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Abstract. This paper closes a gap in the foundations of the theory of average case complexity.
First, we clarify the notion of a feasible solution for a search problem and prove its robustness. Second,
we give a general and usable notion of many-one randomizing reductions of search problems and prove
that it has desirable properties. All reductions of search problems to search problems in the literature
on average case complexity can be viewed as such many-one randomizing reductions; this includes those
reductions in the literature that use iterations and therefore do not look many-one. As an illustration,
we present a careful proof in our framework of a theorem of Impagliazzo and Levin.
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1. Introduction and results. Reduction theory for average case computational
complexity was pioneered by Leonid Levin [?]. Recently, one of us wrote a survey on
the subject [?], and we refer the reader there for a general background. However, the

present paper is largely self-contained; we recall all necessary de�nitions.
We develop the foundations of the theory of many-one reductions of search problems

in the context of randomizing algorithms. Many-one reductions are easier to use than
Turing reductions, but one may wonder how restrictive they are. Indeed, there are

cases in the literature on average-case complexity [?, ?] when reductions of search
problems to search problems are not many-one; those reductions are iterations of many-
one reductions. It turns out, however, that iteration is needed, not for reductions, but
only for the resulting search algorithms. Thus, the theory of reductions can be simpli�ed

by treating reductions separately from iteration. Our notion of many-one reduction was
in
uenced by the speci�c reductions used in [?, ?, ?].

As a general framework for the study of average case complexity, we use domains.
De�nitions of domains and polynomiality on average are recalled in Section 2. Essen-

tially, a domain is a set of strings with a size function and a probability distribution. If
X is a subset of positive probability of a domain A then the restriction of A to X is the
domain obtained by assigning zero probability to elements of A�X and renormalizing

the probabilities on X. The phrase \polynomial on average" is abbreviated to \AP".
We consider search problems of the following sort. A domain A (of instances) is

given, along with a binary relation W between elements of A and arbitrary strings in
some �xed alphabet �. If W (x;w) holds, the string w is a witness for the instance

x (with respect to W ) and x is a positive instance; an instance x is negative if it has
no witnesses. We assume that there exists an algorithm that, given an instance x of
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non-zero probability and a witness w for x, computes W (x;w) in time polynomial in

jxj+ jwj where jxj = jxjA is the size of x with respect to A and jwj is the ordinary length
of w. The search problem SP(A;W ) is: Given a positive instance x 2 A of non-zero
probability, �nd a \witness" w such that W (x;w).

Let A+ be the restriction of domain A to positive instances. An algorithm for

SP(A;W ) is supposed to �nd witnesses for instances x 2 A+ of non-zero probability; it
is immaterial what the algorithm does for other instances.

In the context of PTime (i.e. polynomial time) search algorithms, it is reasonable to
assume that the length of a witness is bounded by a polynomial of the size of the instance

and that W (x;w) is computable in time polynomial in jxj, since such an algorithm,
given x, could produce only w's that are polynomially bounded with respect to x. Search
problem of this kind are called NP search problems; every NP decision problem gives

rise to an NP search problem. We shall, however, work, not with polynomial-time
algorithms, but with (randomizing) algorithms whose running time is polynomial on
average (AP time algorithms). For such algorithms, there may be an occasional input
x (and a random string r) for which the running time and the length of the output are

very long. Therefore, we do not require that the length of a witness is bounded by a
polynomial of the size of the instance or that W (x;w) is computable in time polynomial
in jxj. However, if we require that the length of a witness is bounded by a polynomial
of the size of the instance or that W (x;w) is computable in time polynomial in jxj, all
our theorems remain true. On the other hand, the condition that W (x;w) is PTime
computable relative to jxj+ jwj can be relaxed to a hybrid | PTime with respect to w

and AP time with respect to x | without a�ecting the results of this paper [?].
It is often useful to consider search problems where one seeks witnesses w for certain

instances but doesn't care what the algorithm does for other instances even if those other
instances have witnesses. For example, in the unique search problems, considered in [?],
the algorithm applied to an instance x (and a random string) should produce a witness w

when w is the unique witness for x, but it does not matter what the algorithm does when
applied to an instance for which there is either no witness or more than one witness.
Such problems can be incorporated into our framework by replacing A with its restriction
to important instances.

One interesting case is when every instance of non-zero probability has a witness.
This can be achieved by restricting the domain to positive instances, but there are other
ways as well. Consider, for example, the usual Hamiltonian Circuit search problem with
some probability distribution on graphs. Not every graph has a Hamiltonian circuit.

However, we can require that, in the case of a graph without a Hamiltonian circuit, a
witness establishes the nonexistence of a Hamiltonian circuit. For example, a witness
may be a computation establishing the nonexistence of any Hamiltonian circuit. Such
a witness may be long, but W (x;w) is required to be computable in time polynomial in

jxj+ jwj, not in jxj, so long witnesses may be all right. Indeed, there exists an algorithm
for a randomized version of Hamiltonian Circuit (with an arbitrary but constant edge
probability) that �nds a Hamiltonian circuit or establishes the nonexistence of one in

linear, in the number of vertices, expected time [?].
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Before we explain our notion of feasible solutions, let us recall a useful notion of

random function [?]. Deterministic algorithms compute deterministic functions. Sim-
ilarly, randomizing (coin 
ipping) algorithms compute random functions. Formally, a
random function f on a domain A is a deterministic function on an extension Df of A
whose elements are pairs (x; s) where x 2 A and s is a binary string to be regarded as

the sequence of coin 
ips used by the algorithm. In this introduction we allow ourselves
to be sloppy about the distinction between a randomizing algorithm and the random
function it computes. The de�nition of random functions is recalled in Section 2.

There are di�erent approaches to de�ning what constitutes a good randomizing al-

gorithm for a search problem. One approach, closer to the actual use of such algorithms,
requires that a correct answer be obtained, with probability equal to 1 or at least very
nearly 1, in reasonable time (i.e. in AP time). Another approach requires only that the

algorithms have, for every input of positive probability, a reasonably high probability of
success, say at least 1%. For many purposes, the two approaches are equivalent, since
an algorithm of the second, weaker sort can be iterated with independent random strings
to obtain a very high probability of success at the cost of a moderate increase in the run-

ning time. A polynomial number of iterations su�ces to improve success probabilities
from as low as a reciprocal of a polynomial of jxj to as high as exponentially (relative
to jxj) close to 1. For average-case complexity, the situation is even better. We can
start with a success probability whose reciprocal is not polynomially bounded but only

polynomial on average, and we can iterate the algorithm to obtain a success probability
1, without increasing the time beyond AP.

To make these ideas precise, we introduce, in Section 3, the notions of AP time
randomizing algorithms and almost total randomizing algorithms. An almost total, AP

time randomizing algorithm succeeds with probability 1, but an arbitrary AP time al-
gorithm needs only to succeed often enough on each instance. The notion of AP time
randomizing algorithms is the central notion of this paper. Roughly speaking, a ran-

domizing algorithm M with inputs in a domain A is AP time, if it has a set of \good
inputs" (x; s), where x 2 A and s is a �nite sequence of coin 
ips, such that M termi-
nates on every good input, the proportion of good inputs (among all inputs) is at least
the reciprocal of an AP function, and the computation time of M on good inputs is not

too big. It is not required that the set of good inputs is easily recognizable in any way.

Definition 1.1. A randomizing algorithm M is an AP time solution (resp. almost

total, AP time solution) for a search problem SP(A;W ) if M is AP time (resp. almost
total, AP time) on A+ and every terminating computation of M with input x 2 A+

of non-zero probability (and arbitrary coin 
ips) produces as output a witness w with
(x;w) 2 W .

It might seem more natural to require that an AP time algorithm produces appro-
priate outputs only for \enough", not all, of the terminating computations, but our

de�nition is somewhat simpler and essentially equivalent: Every AP time algorithm M

for a search problem � that produces correct outputs on its good inputs can be converted
to an AP time solution M 0 for �.

Choose any iteration technique, subject to some natural fairness and carefulness
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conditions speci�ed in Section 4. Theorem ??, the main result of Section 4, implies

Theorem 1.2. A randomizing algorithm M is an AP time solution for a search
problem � if and only if the iteration M� of M is an AP time solution for � that is

almost total.

Thus, an AP time solution is iterable to an almost total, AP time solution, and

this is optimal. In addition, several natural iteration techniques are shown to satisfy the
fairness and carefulness conditions in question.

Now let us turn our attention to reductions. What is a (randomizing) many-one re-
duction of a search problem � = SP(A;W ) to another search problem �0 = SP(A0;W 0)?
Such a reduction consists of two parts, the �rst producing, for each instance x 2 A+

of non-zero probability and some random strings s, an instance x0 = f(x; s) 2 A0, and

the second producing, for each witness w0 with (x0; w0) 2 W 0, a witness w = g(x; s; w0)
with (x;w) 2 W . A reduction and any algorithm M 0 solving �0 yield, by composition,
an algorithm M (equal to g �M 0 � f if g depends only on w0) that solves �. We wish to
determine conditions on randomizing algorithms f and g to ensure that, when M 0 has a

good average-case solution, namely either almost total and AP time or simply AP time,
then so does M . The conditions are to be independent of M 0, so that a reduction makes
sense even when there is no algorithm M 0 available. Indeed, one of the most common
uses of reductions is to prove that �0 is complete in one sense or another and therefore

no good algorithm solving �0 is expected to exist. (Also, one may want to require that if
M 0 is an e�cient algorithm using some oracle, then M should be a similarly e�cient
algorithm using the same oracle.)

