the same universe and the same

probability distribution. The identity function deterministically reduces X to Y if and

only if the size function of Y is AP on X.

Proof Use Theorem 3.3. 2

Proviso 3.9 Restrict attention to domains X such that the size function of X is AP

on the domain X ′ obtained from X by redefining the size of a string as its length.

Corollary 3.10 A function f from a domain X to a domain Y reduces X to Y if

and only if f is AP time computable and satisfies the domination condition.

Proof Let Y ′ be the domain obtained from Y by redefining the size as length. Since

the length `(f(x)) of f(x) is bounded by the time needed to compute f(x), it is AP

on X. Thus f reduces X to Y ′. Now use Lemma 3.8 and the transitivity of the

deterministic reducibility relation. 2

Reductions are used in the usual way to define the notion of a complete problem

in a complexity class, i.e., a problem in the class to which all problems in the class

are reducible. Unfortunately, deterministic reductions are too weak to yield a good

notion of completeness; see [Gu1] where it is shown that complete problems in this

sense must (under the reasonable assumption that nondeterministic exponential time

differs from deterministic exponential time) have too special probability distributions

(non-flat, in the terminology of [Gu1]). Therefore, we use the larger class, suggested

in [VL], of randomizing reductions, i.e., we allow the computation of the reducing

function to flip coins. In order to introduce randomizing reductions, we need some

auxiliary notions.

Terminology and Notation A set S of binary strings satisfies the prefix condition

if no string in S is a prefix of a different string in S. If ∆ is a subset of the cartesian

product U × V of sets U and V then, for each x ∈ U , ∆(x) = {y : (x, y) ∈ ∆}.

10

The notion of dilation was introduced in [Gu1] and used in [BG1, BG2]. The idea

is to combine the probability distribution on instances and the probability distribution

of coin flips into one probability distribution. In the following definition, think of ∆

as the set of pairs (x, s) where x is an input to a randomizing algorithm and s is a

sequence of coin flips just sufficient to make that algorithm, with input x, produce

an output.

Definition 3.11 (cf. [Gu1, BG1]) A dilation of a domain X is a domain ∆ such

that

• The universe of ∆ is a subset of X ×BS such that, for every x ∈ X of non-zero

probability, ∆(x) is non-empty and satisfies the prefix condition,

• The size function |(x, s)| = |x|, and

• The probability distribution P(x, s) = P(x)
2−|s|∑

t∈∆(x) 2−|t|
.

Definition 3.12 Let ∆ be a dilation of a domain X. Then

Density∆(x) =
∑

s∈∆(x)

2−|s|, and Rarity∆(x) =
1

Density∆(x)
.

Further, ∆ is nonrare if the rarity function Rarity∆(x) is AP on X. ∆ is almost total

if Rarity∆(x) = 1 for every x of nonzero probability; in terms of coin flips, that means

that, if we repeatedly flip a fair coin to produce a string of 0’s and 1’s, then, with

probability 1, we shall eventually obtain a string in ∆(x). Finally, ∆ is trivial if, for

every x ∈ X of non-zero probability, ∆(x) contains the empty string (and therefore

contains no other string).

Theorem 3.3 generalizes to randomizing reductions.

Theorem 3.13 ([BG2]) Suppose that Γ is a nonrare dilation of a domain X and f

is a function from Γ to Y . Then the following statements are equivalent:

• |f(x)|Y is AP on Γ and f satisfies the domination condition,

• For every nonrare dilation ∆ of Y and every AP function T on ∆, the compo-

sition T (f(x, s), t) is AP on the dilation Γ ∗∆ of A that comprises pairs (x, st)

such that (x, s) ∈ Γ and (f(x, s), t) ∈ ∆.

Definition 3.14 A (randomizing) reduction of a domain X to a domain Y consists

of a nonrare dilation Γ of X and a deterministic reduction f of Γ to Y .

11

Randomizing reductions of domains compose in the following sense. If Γ and ∆ are

non-rare dilations of X and Y respectively and and if f : Γ −→ Y and g : ∆ −→ Z

are randomizing reductions of X to Y and of Y to Z, then there is a composite

reduction g ◦ f : Γ ∗∆ −→ Z of X to Z. Here Γ ∗∆ is as in Theorem 3.13 and g ◦ f

is defined by (g ◦ f)(x, st) = g(f(x, s), t) whenever (x, s) ∈ Γ and (f(x, s), t) ∈ ∆.

(Although this composition is not the ordinary composition of functions, it does yield

a category of domains and random functions.)

Corollary 3.15 The relation of (randomized) reducibility is transitive.

Definition 3.16 Let Σ be an alphabet. A randomizing algorithm on Σ∗ is an al-

gorithm A on Σ∗ × BS, but the two input strings, a string x over Σ and a binary

string s, play different roles. The string x is viewed as the input, and the string s is

viewed as a sequence of coin flips. It is supposed that A does not flip a coin unless

the computation requires another random bit.

Definition 3.17 A dilation ∆ of a domain X is (AP time) certifiable if there exists

a randomizing algorithm A on Σ∗
X such that:

• For every x ∈ X of nonzero probability and every binary string s, A outputs

YES on input (x, s) if and only if (x, s) ∈ ∆, and

• The computation time of A is AP on ∆.

The need for certifiable reductions arises when one deals with decision problems.

We shall consider algorithms which, given an input x of non-zero probability, produce

a correct output on any random string s ∈ ∆(x) but may produce an incorrect output

on s 6∈ ∆(x). When the correctness of the output cannot be verified efficiently, the

certifiability of ∆ will be needed to justify believing the output.

Definition 3.18 A reduction (Γ, f) of a domain X to a domain Y is certifiable if Γ

is certifiable.

Lemma 3.19 Certifiable reductions of domains compose.

Proof Chase the definitions and apply Theorem 3.3. 2

As an example of how much easier it may be to deal with randomizing reductions,

consider the problem of reducing BS to FRACTION. In order to avoid trivial solu-

tions, like constant functions, let us require that different elements of BS are taken

to different elements of FRACTION. The problem is easily solved with the help of

randomization.

Lemma 3.20 There exists a randomized reduction (Γ, f) from BS to FRACTION

such that f(x1, s1) 6= f(x2, s2) whenever x1 6= x2.

12

Proof Γ(x) comprises all binary strings s of length |x| such that the numbers (repre-

sented by binary strings) s and 1x are relatively prime. Since the chance that a ran-

dom s is relatively prime to 1x is sufficiently large [HW], Γ is nonrare. f(x, s) =
s

1x
.

2

4 Search problems

Definition 4.1 A (randomized) search problem SP(X,W) is given by a domain X (of

instances) and a PTime computable relation W (x, w) (the witness relation) between

elements of X and arbitrary strings in a fixed alphabet. The problem is: Given an

instance x with W (x) 6= ∅, find an element of W (x) (a witness for x).

Definition 4.2 SP(X, W) is AP time solvable if there exist a nonrare dilation Γ of

X|{x : W (x) 6= ∅} and an AP time algorithm M on Γ that, given any (x, s) ∈ Γ with

PX(x) > 0, finds a witness for x. Such a pair (Γ, M) is called an AP time solution

for SP (X, W). A solution (Γ, M) is almost total if Γ is so.

This notion of AP solvability may seem weaker than it is.

Theorem 4.3 ([BG2]) Every AP time solvable search problem SP(X, W) has an

almost total solution.

Definition 4.4 A (randomizing) reduction of SP(X, U) to SP(Y, V) consists of

Dilation: A nonrare dilation Γ of X,

Instance transformer: A deterministic reduction f of Γ to Y , and

Witness transformer: A PTime computable function g((x, s), v) such that if s ∈
Γ(x), and v ∈ V (f(x, s)) then g((x, s), v) ∈ U(x).

Theorem 4.5 ([BG2]) The reducibility relation on search problems is transitive,

and a problem SP(X,U) is solvable in AP time if it is reducible to some problem

SP(Y, V) which is solvable in AP time.

The notion of reduction allows us to define complete problems in the usual way.

SP(X, W) is complete for a class C of search problems if it is in C and every problem

in C reduces to it.

13

5 Decision problems

Definition 5.1 A (randomized) decision problem DP(X, P) is given by a domain X

of instances and a subset P of X. Instances in P are called positive, and instances in

X−P are called negative. The problem is: Given an instance x ∈ X, decide whether

x is positive or negative.

Definition 5.2 DP(X, P) is AP time solvable (or AP time decidable) if there exist a

non-rare certifiable dilation Γ of X and an AP time algorithm M on Γ which, given

any element (x, s) ∈ Γ with PX(x) > 0, decides whether x is positive or negative. The

pair (Γ, M) is an AP time solution for DP(X, P). A solution (Γ, M) for DP(X, P) is

almost total if Γ is so.

Notice that certifiability is required, as we cannot check whether the output of

M (yes or no) is correct. Contrast this with search problems where the assumed

computability of the witness relation lets us check whether the output (an alleged

witness) is indeed a witness and certifiability is therefore not required.