The interesting parts of our conditions on f and g concern f ; we shall simply
require g to be polynomial time. Notice that it would make no sense to weaken this to,
say AP time on the set (�0)� of potential witnesses, because we are not given a probability
distribution on (�0)�. Of course, M 0 together with the probability distribution PA0 of A0

induces a distribution on (�0)�, but our conditions are to be independent of M 0. And if
we required g to be AP time with respect to some \natural" distribution on (�0)�, then
some algorithm M 0 might, with high probability, produce witnesses w0 from a small set
to which our natural distribution assigned low probability and on which g takes very

long to compute. Because of this situation, we assume that g is polynomial time, and
then we can ignore g in the following sense: M is AP time or almost total and AP
time if and only if M 0 � f is. (There is a natural way to weaken the condition of PTime
computability of g(x; s; w0) to a hybrid | Ptime with respect to w0 and AP time with

respect to (x; s) | preserving the results of this paper [?], but again we stick here to the
simpler assumption of PTime computability.)

What conditions should f satisfy? Consider �rst deterministic reductions. Obvi-

ously, f should be AP time computable in this case. What else? Nontrivial examples of
deterministic reductions may be found in [?, ?]. Actually, the two papers are devoted
to NP decision problems, but one can consider the search versions of those problems
instead; the deterministic reductions of decision problems naturally transform to deter-

ministic reductions of the corresponding search problems. We tried to give a natural
motivation and analysis for the additional requirement (beyond AP time computability)
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in the notion of deterministic reductions.

Theorem 1.3 ([?]). For every (deterministic) function f from A to A0, the fol-
lowing two conditions are equivalent:

� For every AP function T on A0, the composition T � f is AP.
� The function x 7! jfxjA0 is AP and A0 dominates A with respect to f ,

i.e., the ratio
PA[f�1ffxg]

PA0ffxg
is AP on A.

Thus, if f is AP time computable and A0 dominates A with respect to f , then, for
every AP time algorithm M 0 on A0, the composite algorithm M 0 � f is AP on A.

This gives rise to the following reduction notions.

Definition 1.4. A deterministic AP time reduction of a domain A to a domain A0

is a deterministic AP time computable function f from A to A0 such that A0 dominates
A with respect to f .

Since the domination relation is transitive [?], deterministic reducibility of domains
is transitive.

Definition 1.5. A deterministic AP time reduction of a search problem SP(A;W )
to a search problem SP(A0;W 0) consists of

� A deterministic AP time reduction f of A+ to (A0)+.

� A polynomial time computable function g such that if x0 = f(x) and w0 is a
W 0-witness for x0 then g(x;w0) is W -witness for x.

Corollary 1.6. Deterministic AP time reducibility of search problems is transi-
tive. Further, a search problem � is solvable by a deterministic AP time algorithm if it
is deterministically AP time reducible to some �0 which is solvable in deterministic AP
time.

Unfortunately, deterministic reductions are too weak for many purposes [?] and
stronger randomizing reductions were employed in [?, ?, ?, ?]. The task of \cleaning

up" the notion of randomizing reductions was the main motivation of this paper.

So suppose that f is a random function from a domain A to a domain A0 and let T

be an AP time random function on A0. There are four situations, according to whether
T is assumed to be almost total or not and whether T � f is required to be almost total
and AP time or only AP time. It will be easy to see that one of the four situations is
absurd; no f can convert arbitrary AP time functions T into almost total T � f , for if
T succeeds with probability 1=2 for every x0, then T � f will do no better.

Of the three reasonable situations, the easiest to analyze is when T is assumed to
be almost total and T � f is required to be almost total and AP time. It is clear that

such an f must itself be AP time and almost total, for a computation of f is an initial
segment of any successful computation of T �f , no matter how trivial T is. It turns out
that Theorem ?? generalizes nicely in this case.

Theorem 1.7. Let f be an almost total, AP time computable random function from
a domain A to a domain A0 such that A0 dominates Df with respect to f . Then, for
every almost total, AP time randomizing algorithm M 0 on A0, the composite algorithm

M 0 � f is AP time and almost total.
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Theorem ?? follows from the more informative Theorem 5.1. It gives rise to the

following reduction notions.

Definition 1.8. An almost total, AP time randomizing reduction of a domain A

to a domain A0 is an almost total, AP time computable random function f from A to
A0 such that A0 dominates Df with respect to f .

Definition 1.9. An almost total, AP time randomizing reduction of a search
problem SP(A;W ) to a search problem SP(A0;W 0) consists of

� An almost total, AP time randomizing reduction of A+ to (A0)+.

� A polynomial time computable function g such that if x0 = f(x; s) and w0 is a
W 0-witness for x0 then g(x; s; w0) is a W -witness for x.

Corollary 1.10. Almost total, AP time randomizing reducibility on search prob-
lems is transitive. Further, a search problem � is solvable by an almost total, AP time
randomizing algorithm if it is reducible, by an almost total, AP time randomizing algo-
rithm, to some �0 which is solvable by an almost total, AP time randomizing algorithm.

Finally, we turn to the most complicated situations, where T � f is only required be
AP time. This sort of reduction has the advantage that f(x; s) needs to be a reasonable
instance of �0 only for so many random strings s. The random function f must be AP
time computable. A set � of good inputs for f forms a domain in a natural way; see

the notion of dilation in Section 2 in this connection.

Theorem 1.11. Let f be an AP time computable random function from a domain

A to a domain A0 with a domain � of good inputs dominated, with respect to f , by A0.
Then, for every AP time algorithm M 0 on A0, the composition M 0 � f is AP time.

Theorem ?? follows from the much more informative Theorem 5.2. It gives rise to
the following reduction notions.

Definition 1.12. An AP time reduction of a domain A to a domain A0 is an AP
time computable random function f from A to A0 with a set � of good inputs such that
A0 dominates � with respect to f .

Definition 1.13. An AP time reduction of a search problem SP(A;W ) to a search

problem SP(A0;W 0) consists of
� An AP time reduction (f;�) of A+ to (A0)+.
� A polynomial time computable function g such that if (x; s) 2 �, x0 = f(x; s)
and w0 is a W 0-witness for x0 then g(x; s; w0) is a W -witness for x.

Theorem 1.14. AP time reducibility of search problems is transitive. Further, a
search problem � is solvable by an almost total, AP time algorithm if it is reducible, by

an AP time algorithm, to some �0 which is solvable by an AP time algorithm.

Proof. To prove the second part of the theorem, suppose that �0 is solvable by an

AP time algorithm. By Theorem ??, � has an AP time solution M . By Theorem ??,
M� is an almost total, AP time solution for �. QED.

As an illustration of the theory of randomizing many-one reductions, we rewrite

in Section 6 Impagliazzo-Levin's proof of a theorem of theirs [?]; we believe that this
version of the proof is easier to comprehend.
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An extended abstract of this paper has been published earlier [?].

2. Preliminaries. For the reader's convenience, we recall here some de�nitions
and facts.

Definition 2.1 ([?, ?]). A domain A consists of
� an underlying set, often called A as well, whose members are strings over some
�nite alphabet,

� a size function, assigning to each x 2 A a positive integer jxj = jxjA called the

size of x, and
� a probability distribution PA on A.

Remark 1. In [?], we required that the number of nonzero-probability elements of

any given size is �nite. The requirement seemed non-restricting and useful. However,
it turned out to be too restrictive in the further analysis of randomizing computations,
and in this paper we remove it.

Because the elements of a domain A are strings, we can use the usual computation
model based on the Turing machine. Traditional concepts of (worst-case) complexity for
such functions are de�ned by means of the size function jxj which is usually polynomially

related to length of strings. For example, polynomial time would mean that there is a
polynomial p such that p(jxj) bounds the time needed on input x. Concepts of average-
case complexity are de�ned by averaging with respect to the probability distribution PA.

As was pointed out by Levin [?] and discussed in some detail in [?, ?], the most
obvious de�nition of the concept \polynomial time on average" has inappropriate con-
sequences, and some care is needed to obtain a suitable de�nition. We use the following

de�nition due to Levin [?], as modi�ed in [?] to allow 1 as a value.

Definition 2.2. Let T be a function from a domain A to the set �R+ of nonnegative
reals augmented with 1. T is linear on average if T (x)=jxj has �nite expectation,

E
x

1

jxj
T (x) =

X
x

PA(x)
1

jxj
T (x) <1;

and T is polynomial on average, abbreviated AP, if it is bounded by a polynomial of a
function that is linear on average. In other words, T is AP if, for some " > 0,

E
x

1

jxj
(Tx)" =

X
x

PA(x)
1

jxj
(Tx)" <1 :

We use the convention that 0 � 1 = 0; thus, an AP function can take the value 1
but only at points of probability 0.

Lemma 2.3 ([?]). The collection of AP functions over a given domain is closed
under addition and multiplication.

A (deterministic) algorithm, taking elements of a domain A as inputs, is polynomial
time on average or AP time, if its running time on input x is an AP function of x. We

consider the running time to be 1 if the algorithm fails to terminate, so an AP time
algorithm must terminate on all inputs of positive probability.
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Definition 2.4. Consider a set X with a size function. A probability distribution

� on X dominates a probability distribution � on X if there exists a function g from X

to �R+ such that g is AP with respect to X and � and �fxg � g(x) � �fxg for all x in
X.

The original notion of domination is due to Levin [?]. It was analyzed and gener-
alized in [?] and [?].

Definition 2.5 ([?]). Let f be a function from a domain A to a domain B. Then

B dominates A with respect to f , written A �f B if the ratio
PA[f�1ffxg]

PBffxg
is AP on

A.

We will use the following easy characterization of domination:

Lemma 2.6 ([?]). Suppose that f is function from a domain A to a domain B.
Then A �f B if and only if PA is dominated by a probability distribution � such that
the image of � under f is PB, i.e. PBfyg =

X
x2f�1fyg

�fxg for all y 2 B.

It will be convenient for us to restrict attention to domains satisfying the following
proviso.

Proviso. jxj is bounded by a polynomial of the length of x.

The proviso is needed only to derive the following consequence.

Corollary 2.7. If f is an AP time function from a domain A to a domain B,
then the function x 7! jf(x)jB is AP.

Proof. The length of the string f(x) cannot exceed the time needed to compute f(x).
Therefore the length of f(x) is an AP function of x. Now use Lemma ??. QED

Instead of adopting the proviso, we could change the formulations of some of our
theorems by explicitly requiring that the reducing functions do not increase the size
beyond AP. It seemed easier to adopt the proviso and get the problem of size blowup out
of the way. We did not come across any need to consider a size function that is not

bounded by a polynomial of the length. However, as the following de�nition shows, we
did come across a need to consider a size function that may be much smaller than the
length.