Again, the notion of AP time solution may seem weaker than it is.

Theorem 5.3 If DP(X, P) is AP time solvable then it has an almost total AP time

solution.

Proof Let (Γ, M) be an AP time solution for a decision problem DP(X, P) and let

A be a certifying algorithm for Γ. For each s ∈ Γ(x), let s′ be the computation of A

on (x, s) and s′′ be the computation of M on (x, s). Define

W = {(x, (s, s′, s′′)) : (x, s) ∈ Γ}.

Obviously, the relation W is PTime computable. (The intended algorithm for

computing W uses A and M ; we need not check (x, s) ∈ Γ because this follows from

A(x, s) providing s′.) The dilation Γ and a combination of the algorithms A and M

give an AP time solution for the search problem SP(X, W). By Theorem 4.3, this

search problem has an almost total AP time solution (∆, N). For each (x, t) ∈ ∆ with

PX(x) > 0, N outputs a triple (s, s′, s′′) ∈ W . By the definition of W , s = s(t) ∈ Γ(x)

and therefore s(t)′′ is a computation of M deciding whether x is positive or negative.

The dilation ∆ is certifiable. Given an instance x of non-zero probability and an

arbitrary string t, the desired certifying algorithm A′ runs N on (x, t). If a prefix t0
of t belongs to ∆(x), N will produce an output on (x, t0) and A′ will output “yes” in

the case t0 = t or “no” in the case t0 is a proper prefix of t. Suppose that no prefix

of t belongs to ∆(x). Since ∆ is almost total, both t0 and t1 are prefixes of strings in

∆. The computation of N on (x, t) will stop without producing any output, waiting

for another random bit; in such a case A′ will output “no”.

14

Let N ′ be the modification of N that, given (x, t) ∈ ∆ with PX(x) > 0, outputs

only the result (yes or no) of the computation s(t)′′. The pair (∆, N ′) constitutes an

almost total AP time solution for DP(X,P). 2

Notice the role of the certifying algorithm A. The certifiability of dilation was

unnecessary in the case of search problems, but in the case of decision problems it

plays an important role.

Definition 5.4 A (randomizing) many-one reduction of DP(X, P) to DP(Y,Q) com-

prises:

• A non-rare certifiable dilation Γ of X, and

• A deterministic reduction f from Γ to Y (the instance transformer) satisfying

the following correctness property: For all (x, s) ∈ Γ,

f(x, s) ∈ Q ⇐⇒ x ∈ P.

Theorem 5.5 The many-one reducibility relation on decision problems is transitive,

and a problem DP(X, P) is AP time decidable if it reduces to some problem DP(Y,Q)

that is AP time decidable.

Proof Use the fact, established in Section 3 that randomizing domain reductions

compose. 2

Definition 5.6 A many-one reduction (Γ, f) of DP(X, P) to DP(Y,Q) is determin-

istic if Γ is trivial. In this case, the reduction (Γ, f) is specified only by the instance

transformer f ; Γ may be identified with X.

Lemma 5.7 The identity function deterministically reduces any decision problem Π

to the decision problem Π′ obtained from Π by redefining the size of a string as its

length.

Proof Use Corollary 3.10. 2

A decision problem is hard for a class C of decision problems if every problem in

C reduces to it. A decision problem is complete for C if it belongs to C and is hard

for C.
RNP is the class of decision problems with PTime computable probability distri-

butions. PTime computable distributions are defined in [Le] and analyzed in [Gu1].

15

6 Positive matrices

We now turn from the general theory of randomizing algorithms and reductions to

the specific problem, Matrix Transformation, whose completeness for RNP we shall

prove in Section 10. We begin with information about unimodular matrices.

Call a unimodular matrix (i.e. an element of SL2(Z), a two-by-two matrix with

determinant 1) positive if it has no negative entries. Positive matrices form a monoid

PM = SL2(N). In this section, a column is a column of two relatively prime non-

negative integers; for notational simplicity, we view a positive matrix as the pair of

its columns. If u is a column, let u1 be the upper and u2 the lower components of u.

Partially order columns componentwise: u ≤ v if u1 ≤ v1 and u2 ≤ v2, and u < v if

u ≤ v and either u1 < v1 or u2 < v2. Define max(X) to be the maximal entry of a

positive matrix X. In this section, A0 =

(
1 0

1 1

)
and B0 =

(
1 1

0 1

)
.

Lemma 6.1 1. (u, v)× A0 = (u + v, v), and (u, v)×B0 = (u, u + v).

2. If A0 is a right divisor of a positive matrix (u, v) in PM then u > v, and if B0

is a right divisor of (u, v) in PM then u < v.

3. If the maximal entry m of a matrix (u, v) appears in two or more places then

m = 1.

Proof (1) is obvious, and (2) follows from (1).

(3) If m occurs twice in the same row or the same column, then it divides the de-

terminant 1 and therefore m = 1. So assume this doesn’t happen. If v1 = u2 = m

then the determinant cannot be positive. If u1 = v2 = m then 1 = u1v2 − v1u2 ≥
m2 − (m− 1)2 = 2m− 1 and therefore m = 1. 2

The second statement of Lemma 6.1 implies that the monoid generated by the

matrices A0 and B0 is free. This fact is noticed in [Ei, Chapter VI, Section 12]. The

following theorem should be known too, but we don’t have an appropriate reference.

Theorem 6.2 The monoid PM is isomorphic to the monoid BS of binary strings.

The two indecomposable non-unit elements are the matrices A0 and B0.

Proof Since A0 and B0 generate a free monoid, it suffices to prove that every non-

unit positive matrix (u, v) is a product of matrices A0 and B0. Define weight(u) =

u1 + u2 and weight(u, v) = weight(u) + weight(v). The proof is an induction on

s = weight(u, v). Since the entries of the main diagonal are not zero, s ≥ 2.

The case s ≤ 3 is easy: A0 and B0 are the only non-unit matrices of weight ≤ 3.

Suppose that s > 3. Then m = max(u, v) > 1. Exploiting the symmetry, we may

suppose that m appears in u. If u1 = m then 1/m = (u1v2 − v1u2)/m > v2 − u2 and

16

therefore u2 ≥ v2. Similarly, if u2 = m then u1 ≥ v1. Thus, the column u − v has

nonnegative entries. The determinant of (u− v, v) equals 1 and therefore (u− v, v) is

an element of SL2(N). By the induction hypothesis, (u−v, v) is a product of matrices

A0 and B0. By Lemma 6.1(1), (u, v) = (u− v, v)× A0. 2

Corollary 6.3 If a positive matrix (u, v) is not the unit matrix then one of the two

columns is greater than the other.

Proof The fact has been established in the proof of Theorem 6.2. 2

Call the greater column of a non-unit positive matrix major; in the case of the

unit matrix, call either column major. The other column of the matrix will be called

minor.

Lemma 6.4 The major column and one bit indicating whether it is the first or the

second column uniquely define the minor column.

Proof Without loss of generality, the given matrix (u, v) is not the unit matrix.

It follows that both components of the major column are positive. By virtue of

symmetry, suppose that u is the major column. We show that the minor column

v is the least column such that u1v2 − u2v1 = 1. Let w be any column such that

u1w2 − u2w1 = 1. Then u1(w2 − v2) = u2(w1 − v1) = u1u2k for some k because u1

and u2 are relatively prime; hence w1 = v1 + ku1 and w2 = v2 + ku2. If k < 0 then

either w1 or w2 is negative. Hence k ≥ 0 and therefore w1 ≥ v1, w2 ≥ v2. 2

Lemma 6.5 There exists a PTime algorithm that, given a column u, computes the

minor column of the unique positive unimodular matrix with the first and major col-

umn u.

Proof Use the extended Euclid’s algorithm [Kn1]. 2

Remark 1 Instead of columns, we could use rows above in this section. This would

cause some insignificant changes in Lemma 6.1 (for example, the first statement would

say that A0 × (u, v) = (u, u + v), and B0 × (u, v) = (u + v, v) where u is the upper

row of the given matrix and v is the lower row), but Corollary 6.3 and Lemma 6.4

remain true.

Let `(n) be the length of the binary notation for n.

Definition 6.6 We define a domain structure on the monoid PM. It is the uniform

domain with the size function |X| = `(max(X)). Thus, PM is the monoid and domain

of positive matrices.

17

Strictly speaking, the elements of a domain should be strings. For this purpose,

we may regard a matrix as a list of its entries in binary notation. Then Proviso 3.9

is satisfied.

Lemma 6.7 The relative probability PPM[X | |X| = l] = Θ(2−2l).

Proof Let g(l) ≈ f(l) mean that g(l) = Θ(f(l)), i.e., that there exist positive

constants c, c′ and l0 such that cf(l) ≤ g(l) ≤ c′f(l) for all l ≥ l0 [Kn2]. It suffices

to prove that the number N(l) of positive matrices of size l is Θ(22l). Recall that

φ(m) is the number of positive integers n ≤ m that are prime to m, and that Φ(m) =

φ(1) + . . . + φ(m) = 3m2/π2 + O(m · log m) [HW, Theorem 330]. Thus,

N(l) ≈
∑

`(m)=l

φ(m) ≈ Φ(2l − 1)− Φ(2l−1) = Θ(22l). 2

By Theorem 6.2, PM is isomorphic to BS as a monoid. There are exactly two

isomorphisms of PM onto BS. One of them takes A0 to 0 and B0 to 1 while the other

one takes A0 to 1 and B0 to 0. Let I be the isomorphism that takes A0 to 0, and let J

be the corresponding isomorphism I−1 from binary strings to PM. It is easy to check

by induction on the length of the given string x that if x starts with a zero (resp.

one) then the lower (resp. upper) row of J(x) is major (see “transposed” Lemma 6.1

in Remark 1). Notice that the size of a matrix X may be quite different from the

length of the corresponding string I(X). It is easy to see that the isomorphism I is

not computable in polynomial time: A matrix An
0 =

(
1 0

n 1

)
is of size `(n) whereas

the string 0n = I(An
0) is of length n.

Lemma 6.8 I is AP time computable.

Proof The following recursive algorithm computes I(X). If X is the unit matrix

then I(X) is the empty string. Suppose that X = (u, v) differs from the unit matrix.

If u is the major column, w = u− v and z = I(w, v) then I(X) = z0, and if v is the

major column, w = v− u and z = I(u, w) then I(X) = z1. The computation time of

that algorithm is essentially proportional to |I(X)|, which is AP by Lemma 6.12. 2

The isomorphism J is PTime computable but PPM does not dominate PBS with

respect to J and thus J fails to reduce BS to PM.

Theorem 6.9 PPM does not dominate PBS with respect to J .

Proof By contradiction, suppose that the function g(x) = PBS[x]/PPM[Jx] is poly-

nomial on average with respect to PBS and fix ε > 0 to witness that fact. Thus,

∞ >
∑
n

∑
x: |x|=n

1

n
(g(x))ε 1

n(n + 1)
2−n,

18

so, as a function of n, the conditional expectation of (g(x))ε for strings of length n,∑
x: |x|=n(g(x))ε2−n is o(n3). We obtain the desired contradiction by proving that this

expectation is not bounded by any polynomial of n.

Let l = |Jx|. By Lemma 6.7,

g(x) = Θ(l2 · 22l · n−2 · 2−n).

Let s(x) be the sum of the entries of the major row of Jx. Clearly, s(x) = Θ(2l).

Hence it suffices to prove that the expectation En =
∑

x[(s(x)2/2n)ε · 2−n] of the

function [s(x)2/2n]ε is not bounded by a polynomial of n. (The factor n−2 in g(x)

won’t matter as it is the reciprocal of a polynomial, and l2 won’t matter as it is ≥ 1.)

We may restrict attention to ε < 1/2. Let y range over strings of length n− 1.

Lemma 6.10 There exists some α > 1 such that every

A(y) = (1/2)[s(y0)2ε + s(y1)2ε]/s(y)2ε ≥ α2ε

.

Proof Let a > b be the two entries of the major row of J(y), and γ = b/a. Then

A(y) = (1/2)[(2a+ b)2ε +(a+2b)2ε]/(a+ b)2ε = (1/2)[(2+γ)2ε +(1+2γ)2ε]/(1+γ)2ε.

Let δ = 1/(1 + γ). Then A(y) = (1/2)[(1 + δ)2ε + (2− δ)2ε].

Consider the function f(t) = t2ε of a real variable t. The graph of f is concave

because f ′′(t) = 2ε(2ε−1)t2ε−2 < 0. Since 0 < δ < 1, the chord C between the points

(1 + δ, f(1 + δ)) and (2 − δ, f(2 − δ)) lies strictly above the chord C0 between the

points (1, f(1)) and (2, f(2)). Further, the center of the interval [1+δ, 2−δ] coincides

with the center 1.5 of the interval [1, 2], and therefore the center (1.5, A(y)) of C lies

directly above the center (1.5, [1+22ε]/2) of C0. The arithmetical mean [1+22ε]/2 of

numbers 1 and 22ε exceeds their geometrical mean 2ε. Thus, A(y) > [1 + 22ε]/2 > 2ε.

The desired α = (1/2)[1 + 22ε]/2ε. 2

We continue to prove Theorem 6.9. Let A(y) and α be as in Lemma 6.10, and let

x range over strings of length n and y over strings of length n− 1.

En =
∑
x

[(s(x)2/2n)ε · 2−n] = 2−nε ·
∑
x

[s(x)2ε · 2−n] ≥ 2−nε ·
∑
y

[s(y)2ε ·A(y) · 2−(n−1)].

By Lemma 6.10,

En ≥ 2−nε ·
∑
y

[s(y)2ε · α2ε · 2−(n−1)] = α
∑
y

[(s(y)2/2n−1)ε · 2−(n−1)] = αEn−1.

It follows that En is Ω(αn) and therefore is not bounded by a polynomial of n. 2

19

Recall the notion of a (simple) continued fraction [HW]. Here is an example:

81

17
= 4+

13

17
= 4+

1(
17

13

) = 4+
1

1 +
4

13

= 4+
1

1 +
1(
13

4

) = 4+
1

1 +
1

3 +
1

4

= [4, 1, 3, 4].

Similarly, every positive rational number r can be uniquely represented by a

continued fraction [al, . . . , a0] where al is a non-negative integer, and each ai with

0 < i < l is a positive integer, and a0 is an integer ≥ 2 unless l = 0; the integers

ai ≥ 0 are called partial quotients.

Lemma 6.11 Suppose that x is a nonempty binary string and let m ≤ n be the two

entries of the major row of J(x). Then |x| equals the sum s(n, m) of the partial

quotients in the continued fraction for n/m.

Proof If |x| = 1 then m = n = 1 and s(n, m) = 1 = |x|. Suppose that |x| > 1.

By virtue of symmetry, we may suppose that x = y0; the other case is similar. Let

(i, j) be the major row of J(y). By Lemma 6.1, the major row (n, m) of J(x) is

(i + j, j). It suffices to prove that if i ≤ j then s(n,m) = s(j, i) + 1, and if i ≥ j then

s(n,m) = s(i, j)+1. Since J(y) is not the unit matrix, neither i nor j is zero. In any

case,
n

m
=

i + j

i
= 1 +

j

i
.

If i ≤ j and
j

i
= [al, . . . , a0] then

n

m
= [al + 1, . . . , a0], so s(n, m) = s(j, i) + 1.

If j < i and
i

j
= [al, . . . , a0] then

n

m
= 1 +

1(
i

j

) = [1, al, . . . , a0],

so s(n, m) = s(i, j) + 1. 2

Lemma 6.12 |I(X)| is AP on PM.

Proof Let s(n, m) be as in Lemma 6.11. We use the following strong result of

Yao and Knuth [YK]:
∑m=n

m=1 s(n,m) = (6n/π2)(ln n)2 + O(n(log n)(log log n)2) =

Θ(n(log n)2). Let X be a matrix of size l > 0, and let a(X) < b(X) form the

major row of the matrix X. Then
∑

X: b(X)=n s(b(X), a(X)) = Θ(n(log n)2). By

Lemma 6.11
∑

b(X)=n |I(X)| = Θ(n(log n)2) and therefore
∑

X: |X|=l |I(X)| = Ω(2l ·
l22l). Now use Lemma 6.7 to check that the expectation of |I(X)| with respect to the

conditional probability PPM[X | |X| = l] is bounded by a polynomial of l. It follows

(see Lemma 2.3) that I(X) is AP on PM. 2

20

7 Positive Matrix Correspondence Problem

Definition 7.1 Let T be a nondeterministic Turing machine with binary input al-

phabet. The bounded halting problem BH(T) is the randomized decision problem with

domain BS×PI such that an instance (x, n) is positive if and only if T has a halting

computation of length ≤ n on x. Call an instance (x, n) of BH(T) robust if either T

has a halting computation of length ≤ n on x or else T has no halting computation

on x at all. RBH(T) is the restriction of BH(T) to robust instances.

Definition 7.2 WBS is the domain of binary strings where |x| is the length of x and

P(x) = PPM(Jx). Let T be a nondeterministic Turing machine with binary input

alphabet. The weird halting problem WH(T) and its robust version RWH(T) are

similar to BH(T) and RBH(T) except the domain is WBS×PI rather than BS×PI.

Lemma 7.3 For a certain U , RWH(U) is hard for RNP.

Proof Some RBH(T) is RNP complete, by Corollary 1 of Theorem 1 in [Gu1].