The notion of dilation was introduced in [?] and used in [?]. The idea is to combine

the probability distribution on instances and the probability distribution on coin 
ips into
one probability distribution. For this purpose, we introduce a new domain consisting of
pairs (x; s), where x ranges over instances of the search problem under consideration,

i.e., over elements of a given domain A, while s ranges over the possible �nite sequences
of coin 
ips used by some algorithm (in its terminating computations on input x). The
size of (x; s) is taken to be jxjA, not (as one might at �rst guess) jxjA+jsj; this is so that
the complexity of computations is measured relative to the size of the instance, not the

number of coin 
ips. (If we used jxjA+ jsj, then a very ine�cient computation could be
made to look e�cient | e.g., linear time | by appending a lot of unnecessary coin 
ips
to make jxjA+ jsj greater than half the running time.) The probability of (x; s) is, except
for a normalization factor, the probability PA(x) �2�jsj for independent choices of x and
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s. The normalization factor, i.e., the lack of actual independence, can be intuitively

understood this way: Given x, the algorithm starts to 
ip coins (independent of x) until
the computation terminates, having used random string s. But it may happen | and the
probability of this does depend on x | that the algorithm doesn't terminate, in which
case we re-start the algorithm with a new, independent sequence of coin 
ips. This

re-starting leads to the denominator in the probability clause of the following de�nition.

Definition 2.8. A dilation of a domain A is a domain � � A�f0; 1g� satisfying
the following conditions, where �(x) = f s : (x; s) 2 � g:

� For every x, no member of �(x) is a proper pre�x of another member of �(x).
� For every x with PA(x) > 0, �(x) 6= ;.
� j(x; s)j� = jxjA.

� P�(x; s) = PA(x)
2�jsjP

t2�(x) 2�jtj
.

This de�nition is more general than the de�nition of dilation used in [?] because we
do not require

P
s2�(x) 2

�jsj = 1. This sum occurs in the denominator of our de�nition
of P� in order to ensure that P� is indeed a probability measure, i.e., that the total
probability of � is 1. We say that a dilation �1 of A is a subdilation of a dilation �2

of A if �1 � �2.

Definition 2.9. Let � be a dilation of A. The function

U�(x) =
1P

s2�(x) 2�jsj

is the rarity function of D. The dilation � is almost total if U�(x) = 1 for every x 2 A

of positive probability. This means that, if we repeatedly 
ip a fair coin to produce a
string of 0's and 1's, then, with probability 1, we shall eventually obtain a string in

�(x).

The notion of randomizing (coin-
ipping) algorithm motivates a useful notion of

random function [?].

Definition 2.10. A random function on a domain A is a function f on a dilation

Df of A. Such a random function f is almost total if the dilation Df is almost total
and the probability, with respect to Df , that the value of f is �nite equals 1.

Composition of randomizing algorithms motivates composition of random functions.

Definition 2.11 ([?]). Suppose that f is a random function from a domain A

to a domain B such that PB(f(x; s) > 0 whenever PA(x) > 0, and let g be a random
function on B. The composition g � f of f and g is the random function h on A such
that, for every x 2 A,

� Dh(x) = fst : s 2 Df (x) and t 2 Dg(f(x; s))g,
� If s 2 Df (x) and t 2 Dg(f(x; s)) then h(x; st) = g(f(x; s); t).

It is easy to see that the composition of almost total random functions is almost

total.
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3. Randomizing algorithms. A randomizing algorithm on a domain A can be

formalized as a Turing machine M which takes as input an instance x 2 A and has
access to an auxiliary read-only tape, called the random tape, containing an in�nite
sequence r of \random" bits (0's and 1's). The random tape is bounded on the left
and unbounded on the right; its head can move only to the right. The set f0; 1g1 of

all possible r's is endowed with the probability measure � that is the product measure
derived from the uniform measure on f0; 1g. Both the measure and M 's mode of access
to the random tape can be described informally by saying that M is allowed to 
ip a fair
coin at various stages of its computation and that these coin 
ips are independent.

Consider the computation of a �xed randomizing algorithm M with a �xed input x
but with varying sequence r 2 f0; 1g1. For each r, let Read(r) (or ReadM;x(r) if neces-
sary for clarity) be the initial segment of r that is actually read during the computation.

If the computation terminates, then Read(r) is �nite; if not, then Read(r) may be �nite
or equal to r. As the computation, with M and x �xed, depends only on Read(r), it is
clear that, if r0 2 f0; 1g1 has Read(r) as an initial segment, then the computation using
r0 is the same as that using r and, in particular, Read(r0) = Read(r). Thus, the set

R(x) = RM(x) = fReadM;x(r) : r 2 f0; 1g
1g;

has the property that no member of R(x) is a proper initial segment of another. We

de�ne the probability measure � = �M;x on R(x) to be the image, under the function
ReadM;x, of the standard measure � on f0; 1g1. For any E � R(x),

�(E) = �fr : Read(r) 2 Eg:

Each R(x) is the disjoint union of the sets RF(x) and RI(x) consisting of the �nite
and in�nite strings in R(x), respectively. The measure � gives the probability 2�jsj to
each s 2 RF(x) and agrees on subsets of RI(x) with �. Every r 2 f0; 1g1 either is

in RI(x) or has an initial segment in RF(x), namely Read(r). In [?], randomizing
algorithms were assumed to terminate for all x with PA(x) > 0 and all r; this ensured
that, if PA(x) > 0, then RI(x) is empty and every r 2 f0; 1g1 has an initial segment in
RF(x) and therefore RF(x) is �nite. In the present paper, we consider algorithms that

may fail to terminate even on inputs of positive probability, so we must consider both
RF(x) and RI(x); furthermore, RF(x) may well be in�nite.

If s 2 f0; 1g� is a �nite sequence with no proper initial segment in RF(x), then s

occurs (with probability 2�jsj) as the random string read by some stage in a computation
of M on x. If, furthermore, s 62 RF(x), then this computation will read at least one
additional random bit, which is equally likely to be 0 or 1. If, on the other hand,
s 2 RF(x), then the computation will read no additional random bits. Writing \s is

a pre�x" for the event that the random string actually read by M has s as an initial
segment, we have (for future reference) the following

Lemma 3.1. The distribution � satis�es the equation

�(s is a pre�x) =

(
2�jsj if s has no proper initial segment in RF(x);

0 otherwise;
10



furthermore, this equation completely determines �.

Proof. Obvious. QED

We restrict attention to randomizing algorithmsM such that RFM(x) 6= ; whenever
PA(x) > 0. It follows that the set

RFM = f(x; s) : x 2 A and s 2 RFM (x)g

forms a dilation of the domain A.

Definition 3.2. The random function FM on A computed by M is the determin-

istic function on DF = RFM with F (x; s) equal to the output of M on (x; s).

We write Time(x; r) or TimeM (x; r) for the time taken by the computation of M

on x and r; if this computation does not terminate, then Time(x; r) = 1. Time(x; r)
depends only on x and Read(r), since the unread part of r cannot in
uence the compu-
tation time.

Definition 3.3. The restrained time function of a randomizing algorithm M on
A is the random function T (x; s) = TM(x; s) on A such that DT = RFM and

Time(x; r) = T (x;Read(r))

for every r with a �nite Read(r) part.

TimeM is not the only function on A � f0; 1g1 that we have to consider. In this
paper, a functional is a measurable function F from A�f0; 1g1 to �R+ such that every

�nite value of F is a positive integer. We say that a functional F is continuous if
it is continuous with respect to the product topology on A � f0; 1g1 and the natural
topology on �R+. The continuity implies that, for every x and every r 2 f0; 1g1 with
F(x; r) <1, there exists a �nite initial segment s of r such that F(x; r) = F(x; r0) for

every r0 with pre�x s. The shortest initial segment s with this property will be denoted
ReadF;x(r). De�ne the restrained version of a functional F to be the random function
F on A such that DF = f(x;ReadF;x(r)) : F(x; r) <1g and F (x;Read(r)) = F(x; r)
Thus, TimeM is a continuous functional and TM is the restrained version of TimeM .

Definition 3.4. A functional F on A is almost total if, for every x 2 A of positive
probability,

�fr 2 f0; 1g1 : F(x; r) <1g = 1:

Lemma 3.5. A functional is almost total if and only if its restrained version is so.

Proof. Clear. QED

Definition 3.6. An almost total functional F on a domain A is AP if there is a
positive " such that

E
x
E
r
(
1

jxj
F(x; r)") <1;

11



where Ex and Er mean expectation with respect to x and r, the relevant probability

distributions being PA and �.

The proof of Lemma ?? works for almost total functionals.

Corollary 3.7. The collection of AP almost total functionals over a given domain
is closed under addition and multiplication.

By de�nition of �, the expectation of a continuous almost-total functional with
respect to � and the expectation of its restrained version with respect to � agree for

every x.

Lemma 3.8. An almost total, continuous functional F is AP if and only if its

restrained version F is AP as a deterministic function on DF .

Proof.

E
x
E
r

 
1

jxj
F(x; r)"

!
=E

x
E
s

 
1

jxj
F (x; s)"

!
= E

(x;s)2DF

1

jxj
F (x; s)"

where the expectation Es is with respect to �. QED

Not all almost total functionals of interest to us are continuous. This is why we
have de�ned directly when an almost total functional is AP.

Definition 3.9. A randomizing algorithm M is almost total if the functional
TimeM is so.

By Lemma ??, M is almost total if and only if the restrained time function TM is
almost total.

Definition 3.10. An almost total randomizing algorithm M is AP time if the
continuous functional TimeM is AP.

The intuitive content of this de�nition of almost total AP time algorithm is that,
for each input x with PA(x) > 0, the algorithm will almost surely (i.e., with probability
1 with respect to r) terminate and will usually (with respect to x and r) require only a
reasonable amount of time.