(Actually, a slightly different version of bounded halting problems was considered in

[Gu1]. It was supposed there that n > |x| and P(x, n) ∝ n−32|x|. However the same

proof works. Also, the identity function deterministically reduces that older version

of every RBH(T) to the new one.) Thus it suffices to reduce an arbitrary RBH(T) to

an appropriate RWH(U). We will do just that.

One may be tempted to take U = T and to use the identity mapping as a reduction.

By Theorem 6.9, the identity function fails to do the job.

For every binary string s, let N(s) be the integer with binary representation

1s. If N(s) = k, let S(k) = s. Given a binary string y, the desired U computes

x = S(max(J(y))), turns itself into T and then runs on input x. We construct a

reduction (Γ, f) from RBH(T) to RWH(U). Here Γ is a dilation of BS×PI, and f is

a function from Γ to WBS× PI.

Define Γ(x, n) to comprise binary strings s of length ≥ |x| − 1 such that N(s)

is prime to and less than N(x). It is obvious that the dilation Γ is certifiable. By

Theorem 328 in [HW], the number φ(k) of positive integers prime to and less than k

is Ω
(

k
log log k

)
. Notice that, if j is relatively prime to k, then so is k− j. Thus, half of

the integers counted by φ(k) are ≥ k
2
, and so the cardinality of Γ(x, n) is ≥ 1

2
φ(N(x)).

It follows that Γ is not rare:

DensityΓ(x) =
∑

s∈Γ(x)

2−|s| ≥
∑

s∈Γ(x)

2−|x| = Ω

(
1

log log N(x)

)
= Ω

(
1

log |x|

)
.

By Lemma 6.4, for each (x, n, s) ∈ Γ, there exists a unique positive unimodular

matrix M(x, s) with first and major column (N(x), N(s)). View M as a function

on Γ; we check that it reduces Γ to PM. By Lemma 6.5, the function M is PTime

21

computable. To check the domination property, use Lemma 6.7 and the fact that M

is injective.

The desired f is given by f((x, n), s) = (y, t(x, s) + n) where y = I(M(x, s)) and

t(x, s) is the time that U needs to convert y into x. First, we check that f takes robust

instances of BH(T) to robust instances of WH(U) and has the correctness property.

By the definition of U , it halts on y if and only if T halts on x. Moreover, if T halts

within ≤ n steps on x then U halts within t(x, s) + n steps on y. Now suppose that

U halts on y. Then T halts on x. Since (x, n) is robust, T halts within n steps on x.

Hence U halts within t(x, s) + n steps on y.

Next, we check that f is AP time computable on Γ. We have to prove that y

and t(x, s) are computable in AP time relative to Γ. In the case of y this follows

from the definition y = I(M(x, s)), the fact that M reduces Γ to PM, Lemmas 6.8

and 6.12 and Theorem 3.3. Now consider t(x, s). It is the time that U needs to

compute x = S(max(J(y))) from y, which is bounded by a polynomial of |y| because

J , max and S are all PTime computable. So, by Lemma 2.3, t(x, s) is AP on Γ. In

addition, it is computable in AP time relative to Γ, because it can be computed by

first computing y (which we already saw takes AP time) and then computing x from

y while running a clock (which takes time essentially t(x, s)).

Finally, we check that f has the domination property. Notice that f is one-to-one,

so we can use Corollary 3.2. In addition, the probability functions for WBS×PI and

its restriction to robust instances differ by a constant factor, so we can compute with

the former instead of the latter. We have

PΓ((x, n), s)

PWBS×PI(y, t(x, s) + n))
=

PΓ((x, n), s)

PWBS(y)
× (t(x, s) + n)(t(x, s) + n + 1).

The fraction on the right is AP on Γ because PWBS(y) = PPM(M(x, s)) and M has

the domination property. Now use Lemma 2.3 and the fact that t(x, s) is AP on Γ.

2

The direct product PM×PM is a domain and monoid of positive matrix pairs; the

multiplication of matrix pairs is componentwise: (X1, Y1)× (X2, Y2) = (X1X2, Y1Y2).

If S is a set of positive matrix pairs, let Sn comprise products P1 × . . . × Pm where

m ≤ n and each Pi ∈ S. In the following definition, PMC stands for Positive Matrix

Correspondence.

Definition 7.4 For each positive integer σ, PMC(σ) is the decision problem with

domain

PM× Setσ(PM× PM)× PI

where an instance (A, S, n) is positive if and only if there exists a pair (X, Y) in Sn

such that AX = Y . An instance (A, S, n) of PMC(σ) is robust if either AX = Y for

some pair (X, Y) in Sn or else the whole submonoid of PM × PM generated by S

22

has no pair (X, Y) with AX = Y . RPMC(σ) is the restriction of PMC(σ) to robust

instances (A, S, n).

Theorem 7.5 Some RPMC(σ) is hard for RNP.

Remark 2 Replacing PM with BS in the definition of RPMC(σ) gives a variant

RPCP(σ) of the Post Correspondence Problem; this variant has been proved RNP

complete for not too small σ in [Gu1]. (Actually, RPCP(σ) is slightly different from

the version in [Gu1] but the difference is immaterial. For readers with Section 5.1

of [Gu1] before them, we indicate the changes needed in the completeness proof to

cover our variant. Remove the clause L0 from the definition of L(w) to obtain a

reduced set L′(w) of pairs. Instead of the instance (L(w), p(m)), use the instance

(ws0, L
′(w), p(m)).) If we ignore probabilities and deal with decision problems only

then the isomorphism J of Section 3 gives rise to a polynomial time reduction of

RPCP(σ) to PMC(σ). Unfortunately, this reduction fails to have the domination

property and it is difficult to alter in any way: The correctness property of the

reduction is too closely related to fact that J is an isomorphism. Theorem 7.5 is not

proved by a reduction from RPCP(σ), but the proof of completeness of RPCP(σ) is

used in an essential way.

Proof of Theorem 7.5. Fix a Turing machine U witnessing Lemma 7.3. We will

reduce RWH(U) to RPMC(σ) for appropriate σ. The variant RPCP(σ) of the Post

Correspondence Problem was defined in a remark above. According [Gu1, Section 5]

(with changes indicated in the remark), there exists a PTime reduction

F (x, n) = (xx′, K(x), p(n))

of RBH(U) to some RPCP(σ) such that |x′| = O(log |xx′|) and |K(x)| = O(log |xx′|).
(Concerning the size bounds, see in particular Lemma 5.1 in [Gu1].) Extend the

isomorphism J to sequences of pairs of binary strings. The function

G(x, n) = (J(xx′), J(K(x)), p(n))

is the desired reduction of RWH(U) to RPMC(σ). Clearly, G is AP time computable

and has the correctness property. Ignoring factors bounded by a polynomial of |x|+n

from above and by an inverse polynomial of |x|+ n from below, we have:

PRPMC(σ)[G(x, n)] ≥ PPM[J(x)] = PRWH(x, n).

The inequality here depends on the fact that |x′| and |K(x)| are logarithmically

small compared to |x|. This ensures that the entries in the matrices J(K(x)) have

sizes logarithmic relative to |x| and the entries in J(xx′) = J(x)J(x′) have sizes

|J(x)| + O(log |x|). These logarithms in the sizes contribute polynomials in |x| as

factors in the probabilities, and such factors are ignored. 2

23

Remark 3 In [Gu2], Theorem 7.5 has been stated in a stronger form; instead

of RPMC(σ) it referred to RPMC(σ, c) where the (A, S, n) were required to have

|S| = O(log |A|). Our proof of the theorem does not establish the stronger result

automatically. Although |K(x)| is logarithmically small compared to |x|, we cannot

conclude that |J(K(x))| is logarithmically small compared to |J(x)| or |J(xx′)|, since

J may shrink x or xx′ much more than it shrinks K(x). Since J shrinks only very few

strings, the stronger form of the theorem may well be true, but we have not checked

this since it does not seem to be worth the additional effort.

8 Matrix Correspondence Problem

In this section, a matrix is a unimodular matrix, a column is a column of two rel-

atively prime (not necessarily positive) integers, and a matrix is seen as the pair of

its columns. Call a matrix or a column positive (resp. negative) if all its entries are

non-negative (resp. non-positive). If u is a column then u1, u2 are the upper and

the lower entries of u, and |u| is the positive column v such that vi = |ui|. Pos-

itive columns are ordered componentwise, as in Section 1. If u is a column then

max(u) = max(|u1|, |u2|). Any component of a column u with the absolute value

max(u) is major, and the other component is minor. If X is a matrix (u, v) then

max(X) = max(max(u), max(v)). Any entry of a matrix X with the absolute value

max(X) is the major entry. If u, v are the two columns of a matrix X and |u| > |v|
then u is the major column and v is the minor; in the case of the unit matrix, both

columns are major and both are minor.

Lemma 8.1 For every matrix X = (u, v),

1. It is impossible that one of the numbers u1v2, u2v1 is positive and the other is

negative. If they are both positive then |u1v2| − |u2v1| = 1, and if they are both

negative then |u2v1| − |u1v2| = 1.