Now we turn attention to the main notion of this section, the notion of AP time
algorithms. We consider randomizing algorithms which terminate with not too small

probability (rather than almost surely) and which in fact require reasonable time with
not too small probability. To avoid confusion, we remark that we do not require all
the terminating computations to take reasonable time, only enough of them to have

reasonable probability.

Definition 3.11. Let F be a random function on a domain A. F is AP on A if

there is a subdilation � of DF such that
1. The rarity function U� is AP, and
2. For some " > 0,

X
(x;s)2�

1

jxj
PA(x)2

�jsjF (x; s)" <1:

12



The condition (1) formalizes the part of the informal requirement above about

enough terminating computations having reasonable probability. The meaning of (2)
is clari�ed below (Lemma ??). Notice that the statement \F is AP on A" is in general
weaker than the statement \F is AP as a deterministic function on DF". We shall not
need to generalize the de�nition of AP random function to functionals.

If � satis�es these conditions, we call it a set of good inputs for F . The dilation of
A formed by � may be called the domain of good inputs. The fact that F is AP means
intuitively that reasonably often F will be de�ned by virtue of a good input and that
these values of F are reasonably small on average. (F may also be de�ned on some

inputs that are not good, and the resulting values of F need not be small at all.) It is
not required that good inputs are easily recognizable in any way.

Lemma 3.12. Let F be a random function on a domain A and let � be a subdi-
lation of DF such that the rarity function U� is AP. Then the following conditions are
equivalent:

1. F is AP on A with � as a set of good inputs.
2. The restriction of F (viewed as a deterministic function on DF ) to � is AP,

i.e., there exists " > 0 such that

E
(x;s)2�

1

jxj
F (x; s)" =

X
(x;s)2�

1

jxj
PA(x)2

�jsjU�(x)F (x; s)
" <1:

Proof. Since U�(x) � 1, (2) implies (1). Given (1), multiply and divide each
summand in part 2 of the de�nition of AP by U(x) = U�(x) to produce P� as a factor;

we obtain

E
x;s

1

jxj

F (x; s)"

U(x)
<1

where the expectation over (x; s) is with respect to P�. Also, as U is AP on A, we have,
for some � > 0,

E
x;s

1

jxj
U(x)� =E

x

1

jxj
U(x)� <1;

where the expectation over x is with respect to PA and we used that PA is the projection
of P�. Adding the last two inequalities and using the fact that any weighted geometric

mean of two positive numbers is less then their sum, we �nd

E
x;s

2
664
 

1

jxj

F (x; s)"

U(x)

! �
1+�

�

 
1

jxj
U(x)�

! 1

1+�

3
775 <1:

Algebraically simplifying the expression in brackets, we get

E
x;s

2
4 1

jxj
F (x; s)

"�
1+�

3
5 <1;
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which is the desired inequality with
"�

1 + �
in place of ". QED

Corollary 3.13. An almost total continuous functional F is AP if and only if

its restrained version F is AP with DF as a set of good inputs.

Proof. Use Lemmas ?? and ??. QED

Definition 3.14. A randomizing algorithm M on A is AP time if the restrained
time function TM is AP. A set of good inputs for T is also called a set of good inputs

for M .

In the case of an almost total randomizing algorithm M we have now two de�nitions

of polynomiality on average. It is easy to see that they are equivalent.

Corollary 3.15. For every almost total randomizing algorithm M , the following
are equivalent:

� The functional TimeM is AP.
� The random function TM is AP on the input domain.

Proof. Use Lemma ??. QED

Definition 3.16. A randomizing algorithm M is an AP time solution (resp.

almost total, AP time solution) to search problem SP(A;W ) if it is AP time (resp.
almost total and AP time) and every terminating computation of M with input x 2 A

(and arbitrary random string r) produces as output a witness w with (x;w) 2 W .

It might seem more natural to require appropriate output only for \enough", not all,
of the terminating computations, but our de�nition is somewhat simpler and essentially

equivalent.

Lemma 3.17. Every AP time algorithm M for a search problem � = SP(A;W )

that produces correct outputs on its good arguments can be converted to an AP time
solution M 0 for �.

Proof. Append to M instructions saying that, when M terminates, M 0 should

check that the output w satis�es W (x;w) and M 0 should terminate if and only if the
check succeeds. As our de�nition of \search problem" required W to be polynomial time
computable, the time used by M 0 is bounded by a polynomial of the sum of jxj and the

time used by M , so replacing M with M 0 does not ruin complexity estimates of the sort
we are considering. QED

Lemma 3.18. Suppose that a search problem � has an AP time solution. Then
the length of the shortest witness is a (deterministic) AP function.

Proof. Let M be an AP time solution to � with a set � of good inputs. Recall that
the rarity function U of � is the reciprocal of �M;x(�(x)) =

X
s2�(x)

2�jsj: Write l(x) for

the length of the shortest witness for x. Clearly, T (x; s) � l(x) for all (x; s) 2 �, as it

takes time l(x) just to write a witness on the output tape. For every " > 0, we have

X
x2A

1

jxj
l(x)"PA(x) =

X
x2A

1

jxj
l(x)"PA(x)U(x)�(�(x))
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�
X

(x;s)2�

1

jxj
T (x; s)"PA(x)U(x)2

�jsj:

Now use the fact that T is AP and apply Lemma ??. QED

4. Iteration. It is well-known that a randomizing algorithm that solves a search
problem with a certain probability can be iterated, using independent sequences of coin

ips, to obtain a much higher success probability. A polynomial number of iterations

su�ces to improve success probabilities from as low as a reciprocal of a polynomial of
jxj to as high as exponentially (relative to jxj) close to 1. For average-case complexity,
the situation is even better. We can start with a success probability whose reciprocal
is not polynomially bounded but only polynomial on average, and we can iterate the

algorithm to obtain a success probability 1, without increasing the time beyond AP. The
main result in this section will establish a precise version of this claim and will show
that it is optimal.

Let M be a randomizing algorithm on a domain A which may or may not terminate

on a given input. In our application, M is an algorithm for a search problem SP(A;W )
whose successful computations produce desired witnesses. For simplicity, we assume
in this section that every termination of M is successful. It is easy to remove this

assumption. Also, see Lemma ??.
For technical reasons, we start with what we call a perpetual iteration M1 of a

given randomizing algorithm M . Given an input (x; r), where x 2 A and r is an in-
�nite random sequence, M1 simulates many computations of M on inputs (x; s) for

the same x but di�erent random bit strings s (disjoint substrings of r); these computa-
tions of M will be called subcomputations of M1. M1 is called a perpetual iteration
because it never halts. Even after some subcomputations have terminated, M1 contin-
ues to run other subcomputations and to start new subcomputations, and it continues

to allocate its random bits to subcomputations. The corresponding iteration M� of M
is like M1 except M� halts if and when one of the subcomputations terminates. The
advantage of working with M1 rather than M� is that, in a computation of M1, ev-
ery subcomputation runs either forever or until it terminates according to the rules of

M , whereas in a computation of M�, a subcomputation can stop \unnaturally" because
another subcomputation terminated and thus stopped the whole computation of M�.

Presupposing a �xed perpetual iteration M1 and a �xed element x 2 A, for each

sequence r 2 f0; 1g1, let ŝj = ŝj(r) be the subsequence of r that M1 with input (x; r)
passes to subcomputation number j and let sj = sj(r) be the subsequence of ŝj that
is actually read by subcomputation number j. Here are some examples of perpetual
iteration.

Example 1. Eager Perpetual Iteration. Stage n of the computation ofM1 consists
of one step in the �rst, second, : : :, n-th subcomputations, in that order. So one new

subcomputation is started at each stage, and each previously started subcomputation
is carried one step further. Also, during stage n, M1 reads n new bits from r and
distributes them, in order, to these n subcomputations. Thus, each projection ŝj is
in�nite. Note that this projection operation on f0; 1g1 does not depend on M or on its

15



input x.

Example 2. Lazy Perpetual Iteration is similar to the eager perpetual iteration
except that it distributes random bits only as the subcomputations ask for them. There

is no longer an a priori de�ned in�nite sequence ŝj for each subcomputation; in fact,
ŝj = sj. To decide which subcomputation will receive a particular bit from r, it is no
longer su�cient to know the position of that bit in r; one needs to know both the input
x and the preceding bits of r.

Example 3. Another variation of the eager perpetual iteration is obtained as fol-
lows. Fix a polynomially bounded injection P (j; t) from pairs of positive integers to

positive integers and reserve random bits P (j; 1); P (j; 2); P (j; 3); : : : for the j-th sub-
computation. This perpetual iteration is executed more naturally by a random access
machine than by a Turing machine.

Definition 4.1. A perpetual iteration M1 is polynomially fair if the number
m(j; t) of steps of M1 required to achieve the t-th step or termination (whichever occurs
�rst) of subcomputation j is bounded by a polynomial of j + t.

It follows that new subcomputations are started fairly often: the number m(j; 1) of
steps of M1 required to start the j-th computation is bounded by a polynomial of j. No-

tice also that each subcomputation gets enough random bits to proceed until termination
or forever.

Remark 2. To deal with parallel iterations (in a sense, they are more natural),
add to the de�nition of polynomial fairness the requirement that the number of sub-

computations started during the �rst n steps of M1 is bounded by a polynomial of n.

We call a perpetual iteration M1 careful if each subcomputation gets a sequence of
fair coin 
ips, and the sequences for di�erent subcomputations are independent (provided
that M1 gets a sequence of fair coin 
ips). We formulate this de�nition more formally.

Recall the probability distribution � of Section 3.

Definition 4.2. A perpetual iteration M1 is careful if, for each input x of positive

probability, the function

r 7! (s1; s2; : : :) from f0; 1g1 to (f0; 1g� [ f0; 1g1)1

sends � to the product measure on (f0; 1g� [ f0; 1g1)1 induced by the measure �M;x on
f0; 1g� [ f0; 1g1.

Lemma 4.3. M1 is careful if and only if, for any input x 2 A and any �nite list
t1; : : : ; tk of binary strings, the probability

�f r : tj is a pre�x of sj(r) for all j = 1; : : : ; k g

is 0 if some tj has a proper initial segment in RFM (x), and otherwise is 2�n where n
is the sum of the lengths of the tj's.

Proof. Use Lemma ??. QED
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Theorem 4.4. Let M1 be a careful and polynomially fair perpetual iteration of

M . Then M is AP time if and only if the iteration M� is AP time and almost total.

Proof. Suppose that M is AP time, i.e., the restrained time function T = TM is

AP. Let � and " be as in the de�nition of AP random function for T , and let U = U�

be the rarity function of �. We �rst check that, for any input x of positive probability
in A, M� terminates with probability 1 (with respect to r). In fact, we show more,
namely that, for almost all r, some sj is good, i.e., belongs to �(x). (If sj 2 �(x) and

PA(x) > 0, then the computation of M on (x; sj) terminates, so we are indeed proving
more than originally claimed.) The event (= set of r's such) that no sj is in �(x) is
the intersection of the in�nitely many events \sj 62 �(x)" (j = 1; 2; 3; : : :), which are
independent and have probability 1� �(�(x)) = 1� (1=U(x)). So their intersection has

probability 0, as required.
We are now ready to estimate the computation time T �(x; r) of M� on input (x; r)

and to prove that M� is AP time. For any x 2 A of positive probability and any

r 2 f0; 1g1, let k = k(x; r) be the smallest positive integer j with sj 2 �(x). We saw
in the preceding paragraph that, for all x 2 A of positive probability, such a k exists
for almost all r. (De�ne k(x; r) = 1 on the measure zero set of pairs (x; r) where
no such k exists.) Let T 0 = T 0(x; r) be the time taken by the computation of M with

input (x; sk(x;r)), which is the k-th subcomputation of M1 on input (x; r). Since M1 is
polynomially fair, the computation time T � ofM� is bounded by a polynomial of (k+T 0).
By Corollary ??, it su�ces to prove that k(x; r) and T 0(x; r) are AP.

First, we treat k. 1 We begin with a well-known and quite general observation.

Suppose an experiment succeeds with probability p > 0, and suppose we make many
independent repetitions of this experiment until one, say the k-th, succeeds. Then k has
expectation

1X
i=1

i(1� p)i�1p = 1=p:

In the situation at hand, the experiments are the subcomputations of M1(x; r) (with

random r), which are independent by carefulness, \success" means that the string read
by the subcomputation is good, and thus 1=p = U(x), k = k(x; r) and Er k(x; r) = U(x).

Choose positive � < 1 witnessing that U is AP: E
x
(
1

jxj
U(x)�) <1. We check that

this � also witnesses that k is AP. The function f(y) = y� is a concave function on the
open real interval I = (0;1). By Jensen's inequality (see Corollary ??),

E
x
E
r

 
1

jxj
k(x; r)�

!
=E

x

 
1

jxjEr

�
k(x; r)�

�!
�

� E
x

0
B@ 1

jxj

"
E
r
(k(x; r))

#�1CA =E
x

 
1

jxj
U(x)�

!
<1:

1 Curiously, the useful functional k(x; r) is not continuous.
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Next, we treat T 0(x; r). Clearly, T 0(x; r) = T (x; sk), where k = k(x; r). Recall that

a positive ", one of the witnesses that M is AP, was chosen. We begin by computing
the expectation of T 0(x; r)" = T (x; sk)" with respect to r.

E
r
(T (x; sk)

") =
1X
j=1

P(k(x; r) = j) �E
r

�
T (x; sj)

" j k(x; r) = j
�
:

The event k(x; r) = j whose probability occurs here is the intersection of the event
sj 2 �(x) and all events si 62 �(x) with i < j. Since M1 is careful, these are inde-
pendent, so the product (1 � 1

U(x)
)j�1 � 1

U(x)
of their probabilities equals P(k(x; r) = j).

The conditional expectation of T (x; sj)" relative to this intersection of events equals the

conditional expectation of T (x; sj) relative to sj 2 �(x), since, by the carefulness of
M1, T (x; sj)" is independent of the events si 62 �(x) with i 6= j. Further,

E
r

�
T (x; sj)

" j sj 2 �(x)
�
= E

s2�(x)

T (x; s)" =
X

s2�(x)

T (x; s)" � 2�jsj � U(x):

Thus, we have

E
r
(T 0(x; r)") =

1X
j=1

(1�
1

U(x)
)j�1 �

1

U(x)
�
X

s2�(x)

�
T (x; s)" � 2�jsj � U(x)

�
=

=

0
@ 1X
j=1

(1�
1

U(x)
)j�1

1
A � X

s2�(x)

�
T (x; s)" � 2�jsj

�
=

= U(x) �
X

s2�(x)

�
T (x; s)" � 2�jsj

�
:

Recall that �, U and " were chosen to witness that M is AP. Thus, U is AP and

the factor multiplying it is AP as well. (In fact, this factor is average linear.) So the
product is AP. Choose a positive � < 1 to witness this. Using Jensen's inequality again,
we have

E
x
E
r

 
1

jxj
T 0(x; r)"�

!
= E

x

 
1

jxjEr

�
T 0(x; r)"�

�!

� E
x

0
B@ 1

jxj

"
E
r
(T 0(x; r)")

#�1CA <1:

Thus, we have the desired estimate for T 0, which completes the proof of one direction of

the theorem.
To prove the converse, assume M� is an almost total AP time algorithm. We must

produce a � and a positive " witnessing that M is AP. Fix a positive " < 1 witnessing

that T � is AP: E
x
E
r

 
1

jxj
T �(x; r)"

!
<1. That is,

E
x

 
1

jxj
F (x)

!
<1; where F (x) =E

r

�
T �(x; r)"

�
:
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Observe that, quite generally, ifX is a nonnegative random variable with expectation

m, then, by Markov's inequality, P(X � 2m) � 1=2. (Indeed, if P(X � 2m) = p, then

m =E(X) = p �E(X j X � 2m) + (1� p)E(X j X > 2m)

� p � 0 + (1 � p) � 2m;

so 1 � p � 1=2, as claimed.)
Applying this observation to the random variable T �(x; r)", for a �xed x and random

r 2 f0; 1g1, we �nd that the set

�0(x) = fr 2 f0; 1g1 : T �(x; r)" � 2F (x)g

has probability � 1=2. For each r 2 �0(x), let s(x; r) be the string of random bits

actually read by the subcomputation of M� on (x; r) that produced a witness for x. We
de�ne

� = f(x; s(x; r)) : x 2 A and r 2 �0(x)g ;

so that �(x) = fs(x; r) : r 2 �(x)g, and we claim that this � and the " �xed above
are as required by the de�nition of M being AP. By the de�nition of s(x; r), � forms a

dilation of A.
To check that the rarity function U = U� is AP, recall that for r 2 �(x), T �(x; r) �

(2F (x))1=". Therefore the number q = q(x) of subcomputations started by M� on input
(x; r) is bounded by a polynomial of F (x). Since F (x) is AP (in fact, linear on average),

q(x) is AP. We have:

1

2
=

X
s2�(x)

qX
j=1

Pfr 2 �0(x) : s(x; r) = s and

subcomputation j is the one that succeedsg �

�
X

s2�(x)

qX
j=1

Pfr 2 �0(x) : subcomputation j reads exactly sg =

=
X

s2�(x)

qX
j=1

2�jsj = q(x) �
1

U(x)

So U(x) is bounded by the AP function 2q(x).
To prove the convergence condition in the de�nition of T being AP, recall that each

s in �(x) is s(x; r) for some r 2 �0(x). Hence T (x; s)" � T �(x; r)" � 2F (x). SoX
s2�(x)

T (x; s)"2�jsj � 2F (x) �
X

s2�(x)

2�jsj � 2F (x);

which implies the desired convergence, because F is linear on average. This completes
the proof of Theorem ??. QED

It is easy to see that the perpetual iterations of Examples 1{3 are polynomially fair
and that the perpetual iterations of Example 1 and Example 3 are careful as well. It
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is not quite obvious that the lazy perpetual iteration is careful. In the case of the lazy

perpetual iteration, some information about a given subcomputation j can be learned
from watching other subcomputations. Imagine, for example, that the �rst m random
bits received by subcomputation j > 1 happened to have the same values as the �rst
m random bits received by subcomputation 1 and subcomputation 1 requested another

random bit. We know then that subcomputation j will request another random bit as
well.

Theorem 4.5. Suppose that a perpetual iteration M1 has the following properties:

� M1 starts in�nitely many subcomputations on every input (x; r).
� No subcomputation ofM1 is ever stalled: either it terminates or else it executes
in�nitely many steps.

� M1 serves random bits on the \�rst come, �rst served" basis.
Then M1 is careful.

Proof. Fix an arbitrary x 2 A of positive probability. Recall that sj = sj(r) is the

string of random bits passed to the j-th subcomputation. By Lemma ??, we must show
that, for any input x 2 A and any list t1; : : : ; tk of binary strings, the probability

�fr : tj is a pre�x of sj(r) for all j = 1; : : : ; kg

is 0 if some tj has a proper initial segment in RFM (x), and otherwise is 2�n where n
is the sum of the lengths of the tj's.

The �rst half of this is clear, for if tj has a proper initial segment in RFM (x), then
no subcomputation can read all of tj, so sj 6= tj. To prove the second half, consider a
list t1; : : : ; tk of cumulative length n and with no proper initial segments of any tj being
in RFM(x). Note that sj(r) cannot, for any r, be a proper initial segment of tj because

any �nite sj is in RFM (x) whereas no tj has a proper initial segment in RFM(x).
Call a �nite binary string q, which we regard as a possible initial segment of r 2

f0; 1g1, pertinent (to the �xed list t1; : : : ; tk) if, when M1 reads q from its random
tape, the strings sj(q) that it passes to subcomputations j = 1; : : : ; k are consistent with

the tj's. (\Consistent" means one is an initial segment, not necessarily proper, of the
other.) For pertinent q, write s0j(q) for sj(q) or tj, whichever is an initial segment of
the other; this is the part of tj already read by subcomputation j when M1 has read q.
Write m(q) for the sum of the lengths of the strings s0j(q). We have 0 � m(q) � n.