2. If X is not one of the following four matrices(
1 0

0 1

)
,

(
−1 0

1 −1

)
,

(
0 1

−1 0

)
,

(
0 −1

1 0

)

then either (|u|) > (|v|) or (|u|) < (|v|).

Proof (1) If one of the numbers u1v2, u2v1 is positive and the other is negative

then |u1v2 − u2v1| ≥ 1 + 1 which is impossible. If the two numbers are positive

then |u1v2| − |u2v1| = u1v2 − u2v1 = 1, and if the two numbers are negative then

|u2v1| − |u1v2| = u1v2 − u2v1 = 1.

(2) Suppose that X is not one of the four matrices, and suppose that neither

|u| > |v| nor |v| > |u|. Without loss of generality, |u1| > |v1| and |u2| < |v2|; otherwise

24

replace (u, v) with the matrix (v,−u). Since X is neither the unit matrix nor its

negative, either u2 or v1 is not zero. Hence |u1v2|−|u2v1| ≥ (|v1|+1)(|u2|+1)−|u2v1| =
|u2|+ |v1|+ 1 ≥ 2 which contradicts (1). 2

Lemma 8.2 If max(u, v) > 1 then (u, v) has only one major entry.

Proof The proof is very similar to the proof of the second part of Lemma 6.1. There

are some minor differences however, and – for the reader’s convenience – we present

the proof. By contradiction suppose that m = max(u, v) > 1 but (u, v) has two

or more major entries. If two major entries occur in the same row or column then

m divides the determinant which is impossible. Thus, there are exactly two major

entries. Since (u, v) may be replaced with (v,−u), we may suppose that the two

major entries form the second diagonal, i.e., |u2| = |v1| = m. If u2v1 > 0 then

the determinant is negative which is impossible. Hence u2v1 < 0. By Lemma 8.1,

u1v2 ≤ 0 and 1 = |u2v1| − |u1v2| ≥ m2 − (m− 1)2 = 2m− 1 ≥ 3 which is false. 2

Lemma 8.3 For every two matrices (u, v) and (u, v′), there exists an integer k, such

that v′ = v + ku.

Proof u1v
′
2−u2v

′
1 = 1 = u1v2−u2v1 and therefore u1(v

′
2− v2) = u2(v

′
1− v1) = u1u2k

for some k. If neither component of u is zero, the claim is obvious. Suppose that one

of components of u is zero. By symmetry, let u1 = 0. Then v′1 = v1, |u2| = 1 and the

claim is clear. 2

Lemma 8.4 Let X = (u, v) be any matrix with max(X) > 1. If u (resp. v) is the

major column of X then there exists exactly one additional matrix of the form (u, v′)

(resp. (u′, v)) where the column v′ (resp. u′) is minor. Moreover, v′ = v ± u (resp.

u′ = u± v). If the major column is positive or negative then one of the two possible

minor columns is positive and the other one is negative.

Proof It suffices to consider the case when u is the major column because if (u, v) is a

counterexample with the major column on the right then (−v, u) is a counterexample

with the major column on the left. Further, it suffices to consider the case when the

major entry is positive because if (u, v) is a counterexample with a negative major

entry then (−u,−v) is a counterexample with a positive major entry. Let ui be the

major entry of u and (u, v′) be another matrix with major column u. By Lemma 8.3,

v′ = v+ku for some k. Since ui > 1, vi 6= 0. If vi > 0 then k = −1, and if vi < 0 then

k = 1. Notice also that if vi > 0 (resp. vi < 0) then indeed u is the major column of

the matrix (u, v − u) (resp. (u, v + u)). Now suppose that u is positive. Obviously,

u1 > 0 and u2 > 0. By part 1 of Lemma 6.1, v is either negative or positive. If v is

positive (resp. negative) then v′ is negative (resp. positive). 2

Let SL2(Z) denote not only the modular group but also the uniform domain of

unimodular matrices with |X| = `(max(X)).

25

Lemma 8.5 Let m > 1 and X be a random unimodular matrix with max(X) = m.

The probability that X is positive is 1/8, and the probability that X is the inverse of

a positive matrix is 1/8 as well.

Proof Let S0 be the collection of matrices X with max(X) = m. The inverse of a

matrix

(
a c

b d

)
is the matrix

(
d −c

−b a

)
; thus max(X−1) = max(X) and therefore

S0 is closed under inversion. It follows that the number of positive matrices in S0

equals the number of the inverses of positive matrices. Hence it suffices to prove only

the first statement of the lemma.

Let S1 be the collection of S0 matrices X such that the major entry of X is positive.

For every (u, v) in S0, exactly one of the two matrices (u, v), (−u,−v) belongs to S1.

It remains to prove that the probability of a random S1 matrix being positive is 1/4.

Since the major entry of an S1 matrix exceeds 1, the minor component of the

major column is not zero. Let S2 be the collection of S1 matrices such that the minor

component of the major column is positive. For every S1 matrix X, let X ′ be the

result of multiplying by −1 the diagonal of X which contains the minor component

of the major column. Exactly one of the two matrices X, X ′ belongs to S2. It follows

that S2 contains exactly one half of the elements of S1. It remains to prove that the

probability of a random S2 matrix being positive is 1/2. Now use Lemma 8.4. 2

The direct product SL2(Z)× SL2(Z) is a domain and monoid of matrix pairs; the

multiplication of matrix pairs is componentwise: (X1, Y1)× (X2, Y2) = (X1X2, Y1Y2).

If S is a set of matrix pairs, let Sn comprise products P1 × . . . × Pm where m ≤ n

and each Pi ∈ S. Let σ be a positive integer. In the following definition, MC stands

for Matrix Correspondence.

Definition 8.6 For each positive integer σ, MC(σ) is the decision problem with

domain SL2(Z)× Setσ(SL2(Z)× SL2(Z))×PI where an instance (A, S, n) is positive

if and only if there exists a pair (X, Y) ∈ Sn such that AX = Y .

Let σ witness Theorem 7.5.

Theorem 8.7 MC(σ) is hard for RNP. Moreover, so is its restriction to the subdo-

main of those instances (A, S, n) where each pair in S consists of positive matrices.

Proof The identity function reduces PMC(σ) to the desired restriction of MC(σ)

and therefore to MC(σ) itself. To check the domination property, use Lemmas 3.7

and 8.5. 2

26

9 Linear transformations of the modular group

Theorem 9.1 Suppose that T : SL2(Z) → SL2(Z) is linear in the sense that, if

X =
∑k

i=1 Yi with X and all Yi in SL2(Z), then T (X) =
∑k

i=1 T (Yi). Then there exist

B and C in SL2(Z) such that either, for all X ∈ SL2(Z), T (X) = BXC or, for all

such X, T (X) = BX tC where the superscript t denotes transpose.

Proof We first normalize T so that T (I) = I, where I is the identity matrix. If

the given T does not fix I, then we consider T ′ given by T ′(X) = T (I)−1T (X), and

we observe that the hypotheses of the theorem about T imply the same hypotheses

about T ′ and the conclusion about T ′ (with C = B−1) implies the same conclusion

about T . Thus we may as well work with T ′, which fixes I, instead of T . So, from

now on, we assume that T (I) = I.

Notation M2(Q) (resp. M2(C)) is the vector space of two-by-two matrices with

rational (resp. complex) entries. As usual, SL2(Q) (resp. SL2(C)) is the multiplicative

group of two-by-two matrices X with rational (resp. complex) entries such that

det(X) = 1.

Our next goal is to show that the linearity hypothesis on T implies that T can be

extended to a linear transformation (in the usual sense) on M2(Q). Let B be the set

of the following four matrices in SL2(Z):(
1 0

0 1

)
= I,

(
1 0

1 1

)
,

(
1 1

0 1

)
,

(
1 1

−1 0

)
.

It is easy to see that every matrix in the standard basis for M2(Q)(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)
is a linear combination (with integer coefficients) of the B matrices, so that B is a

basis for M2(Q). There is no question what the linear extension of T should be; it is

the unique linear transformation T̄ that agrees with T on these four basis matrices.

Our task is to show that it agrees with T on the other matrices in SL2(Z) as well.

Any SL2(Z) matrix X is a linear combination, with rational coefficients, of the four

SL2(Z) matrices in the basis; in order to show that T (X) = T̄ (X), it suffices to prove

that T (X) is the similar linear combination of T -images of the four matrices. Thus,

it suffices to show that any linear dependence relation with rational coefficients that

holds between some matrices in SL2(Z) also holds between their T -images. Further-

more, we may suppose that the coefficients are integers (since we can multiply by a

common denominator of the rational coefficients) and in fact that the coefficients are

all ±1 (as other coefficients can be replaced by repeated terms). Comparing what we

need to prove with the hypothesis of the theorem, we find that we need only check

27

that T (−X) = −T (X) for all X ∈ SL2(Z). But this is easy; just apply the hypothesis

to the linear relation X = −X + X + X.

From now on, we write T not only for the given function but also for the corre-

sponding linear transformation of M2(Q) (called T̄ above), and for the unique exten-

sion of this to a linear transformation of M2(C).

We note for future reference that if a matrix X from M2(C) has integer entries

then so does T (X). Indeed, this claim is true by hypothesis if X has determinant 1

and in particular for the four B matrices. By linearity of T , the claim follows for any

X that is a linear combination with integer coefficients of B matrices. In particular

the claim is true for the 4 matrices in the standard basis of M2(Q) and therefore it is

true for all X in M2(C).

We shall also need that T preserves determinants, i.e. that det T (X) = det(X)

for all X ∈ M2(C). This is true by hypothesis if X ∈ SL2(Z), but some work will be

needed to extend it to more general X.

Begin by considering X ∈ M2(Q). For such an X, the following two conditions

are equivalent. (1) The determinant and the trace of X both vanish. (2) There are

at least two distinct non-zero rational numbers r for which I + rX ∈ SL2(Z). This

follows from the formula

det(I + rX) = 1 + r · tr(X) + r2 · det(X).

If (1) holds, then I + rX has determinant 1 for all r, so we can satisfy (2) by taking

any two r’s for which the entries of rX are integers. Conversely, if (2) holds then we

have two linear equations satisfied by the determinant and the trace of X, namely

r · tr(X) + r2 · det(X) = 0

for each of the two r’s. As the two equations are linearly independent, (1) follows.

It is clear, from inspection of condition (2), that if X satisfies it then so does

T (X). Thus, T maps the set N of matrices satisfying (2) or equivalently (1) into

itself. T therefore also maps the linear span N̄ of N into itself. Notice that the trace

of every N̄ matrix is zero and that matrices with zero trace form a 3-dimensional

subspace of M2(Q). Since N contains the matrices(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
1 1

−1 −1

)
,

it follows that N̄ is exactly that 3-dimensional subspace. In this 3-dimensional vector

space N̄ , N is a cone, the zero-set of the quadratic form det.

We check that, for some k, det(T (X)) = k · det(X) for all X of trace zero. Let X

be (
x y

z −x

)
,

28

so that det(X) = −x2 − yz. As T is linear and det is quadratic,

det(TX) = αx2 + βy2 + γz2 + δxy + εxz + ζyz

for some coefficients α, β, γ, δ, ε, ζ. Since T maps N onto itself, det(TX) = 0 if

det(X) = 0. Choose y = x2 and z = −1 so that det(X) = 0 and therefore det(TX) =

0. We have that, for all x, αx2 + βx4 + γ + δx3 − εx − ζx2 = 0, so that α = ζ and

β = γ = δ = ε = 0. Thus, det(TX) = αx2 + αyz = −α det(X).

Consider in particular the matrices

X =

(
0 3

1 0

)
2I + X =

(
2 3

1 2

)
,

and notice that X has trace zero while 2I + X ∈ SL2(Z). So we have

1 = det(T (2I + X))

= det(2I + T (X))

= 4 + 2 · tr(T (X)) + det(T (X))

= 4 + 2 · 0 + k · det(X)

= 4− 3k,

so k = 1 and det(T (X)) = det(X) for all rational X of trace zero.

For rational X of arbitrary trace, we can write X = rI + Y where r is rational

and Y ∈ N̄ . Then by what we have already proved, T (Y) has trace zero and the

same determinant as Y . So

det(T (X)) = det(T (rI + Y))

= r2 + r · tr(T (Y)) + det(T (Y))

= r2 + det(Y)

= det(rI + Y) = det(X).

This shows that T preserves determinants of rational matrices. It follows that it

preserves determinants of real matrices (by continuity) and of complex matrices (by

analytic continuation). (Here is a more elementary argument. We have the equation

det(T (X)) = det(X) when all four entries are rational. If we let one entry, say the

upper left one, vary over complex numbers while the other three entries remain fixed

rational numbers, then the equation remains true because a polynomial equation in

one variable that holds infinitely often must hold identically. Then we let another

entry vary, while the remaining three stay fixed, one being an arbitrary complex

number and the other two rational. Repeating the process for each entry in turn, we

find that the equation holds for all complex values of the entries.)

Summarizing what we have achieved so far, we have a linear, determinant-

preserving transformation T on M2(C), which sends I to itself and sends integer

29

matrices to integer matrices. Our immediate goal is to show that there is a matrix

B ∈ SL2(C) satisfying the conclusion of the theorem with C = B−1 (as T (I) = I),

not only for all X ∈ SL2(Z) but for all X ∈ M2(C). (This information is essentially

contained in [W, pages 19–21], but for the reader’s convenience we give a different,

more detailed proof.) Once this is done, we shall complete the proof by showing that

the entries of B must be integers.

Until we reach our intermediate goal, we shall be working in the complex vector

space M2(C), and it will be convenient to use the following basis for this space:

I =

(
1 0

0 1

)
, P =

(
i 0

0 −i

)
, Q =

(
0 1

−1 0

)
, R =

(
0 i

i 0

)
.

The advantage of this basis is that the determinant is given by a very simple formula

det(aI + pP + qQ + rR) = det

(
a + pi q + ri

−q + ri a− pi

)
= a2 + p2 + q2 + r2.

As T is linear and preserves determinants and I, it preserves eigenvalues; indeed,

if X − xI has determinant zero then so does T (X − xI) = T (X)− xI. In particular,

T

(
1 0

0 0

)
has eigenvalues 1 and 0; viewed as a transformation of 2-component vec-

tors, it is a projection onto some line along some other line, which means that it has

the form

T

(
1 0

0 0

)
=

(
p

q

)
(r s) =

(
pr ps

qr qs

)
for some p, q, r, s. Furthermore, since the eigenvalues are 1 and 0, the trace is 1, so

pr + qs = 1. This means that the matrix

A =

(
p −s

q r

)

has determinant 1. The transformation X 7→ AXA−1 sends I to itself and sends(
1 0

0 0

)
to

(
pr ps

qr qs

)
, just like T . So the linear transformation

T ′(X) = A−1T (X)A

preserves determinants and fixes both I and

(
1 0

0 0

)
and therefore also their linear

combination P . If we achieve our intermediate goal for T ′, the same result will follow

immediately for T . Indeed, if T ′(X) = BXB−1 then T (X) = (AB)X(AB)−1, while

if T ′(X) = BX tB−1 then T (X) = (AB)X t(AB)−1. So we may work with T ′ instead

of T .

Thus, we assume that T fixes both I and P . Furthermore, as T preserves the

quadratic form det, it also preserves the associated bilinear form

〈X, Y 〉 =
1

2
(det(X + Y)− det(X)− det(Y)),

30

which has, relative to our chosen basis, the standard form

〈aI + pP + qQ + rR, a′I + p′P + q′Q + r′R〉 = aa′ + pp′ + qq′ + rr′.

(Usually, complex linear spaces are equipped with inner products that are linear in

one factor and conjugate-linear in the other. That is not the case here; our inner

product is linear in both factors.)

As T preserves this inner product and fixes I and P , it must leave invariant the

set of vectors orthogonal to both I and P , namely the linear span of Q and R. So we

have T (Q) = qQ + rR for some scalars q and r. Also, we have

1 = det(Q) = det(T (Q)) = det(qQ + rR) = q2 + r2.

There is a complex number v such that (v + (1/v))/2 = q. (Just solve a quadratic

equation for v; of course there is a second solution 1/v.) Notice that

[
1

2
(v +

1

v
)]2 + [

1

2i
(v − 1

v
)]2 = 1 = q2 + r2,

so r = ±(v − (1/v))/2i. Replacing v with 1/v if necessary, we can arrange that

q =
1

2
(v +

1

v
) r =

1

2i
(v − 1

v
).

Let u be either of the square roots of v, and let

M =

(
u 0

0 1
u

)
.

Notice that

M ·
(

x y

z w

)
·M−1 =

(
x u2y
1
u2 z w

)
=

(
x vy
1
v
z w

)
.

In particular, the transformation X 7→ MXM−1 fixes I and P (just as T does) and

it sends Q =

(
0 1

−1 0

)
to

(
0 v

− 1
v

0

)
=

1

2
(v +

1

v
)

(
0 1

−1 0

)
+

1

2i
(v − 1

v
)

(
0 i

i 0

)
= qQ + rR

= T (Q).

So T ′(X) = M−1T (X)M preserves determinants and fixes I, P , and Q. As before,

it suffices to reach our intermediate goal for T ′ rather than T . So from now on we

assume that T fixes I, P , and Q.