Let E denote the event

f r : tj is a pre�x of sj(r) for all j = 1; : : : ; k g:

Recall that our objective is to prove that �(E) = 2�n. Call q 2 f0; 1g� strange if it is
pertinent and �[E j q is a pre�x of r] 6= 2�n+m(q). Observe that, since the empty string

e is pertinent and pre�xes every r, e is strange if and only if �(E) 6= 2�n, which is the
negation of what we want to prove. We therefore assume e is strange and attempt to
deduce a contradiction.

Lemma 4.6. If q is strange, then so is at least one of its one-bit extensions q0 or
q1.
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Proof. Consider a computation of M1 (on our �xed input x) that has read q (and

passed its bits to the appropriate subcomputations).

Case 1. The next request for a bit comes from subcomputation i with i > k or with

i � k and s0i(q) = ti.
Then both q0 and q1 are pertinent, and s0j(q0) = s0j(q1) = s0j(q) for all j = 1; : : : ; k,

so m(q0) = m(q1) = m(q). As q is strange,

2�n+m(q) 6= �[E j q is a pre�x] =
1

2
(�[E j q0 is a pre�x] + �[E j q1 is a pre�x]) ;

so the conditional probabilities on the right cannot both equal 2�n+m(q). This means that

one of q0 and q1 is strange.

Case 2. The next request for a random bit comes from subcomputation i such that

i � k and s0i(q) is a proper initial segment of ti.
Then the next random bit read by M1 will go to subcomputation i, and so q0

(resp. q1) will be pertinent if and only if the next bit in ti after s0i is 0 (resp. 1).

Suppose, without loss of generality, that this bit is 0, so q0 is pertinent. We have
s0i(q0) = s0i(q)0 and s0j(q0) = s0j(q) for j in f1; : : : ; kg � fig. We also have, as q is
strange and �[E j q1 is a pre�x] = 0 (as q1 is impertinent),

2�n+m(q) 6= �[E j q is a pre�x] =
1

2
� �[E j q0 is a pre�x];

so

�[E j q0 is a pre�x] 6= 2�n+m(q)+1 = 2�n+m(q0);

and q0 is strange. QED

Now we obtain a contradiction from the assumption that e is strange, as follows.
Repeatedly apply the lemma, starting with q = e, to obtain a sequence of strange strings,
each a one-bit extension of the previous one. Thus, we have an r 2 f0; 1g1 each of

whose �nite initial segments is strange. Fix such an r. By fairness, each subcomputation
j, for j = 1; : : : ; k, either terminates or is in�nite on r.

For j = 1; : : : ; k, each sj(r) is consistent with tj, because all �nite initial segments
of r, being strange, are pertinent. We saw earlier that sj(r) cannot be a proper initial

segment of tj, so tj must be an initial segment of sj(r), for each j = 1; : : : ; k. Thus,
for a su�ciently long �nite initial segment q of r, each tj is an initial segment of
the corresponding sj(q), and therefore s0j(q) = tj and m(q) = n. But then the event
\q is a pre�x" is a part of E, so

�[E j q is a pre�x] = 1 = 2�n+m(q):

This contradicts the fact that q, a �nite initial segment of r, is strange. QED
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5. Randomizing Many-One Reductions. Let us clarify the notion of compo-

sition M = M2 �M1 of randomizing algorithms. Suppose that M1 computes a random
function f from a domain A to a domain B, and M2 is a randomizing algorithm on B.
Given an instance x 2 A and a \random" sequence r 2 f0; 1g1, M begins by simulat-
ing M1 on x and r. If this computation terminates with output x0, and if s is the �nite

initial segment of r read during this computation, then M continues by simulating M2

on x0 and the part of r after s. Thus,

RM(x) = fst : s 2 RFM1
(x) and t 2 RM2

(f(x; s))g [ RIM1
(x):

Lemma 5.1. Suppose that PB(f(x; s)) > 0 whenever PA(x) > 0, and let T = TM2

be the restrained time function of M2. Then
� M is almost total if f and T are almost total, and
� M is AP time if f is AP time and the composition T � f is AP.

Proof. The �rst claim is clear. To prove the second claim, recall that, by de�nition,
a randomizing algorithm is AP if and only if its restrained time function is so. Let �
be a set of good inputs for T � f . It is easy to see that � is also a set of good inputs

for f . Except for a small bookkeeping overhead, TM is the sum of TM1
and T � f on �.

Thus, � is a set of good inputs for TM , so that TM is AP. QED.
In the rest of this section, f is a random function from a domain A to a domain B

and T ranges over random functions on B. If � is a dilation of A and � is a dilation

of B, de�ne � �� to be the dilation of A comprising pairs (x; st) such that (x; s) 2 �
and (f(x; s); t) 2 �. The notion of domination is recalled in Section 2.

Theorem 5.2. Suppose that f is almost total. Then the following are equivalent:

1. For every almost total, AP random T , the composition S = T � f is almost
total and AP.

2. The almost total function (x; s) 7! jf(x; s)jB is AP and Df �f B.

Proof. First, suppose (1). Every deterministic function on B is an almost total,
random function on B with good inputs (y; e) where PB(y) > 0 and e is the empty
string. By Theorem ??, Df �f B and the restriction of the function (x; s) 7! jf(x; s)jB
to Df is AP. This implies (2).

Second, suppose (2) and let T be an almost total, AP random function on B. The
domain � = Df of the AP function (x; s) 7! jf(x; s)jB, is an almost total dilation of A.

Similarly, the domain � of T is an almost total dilation of B. These two facts and the
domination condition imply that the dilation DS = � �� is almost total. It remains to
check that S, as a deterministic function S(x; st) = T (f(x; s); t) on � ��, is AP. This
function is the composite of T with the function j(x; st) = (f(x; s); t) from � �� to �.

By Theorem ??, it su�ces to prove that � dominates ��� with respect to j. We have:

P���[j
�1fj(x; st)g] = P���f(x0; s0t) : f(x0; s0) = f(x; s)g

= P�[f
�1ff(x; s)g] � 2�jtj

and

P�fj(x; st)g = PBff(x; s)g � 2
�jtj;
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so the ratio in the de�nition of domination for j is
P�[f�1ff(x; s)g]

PBff(x; s)g
, which is AP on

� because � �f B. It follows immediately that this ratio is AP as a function on � ��
(a function not depending on the t part of its argument). QED

Corollary 5.3. Let f be a function from a domain A to a domain B, computed by
an almost total, AP time randomizing algorithm M1. Suppose that Df �f B. Then, for

every almost total, AP time randomizing algorithm M2 on B, the composite algorithm
M = M2 �M1 is almost total and AP time.

Now we turn to the case when the composite is not required to be almost total.

Theorem 5.4. Suppose that � is a dilation of A. The following four statements
are equivalent.

(a) For every AP random function T on B with � as a set of good inputs, T � f is AP
with � �� as a set of good inputs.

(b) For every almost total AP random function T on B with � as a set of good inputs,

T � f is AP with � �� as a set of good inputs.
(c) For every deterministic AP function T on B, T � f is AP with � as a set of good

inputs.
(d) The function x 7! jf(x)jB is AP with � as a set of good inputs and � �f B.

Proof. Clearly, (a) implies (b).
To derive (c) from (b), suppose (b) and let T be as in (c). Consider the dilation

� of B comprising pairs (y; e) where y ranges over B and e is the empty string. Now

apply (b).
To derive (d) from (c), use Lemma ??, to restate (c) as follows: If T is any AP

(deterministic) function on B, then T � f is an AP deterministic function on �. By

Theorem ?? (and another application of Lemma ??), this implies (d).
It remains to derive (a) from (d). Assume (d), and let T and � be as in (a). Our

�rst task is to show that the rarity function U��� for the composite dilation � � � of
A is AP. It follows from (d) that U� is AP. By the hypothesis of (a), U� is AP. We

compute

U���(x) =

0
@ X
s2�(x)

X
t2�(f(x;s))

2�jsj2�jtj

1
A
�1

=

0
@ X
s2�(x)

2�jsj �
X

t2�(f(x;s))

2�jtj

1
A
�1

=

=

0
@ X
s2�(x)

2�jsj �
1

U�(f(x; s))

1
A
�1

and therefore, for any � with 0 < � < 1,

X
x2A

1

jxj
PA(x)U

�
���(x) =

X
x2A

1

jxj
PA(x)

0
@ X
s2�(x)

2�jsj �
1

U�(f(x; s))

1
A
��

=

=
X
x2A

1

jxj
PA(x)

0
@ X
s2�(x)

2�jsj � U�(x)
1

U�(x)U�(f(x; s))

1
A
��

=
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=
X
x2A

1

jxj
PA(x)

0
@ E
s2�(x)

"
1

U�(x)U�(f(x; s))

#1
A
��

;

where the expectation over s 2 �(x) is with respect to the probability distribution P(s) =
2�jsj � U�(x).

Apply Jensen's inequality (in the form of Corollary ??) to the last part of the com-
putation above:

X
x2A

1

jxj
PA(x)U

�
���(x) �

X
x2A

1

jxj
PA(x) E

s2�(x)

�
(U�(x) � U�(f(x; s))

�
�
=

=
X
x2A

X
s2�(x)

1

jxj
PA(x) � 2

�jsj � U�(x)
�
(U�(x) � U�(f(x; s)))

�
�
=

=
X

(x;s)2�

1

j(x; s)j�
P�(x; s)

�
(U�(x) � U�(f(x; s))

�
�
:

Thus, U��� is AP if the product of U�(x) and U�(f(x; s)) is AP on �, i.e., if both
factors are AP on �. Since U�(x) is AP on A, it is AP on �. Applying Theorem ??,
we �nd that the composition U�(f(x; s)) is AP. Hence U��� is AP.