It follows that T fixes the subspace orthogonal to I, P , and Q, namely the subspace

spanned by R. So T (R) is a scalar times R, and the scalar can only be ±1 because T

31

preserves determinants. If the scalar is 1, then T fixes all four basis matrices, hence is

the identity. If, on the other hand, the scalar is −1, then T (X) = P−1X tP , because

the right side of this equation defines a linear transformation which, like T fixes I,

P , and Q and reverses the sign of R. In either case, T has the required form, so we

have achieved our intermediate goal.

We now return to the original T , normalized to fix I and extended to M2(C),

which we now know to have the form T (X) = BXB−1 or T (X) = BX tB−1 for some

B ∈ SL2(C). We also know that if the entries of X are integers then so are those of

T (X). What we still need to show is that the entries of B are integers. Without loss

of generality, we may suppose that T (X) = BXB−1.

Let X be the matrix with a single entry equal to 1, say the entry in position i, j,

and all other entries zero. Then the entries of T (X), namely

(BXB−1)k,l = Bk,i(B
−1)j,l

are integers for all k and l. But, as B has determinant 1, the entries of B−1 are the

same as those of B, except for their signs and their positions in the matrices. Thus

we see that the product of any two entries of B is an integer.

In particular, the square of each entry of B is an integer, so each entry is the

product of an integer and (possibly) the square roots of certain distinct primes.

Suppose p is a prime whose square root occurs in one of the entries. Then
√

p

must occur in every entry, for the product of an entry containing
√

p as a factor and

another entry not containing it could never be an integer. So
√

p occurs as a factor

of every entry of B. But then p is a factor of det(B) = 1. This contradiction shows

that no square roots occur.

So every entry of B is an integer, and the proof is complete. 2

We saw that an arbitrary linear transformation T over SL2(Z) extends uniquely to

a linear transformation over the vector space M2(R) of all four-by-four real matrices.

Let Mat(T) be the matrix of (the extension of) T in the standard basis:(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)
.

Lemma 9.2

T

(
x1 x2

x3 x4

)
=

(
y1 y2

y3 y4

)
←→ Mat(T)

x1

x2

x3

x4

 =

y1

y2

y3

y4

 .

Proof Obvious. 2

The entries of Mat(T) are the entries of the 4 matrices obtained by applying T to

the standard basis. By Theorem 9.1, these are integers.

32

By Theorem 9.1, there are unimodular matrices B and C such T (X) = BXC for

all unimodular matrices X or T (X) = BX tC for all unimodular matrices X. Call

T right in the first case and left in the second. The determinant of Mat(T) is ±1

because

det(Mat(T))× det(Mat(T−1)) = det(T × T−1) = 1.

Lemma 9.3 Right transformations are exactly those with determinant +1.

Proof It suffices to prove that if T is right then det Mat(T) = 1, because a left T is

the product of the transposing transformation (whose matrix has determinant 1) and

a right transformation. So suppose that T (X) = BXC for some unimodular matrices

B, C and all unimodular (and therefore all two-by-two real matrices) X.

Now forget about unimodular matrices and think about real matrices. Every

pair (B′, C ′) of nonsingular two-by-two real matrices gives a linear transformation

T ′ = X 7→ B′XC ′ over two-by-two real matrices which has an inverse, so that the

matrix Mat(T ′) of T ′ in the standard bases is non-zero. Now continuously transform

B and C to the unit matrix. In the process T is continuously transformed to the

identity, whose matrix has determinant 1, and the determinant of T remains non-

zero all the time. Therefore its initial value cannot be −1. 2

Lemma 9.4 There is a PTime algorithm that, given a four-by-four integer matrix

M , determines whether M = Mat(T) for some T .

Proof If M = Mat(T) then, by Theorem 9.1, there exist unimodular matrices B and

C such that either T (X) = BXC for all unimodular matrices X or T (X) = BX tC

for all unimodular matrices X. We show how to find out whether there is a pair

(B, C) satisfying the first condition and even how to find all pairs (B, C) satisfying

the first condition. The case of the second condition is similar.

Suppose that T (X) = BXC for all unimodular matrices X. Due to the unique

extendibility of T , T (X) = BXC for all two-by-two real matrices. Let

B =

(
b1 b2

b3 b4

)
, C =

(
c1 c2

c3 c4

)
.

Computing the products BXC where X belongs to the standard basis and using

Lemma 9.2, we have

M =

b1c1 b1c3 b2c1 b2c3

b1c2 b1c4 b2c2 b2c4

b3c1 b3c3 b4c1 b4c3

b3c2 b3c4 b4c2 b4c4

 .

Thus we can recover all bi/bj and all ci/cj. So we recover B and C up to scalar

factor. We recover the scalar factor, except for the sign, using the equalities det(B) =

det(C) = 1. It follows that the pair (B, C) is unique except for an over-all sign. 2

33

10 Matrix Transformation

In this section we prove that Matrix Transformation is hard for RNP.

For an arbitrary numerical matrix X, let max(X) be the maximal absolute value

of the entries of X. Recall that `(n) is the length of the binary notation for n and

Mat(T) is the matrix of a linear transformation T .

Definition 10.1 LT (standing for “Linear Transformations”) is the uniform domain

of linear transformations of SL2(Z) with |T | = `(max(Mat(T))).

It will be convenient to ignore distinction between a linear transformation T over

SL2(Z) and its matrix Mat(T).

For all unimodular matrices B and C, let TB,C be the linear transformation X 7→
C−1XB.

Lemma 10.2 The function (B, C) 7→ MB,C reduces the subdomain of positive pairs

in SL2(Z)× SL2(Z) to LT.

Proof We need to check only that the function f(B, C) = MB,C has the domination

property. Recall that the inverse of a matrix

(
a c

b d

)
is the matrix

(
d −c

−b a

)
.

It follows that max(f(B, C)) = max(B) × max(C) and therefore |B| + |C| − 1 ≤
|f(B, C)| ≤ |B|+ |C|.

Let l = |f(B, C)|, let M range over LT and let B, C range over unimodular

matrices. Using # as the cardinality symbol, we have

#{M : |M | = l} ≤ 2#{(B, C) : l ≤ |B|+ |C| ≤ l + 1} =
l+1∑
j=1

[#{B : |B| = j} ×#{C : l − j ≤ |C| ≤ l − j + 1}] .

By Lemma 8.5, the number of unimodular matrices of size m > 1 is 8 times the

number of positive unimodular matrices of size m. According to Lemma 6.7, the later

number is Θ(22m). It follows that, modulo a constant factor,

#{M : |M | = l} ≤
l+1∑
l=1

22j22l−2j = 22l(l + 1).

We saw in the previous section that, for each M in LT, the pre-image of f−1(M)

has at most 2 elements. It follows that, modulo bounded factors,

P(f−1f(B, C))

P(f(B, C))
≤ 22l(l + 1)

22l
= l + 1 ≤ |(B, C)|+ 1

which is AP on SL2(Z)× SL2(Z). 2

If S is a subset of LT, let Sn be the set of products Tm · · ·T1 where m ≤ n and

each Ti ∈ S. First we prove that an auxiliary version of Matrix Transformation is

hard for RNP.

34

Definition 10.3 For each positive integer σ, MT(σ) is the decision problem with

domain SL2(Z)× Setσ(LT)× PI where an instance (A, S, n) is positive if and only if

there exists T ∈ Sn that transforms A to the unit matrix.

Theorem 10.4 Some MC(σ) is hard for RNP.

Proof Let σ witness Theorem 8.7. We reduce the subdomain of MC(σ) described in

Theorem 8.7 to MC(σ). If S is a sequence of positive matrix pairs, let S ′ be the result

of replacing each pair (B, C) in S with the linear transformation TB,C(X) = C−1XB.

The desired reduction is f(A, S, n) = (A, S ′, n). To check the correctness property,

note that AB1 . . . Bm = C1 . . . Cm if and only if the transformation TBm,Cm . . . TB1,C1

takes A to the unit matrix.

It remains to check that f reduces the relevant subdomain of SL2(Z)× (SL2(Z)×
SL2(Z))σ × PI to the domain SL2(Z) × (LT)σ × PI. It suffices to check that the

function S 7→ S ′ reduces (SL2(Z) × SL2(Z))σ to LTσ. By Lemma 3.7, it suffices to

check that the function (B, C) 7→ TB,C reduces SL2(Z) × SL2(Z) to LT. Now use

Lemma 10.2. 2

Definition 10.5 MT is the decision problem with domain SL2(Z) × Set(LT) × PI

such that an instance (A, S, n) is positive if and only if there exists P ∈ Sn with

A = P (1).

Corollary 10.6 MT is RNP complete.

Proof The identity function deterministically reduces MT(σ) to MT. We omit check-

ing that MT is in RNP. 2

Remark 4 Let π(j) be any PTime computable nondecreasing function from positive

integers to positive integers such that the inverse function π−1(j) = mini[π(i) ≥ j] is

polynomially bounded. For example, π(j) = j. The restriction of MT (resp. MT(σ))

to instances (A, S, n) with n = π(|A|) remains RNP complete. The proof is the same

proof except we start with the corresponding version of the bounded halting problem,

which has been proved RNP complete in [Gu1, Section 9].