It remains to verify the convergence condition of the de�nition \T � f is AP with
� � � as a set of good points", which is, by Lemma ??, equivalent to the statement
that T � f , as a deterministic function on � ��, is AP. By the hypothesis of (a) plus

Lemma ??, T , as a deterministic function on �, is AP. Since T � f is obtained from
T by composition with the function g(x; st) = (f(x; s); t) from � � � to � and jgj is
AP on on � ��, the desired conclusion will follow, by Theorem ??, if we show that �
dominates � �� with respect to g.

For this purpose, we use Lemma ?? and seek a measure � on � � � that projects
by g to P� and that dominates P���. The assumption (d) that B dominates � with
respect to f provides a measure � on � that projects to PB by f and dominates P�. We
use � to de�ne � by

�(x; st) = �(x; s) � 2�jtj � U�(f(x; s)):

This projects to P� via g, because, for any (x0; t0) 2 �,X
(x;st)2g�1(x0;t0)

�(x; st) =
X

(x;s)2f�1(x0)

�(x; st0) =

X
(x;s)2f�1(x0)

�(x; s) � 2�jt
0j � U�(f(x; s)) = 2�jt

0jU�(x
0)

X
(x;s)2f�1(x0)

�(x; s) =

2�jt
0 jU�(x

0)PB(x
0) = P�(x

0; t0):

So it remains to prove that � dominates P���, that is, that the ratio
P���(x; st)

�(x; st)
is an AP function on � ��. But this ratio is

PA(x) � 2�jsj � 2�jtj � U���(x)

�(x; s) � 2�jtj � U�(f(x; s))
=

P�(x; s) � U���(x)

U�(x)�(x; s)U�(f(x; s))
�

P�(x; s)

�(x; s)
� U���(x):
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To show that this is AP on � ��, it su�ces to show that both
P�(x; s)

�(x; s)
and U���(x),

considered as functions of (x; st) are AP on � ��. Of course, the former is AP as a
function of (x; s) on �, by our choice of �, and the latter is AP as a function of x on A,

as proved above, but neither of these is exactly what is needed. The desired information
about U���(x) follows easily because P��� projects to PA under the map (x; st) 7! x,
which preserves sizes. Indeed, we have

X
(x;st)2���

1

j(x; st)j���
�P���(x; st) � (U���(x))

" =

X
x2A

0
@ 1

jxj
� (U���(x))

" �
X

(x;st)2���

P���(x; st)

1
A =

X
x2A

1

jxj
� (U���(x))

"PA(x) <1

for su�ciently small " > 0, since U��� is AP on A.

The same approach does not succeed with the function
P�

�
on �, because the pro-

jection (x; st) 7! (x; s) from � �� to � need not send P��� to P�; factors of U��� and

U� get in the way. Fortunately, Lemma ?? allows us to ignore those factors. Since
P�

�
is AP on �, the lemma guarantees an " > 0 such that

X
(x;s)2�

1

jxj
PA(x) � 2

�jsj

 
P�(x; s)

�(x; s)

!"
<1:

For any �xed (x; s) 2 �, the numbers 2�jtj, where t ranges over �(f(x; s)), add up
to at most 1, since no such t is a proper initial segment of another. So

X
(x;st)2���

1

jxj
PA(x) � 2

�jsj2�jtj
 
P�(x; s)

�(x; s)

!"
<1:

By Lemma ??,
P�

�
is AP on � ��, and the proof of Theorem ?? is complete. QED

Question. Do parts (a), (b) and (c) of Theorem 5.3 remain equivalent if they

are weakened to assert only that T � f is AP, without specifying a particular set of good
inputs? Is there an analog of (d) for this situation?

Corollary 5.5. Let f be a random function from a domain A to a domain
B computed by an AP time randomizing algorithm M1. If there exists a domain of
good inputs for f dominated, with respect to f , by B then, for every AP randomizing
algorithm M2 on B, the composite algorithm M = M2 �M1 is AP time.

6. Impagliazzo-Levin's theorem. In order to formulate the theorem in ques-

tion, we need a couple of de�nitions. We start with the de�nition of uniform domains.
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In the case of domains with �nite many elements, it would be natural to call a domain

uniform if all elements have the same probability. This de�nition makes no sense in the
case of in�nite domains, which is the only case of interest to us. Another natural way to
de�ne uniform domains requires a default probability distribution on positive integers;
it is customary to assign the probability 1

n(n+1)
to a positive integer n.

Definition 6.1. A domain is uniform if it has a �nite number of elements of any
given size, all elements of a given size have the same probability, and

Pfx : jxj = ng = 1
n(n+1)

.

Definition 6.2 ([?]). A domain A is samplable if there exists a randomized
algorithm S such that

� S takes no input (but tosses coins) and outputs an element of A if it converges,
� PA(x) is proportional to the probability that S outputs x, and

� the computation time of S is bounded by a polynomial of the size of the output.

The restriction on the computation time of S can be relaxed [?].

Impagliazzo and Levin [?] deal with domains (though they do not use the term)
where the size jxj of an element x is its length (recall that domain elements are strings);
this restriction is not necessary [?] but it simpli�es the exposition and we stick to it in
this section. Call a sampling algorithm S length preserving if it uses exactly n coin

tosses to produce a string of length n. The following fact is well known and we omit the
proof.

Lemma 6.3 ([?, ?, ?]). Every search problem on a samplable domain reduces to a
search problem on a domain sampled by a length-preserving algorithm.

Implagliazzo and Levin prove that every NP search problem on a samplable domain
reduces to an NP search problem on a uniform domain. Recall that a search problem
SP(A;W ) is NP if the length of a witness is bounded by a polynomial of the size of the
instance and the witness relation W (x;w) is PTime computable relative to jxj. In fact,

the Impagliazzo-Levin argument does not require the restriction to NP problems.

Theorem 6.4 ([?]). Every search problem �1 = SP(A1;W1) on a samplable

domain A1 reduces to a search problem on the uniform domain BS of binary strings. If
the source problem is NP then the target problem may be chosen to be NP as well.

Proof. First, we indicate the motivation behind the proof. There are two simple but
unsuccessful attempts at reducing SP(A1;W1) to a search problem on a uniform domain.
One is to simply rede�ne the probability distribution on A1 to be uniform. This fails
because the obvious instance-transformer, the identity map, violates the domination

condition. It is entirely possible for some instances x to have vastly larger probability
in the given samplable A1 than in the uniform domain; this occurs when S�1(x) is large
(as S preserves length). A second attempt is to use the search problem on the domain

BS de�ned by W 0(u) = W (S(u)). The trouble with this is that an instance-transformer
should produce, for any x, some u 2 S�1(x), and this may be di�cult, even for a
randomizing algorithm. Indeed, one could imagine that each such u encodes a witness
w for x, so that the new search problem is trivial. Notice, however, that this second
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attempt fails only when S�1(x) is rather small; when it is large, an element of it can be

found by guessing random elements and checking them (as S is quickly computable).
The strategy of the proof is to interpolate between these two attempts, leaning to-

ward the �rst (resp. second) when S�1(x) is small (resp. large). More precisely, an
instance of the new problem should be (approximately) n = jxj bits long, consisting of

l = dlog(jjS�1(x)jj)e bits of information about some u 2 S�1(x) and n� l bits about x.
(Here jjS�1(x)jj is the cardinality of the set S�1(x).)

There are some obvious di�culties with this. For one thing, we can't e�ciently
compute l from x. But we can guess it; it lies between 0 and n, so the probability

of guessing correctly is the reciprocal of a polynomial, which is good enough to give a
nonrare dilation. Another issue is how to select the right bits of information about u
and x. This, too, is solved by randomization. We randomly choose two matrices L and

M (with entries in the two-element �eld f0; 1g) of the appropriate size to hash u and
x to vectors Lu and Mx of lengths l and n � l, respectively. A key point in the proof
is that randomly chosen hash matrices have a reasonable probability of working the way
we want.

Thus, �nally, an instance of the new problem will consist of the two hash matrices
L and M and the results Lu and Mx of hashing u and v. A witness for such an instance
will consist of a u and a w such that Lu is as speci�ed in the instance, S(u) is an x

whose hashing Mx is as speci�ed in the instance, and W (x;w) holds. (Actually, there

are a couple of minor technical modi�cations in the actual proof, but this is the essential
idea.)

Now we give the actual proof. We construct search problems �i = SP(Ai;Wi) for
i = 2; 3; 4; 5 with A5 = BS and reduce each �i with i < 5 to �i+1. Accordingly, we

have 4 reduction lemmas. In each lemma, the desired reduction is called (�; f; g). The
probability distribution of Ai is denoted Pi.

By Lemma ??, we may suppose that S is size-preserving.

Notation. In the rest of this section, x is an instance of �1 with W1(x) 6= ;,
n = jxj, m is the cardinality of the set S�1(x), and l = dlogme. If j is a natural number

then b(j) is the (shortest) binary notation for j.

We de�ne �2. A2 comprises pairs (x; l) where x is an element of A1 and l is as
above. The size and probability of (x; l) are the size and probability of x in A1. Further,

W2(x; l) = W1(x).

Lemma 6.5. �1 reduces to �2.

Proof. De�ne �(x) to contain one string, namely, b(l). We have: Rarity�(x) =
2jb(l)j � 2l � 2n, so that � is not rare.

De�ne f(x; b(l)) = (x; l). To check the domination property, take into account that
f is injective:

P�(x; b(l))

P2(x; l)
=
P1(x) � 2�jb(l)j

P1(x)
� 1:

Finally, de�ne g((x; b(l)); w) = w. QED
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Notation: u ranges over binary strings of length n, u0 ranges over binary strings

of length l, L ranges over l�n matrices over the �eld of two elements. If I is a matrix
over the �eld of two elements then b(I) is the binary string obtained from I by writing
down the �rst row of I, then the second row of I, and so on. If s and s0 are strings
then s � s0 denotes the concatenation of s and s0.