11 Bounded membership problem

In this section, we briefly consider a natural simplification of MT(σ) where the ques-

tion is whether the given unimodular matrix X is a product of at most n factors

taken from a given finite subset (assumed closed under inverses) of SL2(Z). This is

a bounded version of the membership problem [Mi] for SL2(Z). We show that it is

NP complete. It is interesting open problem whether a natural randomization of it

is RNP complete. We begin with the analogous bounded version of the membership

problem for the additive group of integers.

35

Definition 11.1 Integer Sum is the following NP problem:

Instance: A positive integer K, a finite set S of positive integers, and a positive

integer n.

Question: Can K be represented as
∑m

i=1 εibi where m ≤ n, the numbers bi are (not

necessarily distinct) elements of S, and εi ∈ {1,−1}?

The restriction n on the number of summands is important. It is easy to decide

whether or not K can be represented as a sum of elements of S ∪ {−b : b ∈ S};
just compute the greatest common divisor of the elements of S and check whether it

divides K.

Lemma 11.2 Integer Sum is NP complete.

The fact may be well known. It was not known to us. Suzanne Zeitman, a

graduate student of the second author, proved the lemma.

Proof The proof is by reduction from X3C, Exact Cover by 3-Sets [GJ], which is the

following NP problem:

Instance: A positive integer q and a collection C of 3-element subsets of the set

{1, 2, . . . , 3q}.

Question: Is there an exact cover C ′ ⊆ C for X (so that each element of X belongs

to exactly one member of C ′)?

The transformation f we use resembles that used in the reduction of 3-Dimensional

Matching to Partition [GJ]. Given an instance (q, C) of X3C, let l be the length of

the binary notation for q and B be the collection of binary strings of length 3ql. View

a B string as a sequence of 3q blocks (substrings) of length l. For each i, 1 ≤ i ≤ 3q,

let ai be the integer represented by a B string with exactly one 1 which appears at

the rightmost position of the i-th block.

Claim 11.3 If
∑3q

i=1 αiai =
∑3q

i=1 βiai and 0 ≤ αi, βi ≤ q for each i, then αi = βi for

each i.

Proof By the definition of l. 2

Define

f(q, C) = (K, {y(T) : T ∈ C}, q)

where K =
∑3q

i=1 ai and each y(T) =
∑

i∈T ai. If C ′ is an exact cover of C, then the

cardinality of C ′ is q and K is represented as the sum of the q numbers y(T) such

that T ∈ C ′.

36

Now suppose that K =
∑m

j=1 εjy(Tj) where m ≤ q and εj ∈ {1,−1} and Tj ∈ C.

Then let K+ =
∑{y(Tj) : εj > 0} =

∑3q
i=1 αiai and K− =

∑{y(Tj) : εj < 0} =∑3q
i=1 γiai, so that K+ = K + K−. Clearly, αi ≤ m ≤ q. Similarly, γi ≤ q. For each

T ∈ C, let zi(T) equal 1 if i ∈ T and equal 0 otherwise.

First consider the case K− = 0. By the Claim, we have that, for each i,
∑

j zi(Tj) =

1. Thus, the sets Tj form an exact cover.

By contradiction, suppose that K− > 0. Then the number of j’s with εj > 0 is

less than q and therefore there exists an i with αi = 0. Since K+ = K + K−, we

have, by the Claim, that 0 = αi = 1 + γi which is impossible. 2

Definition 11.4 The bounded membership problem for the modular group, in short

BM, is the following NP decision problem:

Instance: A unimodular matrix X, a finite set S of unimodular matrices and a

positive integer n.

Question: Can X be represented as
∏m

i=1 Yi where m ≤ n and, for each i, either Y

or Y −1 is in S?

Corollary 11.5 BM is NP complete.

Proof For each integer y, let

g(y) =

(
1 y

0 1

)
.

If g(y) = Y and g(z) = Z then g(y + z) = Y Z and g(−y) = Y −1. This gives rise to

the following reduction of IS to BM:

F (K, S, n) = (g(K), {g(y) : y ∈ S}, n).

2

One natural way to randomize BM is to view the domain of BM as SL2(Z) ×
Set(SL2(Z)) × PI. The corresponding randomized decision problem is probably de-

cidable in AP time.

References

[BCGL] Shai Ben-David, Benny Chor, Oded Goldreich and Michael Luby, “On the

Theory of Average Case Complexity”, 21st Annual ACM Symposium on The-

ory of Computing, ACM, 1989, 204–216.

37

[BG1] Andreas Blass and Yuri Gurevich, “On the Reduction Theory for Average-Case

Complexity”, CSL’90, 4th Workshop on Computer Science Logic, Heidelberg,

Germany, Springer Lecture Notes in Computer Science 533, 1991, 17–30.

[BG2] Andreas Blass and Yuri Gurevich, “Randomizing Reductions of Search Prob-

lems”, SIAM J. on Computing, to appear. An extended abstract in FST&-

TCS’91, 11th Conference on Foundations of Software Technology and Theoret-

ical Computer Science, New Delhi, India, Springer Lecture Notes in Computer

Science 560 (1991), 10–24.

[BG3] Andreas Blass and Yuri Gurevich, “Randomized Reductions of Decision Prob-

lems” (tentative title), in preparation.

[Ei] Samuel Eilenberg, “Automata, Languages, and Machines”, Vol. A and B, Aca-

demic Press, NY & London, 1974 and 1976, xvi+451pp. and xiii+387 pp.

[GJ] Michael R. Garey and David S. Johnson, “Computers and Intractability: A

Guide to the Theory of NP-Completeness”, Freeman, New York, 1979.

[Gu1] Yuri Gurevich, “Average Case Completeness”, J. Computer and System Sci-

ences 42:3, June 1991, 346–398. (An extended abstract in FOCS’87.)

[Gu2] Yuri Gurevich, “Matrix Decomposition Problem is Complete for the Aver-

age Case”, FOCS’90, 31st Annual Symposium on Foundations of Computer

Science, IEEE Computer Society Press, 1990, 802–811.

[Gu3] Yuri Gurevich, “Average Case Complexity”, ICALP’91, 18th International

Colloquium on Automata, Languages and Programming, Madrid, Springer

Lecture Notes in Computer Science 510, 1991, 615–628.

[GS] Yuri Gurevich and Saharon Shelah, “Expected Computation Time for Hamil-

tonian Path Problem”, SIAM J. on Computing 16:3 (1987) 486–502.

[HW] G. H. Hardy and E. M. Wright, “An Introduction to the Theory of Numbers”,

Oxford University Press, 5th edition, 1988 printing.

[IL] Russel Impagliazzo and Leonid A. Levin, “No Better Ways to Generate Hard

NP Instances than Picking Uniformly at Random”, 31st Annual Symposium

on Foundations of Computer Science, IEEE Computer Society Press, 1990.

[Jo] David S. Johnson, “The NP-Completeness Column”, Journal of Algorithms 5

(1984), 284-299.

[Kn1] Donald E. Knuth, “The Art of Computer Programming”, Vol. 1, 2nd edition,

Addison-Wesley, Reading, Massachusetts, 1973.

38

[Kn2] Donald E. Knuth, “Big Omicron and Big Omega and Big Theta”, SIGACT

News, Apr.–June, 1976, 18–24.

[Le] Leonid A. Levin, “Average Case Complete Problems”, SIAM Journal of Com-

puting, No. 15, 1986, 285–286.

[VL] Ramarathnam Venkatesan and Leonid Levin, “ Random Instances of a Graph

Coloring Problem are Hard”, 20th Symp. on Theory of Computing, ACM,

1988, 217–222.

[VR] Ramarathnam Venkatesan and Sivaramakrishnan Rajagopalan, “Average Case

Intractability of Matrix and Diophantine Problems”, 24th Symp. on Theory

of Computing, ACM, 1992, 632–642.

[Mi] Charles F. Miller, III, “Decision Problems in Algebraic Classes of Groups (a

Survey)”, in Word Problems, ed. by W.W. Boone, F.B. Cannonito, and R.C.

Lyndon, North-Holland, 1973, 507–523.

[YK] Andrew C. Yao and Donald E. Knuth, “Analysis of the subtractive algorithm

for greatest common divisors”, Proc. Nat. Acad. Sci USA 72:12 (1975), 4720–

4722.

[W] Bartel L. van der Waerden, “Gruppen von Linearen Transformationen”, Ergeb-

nisse Math., IV.2, Springer-Verlag, Berlin, 1935.

39

	Introduction
	Domains
	Domain reductions
	Search problems
	Decision problems
	Positive matrices
	Positive Matrix Correspondence Problem
	Matrix Correspondence Problem
	Linear transformations of the modular group
	Matrix Transformation
	Bounded membership problem