We de�ne �3. A3 comprises triples (x;L; u0) such that L has full rank (i.e. rank l)
and there exists u 2 S�1(x) with Lu = u0. A3 is isomorphic to a subdomain of A2�BS;
the isomorphism is �3(x;L; u0) = ((x; l); b(L) � u0)). Further,

W3(x;L; u
0) = f(u;w) : S(u) = x;Lu = u0 and w 2 W1(x)g:

Lemma 6.6. �2 reduces to �3.

Proof. De�ne � to be the �3-image of A3. To prove that � is not rare, �x an instance
(x; l) of �2.

Claim 6.7. In the uniform probability space of l� n matrices, the probability that
a matrix has full rank exceeds a positive constant independent of l and n, e.g., 1=4.

Proof. Only one row (namely, the row of zeroes) cannot serve as the �rst row of a
full rank matrix. Given the �rst row u1, only two rows (namely, u1 and the zero row)

cannot serve as the second row of a full rank matrix. Given the �rst two rows u1 and
u2, only four rows (namely, the four linear combinations of u1 and u2) cannot serve as
the third row of a full rank matrix. And so on. Thus the number of full rank matrices
is

(2n � 1)(2n � 2)(2n � 4) : : : (2n � 2l�1) =
l�1Y
i=0

(2n � 2i):

The total number of l� n matrices is 2ln. Hence the probability of full rank is

Ql�1
i=0(2

n � 2i)

2ln
=

l�1Y
i=0

2n � 2i

2n
=

l�1Y
i=0

(1 �
1

2n�i
) >

1Y
i=0

(1�
1

2i
) = (1 �

1

2
)(1�

1

4
)(1 �

1

8
) : : : :

To estimate this product, consider the following probabilistic experiment. For each
i, let Ui be an urn with 2i balls such that exactly one of the balls is red and the others
are green. Let Ai be the event of selecting a green ball from Ui, and Bi be the event of

selecting the red ball, so that P(Ai) = 1�P(Bi) = 1� 1
2i . We have

1Y
i=2

(1�
1

2i
) = P

"
1\
i=2

Ai

#
= 1�P

"
1[
i=2

Bi

#
>

1�
1X
i=2

P(Bi) = 1 � (
1

4
+

1

8
+ : : :) = 1 �

1

2
= 1=2:

Hence the probability of full rank exceeds (1� 1
2)

1
2 = 1=4. QED
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Claim 6.8. Consider the probability space of pairs (L; u0) where L is of full rank.

For each x, the probability of the event

f(L; u0) : (9u 2 S�1(x))(Lu = u0)g

is at least 3=8.

Proof. Let u, v range over S�1(x). For each u, let E(u) = f(L; u0) : Lu = u0g.
Then the cardinality jjE(u)jj of E(u) is the number F of full rank matrices L. The
event in question is

S
E(u), and the probability in question is jj

S
E(u)jj=(F2l).

We check that if u 6= v then the set E(u; v) = E(u) \ E(v) contains at most F=2l

elements. Notice that

[(L; u0) 2 E(u; v)]() [Lu = u0 = Lv] =) [L(u� v) = 0]

and, for each L that annihilates u�v, there exists a unique u0 such that (L; u0) 2 E(u; v).
Thus jjE(u; v)jj equals the number of full rank matrices L which annihilate u�v. Among
all l�n matrices, the probability of annihilating u�v is exactly (1=2)l; among full-rank

matrices, the probability is � (1=2)l. Let us make this precise.
If l = n then the probability that a full-rank matrix annihilates u � v equals 0; so

assume that l < n. The probability p that a random full-rank matrix L annihilates a

speci�ed nonzero vector z 2 f0; 1gn is independent of z. For any z; z0 there is a non-
singular n � n matrix A such that Az = z0. Then L annihilates z0 if and only if LA
annihilates z, and LA has full rank if and only if L does.

So, without loss of generality, z = (0; 0; : : : ; 0; 1). It is clear now that p equals the

number of full-rank l � n matrices with the last column of zeroes divided by the total
number of full-rank l � n matrices. In other words, p equals the number of full-rank
l�(n�1)matrices divided by the number of full-rank l�n matrices. Recall our counting
of full-rank matrices above. We have:

p =

Ql�1
i=0(2

n�1 � 2i)Ql�1
i=0(2

n � 2i)
�

Ql�1
i=0(2

n�1 � 2i�1)Ql�1
i=0(2

n � 2i)
=

l�1Y
i=0

1

2
= (

1

2
)l:

By the inclusion-exclusion principle [?],

1

F2l
jj
[
u

E(u)jj �
1

F2l

0
@X

u

jjE(u)jj �
X
u6=v

jjE(u) \ E(v)jj

1
A :

Since the number of u's is m,
1

F2l
X
u

jjE(u)jj =
1

F2l
mF =

m

2l
. Further,

1

F2l
X
u6=v

jjE(u) \ E(v)jj �
1

F2l
m(m� 1)

2
F=2l =

m(m� 1)

22l+1
:

Thus, the probability we want is bounded below by
m

2l
�
m(m� 1)

22l+1
> t�

1

2
t2 where

t = m
2l is between one-half and one (because of the de�nition of l). But the minimum of

29



the quadratic function t� 1
2
t2 on the interval [1

2
; 1] is 3

8
. So the probability we want is

greater than 3
8
. QED

The two claims imply that � is non-rare. De�ne
f = ��13 and g(((x; l); b(L) � u0); (u;w)) = w.
It is easy to see (�; f; g) is indeed the desired reduction. QED

Notation: k = n+ 1� l and M ranges over k � n matrices over the 2-element
�eld.

We de�ne �4. A4 comprises 5-tuples (x;L; u0;M) such that (x;L; u0) 2 A3, M is
as above (a k � n matrix) and there is no u 2 f0; 1gn � S�1(x) such that Lu = u0 and

M(S(u) � x) = 0. It is isomorphic to a subdomain of A3 � BS via the isomorphism
�4(x;L; u0;M) = ((x;L; u0); b(M)). Further, W4(x;L; u0;M) = W3(x;L; u0).

Lemma 6.9. �3 reduces to �4.

Proof. De�ne � to be the �4-image of A4. To prove that � is not rare, �x an element

(x;L; u0) of A3 and call a matrix M bad if there exists u 2 f0; 1gn � S�1(x) such that
Lu = u0 and M(S(u)� x) = 0.

Claim 6.10. The fraction of bad matrices M is at most 1/2.

Proof. The number of strings u satisfying the equation Lu = u0 is 2n�l = 2k�1. For
each u 2 f0; 1gn � S�1(x), there are exactly 2kn�k matrices M satisfying the equation

M(S(u) � x) = 0. Thus the number of bad matrices M is at most 2k�12kn�k = 2kn�1,
which is exactly one half of the total number of matrices M . QED

The claim implies that � is not rare. De�ne f = ��14 and
g(((x;L; u0); b(M))(u;w)) = (u;w). It is easy to see that �; f; g is indeed a reduction.

QED

The domain A5 of our �nal problem �5 is BS. We do some work before de�ning
W5. Consider the function

f(x;L; u0;M) = b(L) � u0 � b(M) � b(Mx) � b(l):

from A4 to A5. (It will serve eventually as the instance transformer of the desired

reduction of �4 to �5.)

Claim 6.11. f is injective, and the components L, u0 andM as well as the numbers

n, l and k are PTime computable from f(x;L; u0;M)

Proof. As jf(x;L; u0;M)j = ln + l + kn + k + l = (n + 1)2 + l and l � n, the

numbers n, l and k are easily computable from jf(x;L; u0;M)j. It follows that L, u0 and
M are easily computable from f(x;L; u0;M). To prove that f is injective, suppose that
f(x2; L; u0;M) = f(x;L; u0;M). Then M(x2�x) = 0 and there exists u 2 S�1(x2) such
that Lu = u0 and M(S(u)� x) = 0. Since M isn't bad for (x;L; u0) (in the sense of the

proof of Lemma ??), x2 = S(u) = x. QED

Claim 6.12. f deterministically reduces A4 to A5.
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Proof. Clearly, f is PTime computable. We need only to check that f satis�es the

domination condition. Since f is injective,

P4(f�1(f(x;L; u0;M))

P5(f(x;L; u0;M))
=

P4(x;L; u0;M)

P5(f(x;L; u0;M))

=
P1(x)PBS(b(L) � u

0 � b(M))

PBS(b(L) � u0 � b(M) � b(Mx) � b(l))
:

We may ignore factors polynomial in j(x;L; u0)j, i.e., polynomial in n. In that sense,

P1(x)PBS(b(L) � u0 � b(M))

PBS(b(L) � u0 � b(M) � b(Mx) � b(l))
�

2�(n�l)2�(ln+l+kn)

2�(ln+l+kn+k+log l)
� 1: QED

Now we are ready to de�ne W5.

W5(s) =

(
W4(x;L; u0;M) if s = f(x;L; u0;M)
; otherwise:

Since S is PTime computable and �1 is an NP search problem, the search problem
�5 is NP as well.

Lemma 6.13. �4 deterministically reduces to �5.

Proof. The instance transformer f of the desired reduction is already de�ned. The
witness transformer is g((x;L; u0;M); (u;w)) = (u;w). It is easy to see that (f; g) is

indeed a reduction. QED

Theorem ?? is proved. QED

7. Appendix. Jensen's inequality. For the reader's convenience, we prove
here two forms of Jensen's inequality that we need. The proof of Jensen's inequality

from [?] is used.

Theorem 7.1. Consider an increasing concave function f on an interval (a;1)

of the real line and set f(1) = lim
x"1

f(x). For every random variable X with values in

the interval (a;1] of the real line extended with 1,

E(f(X)) � f(E(X)):

Proof. If E(X) = 1 then f(E(X)) = lim
x"1

f(x) � E(f(X)). Suppose that E(X) <
1.

The fact that f is concave means that for a < u < v < w,

f(v)� f(u)

v � u
�

f(w)� f(v)

w � v
:

It is clear that the monotone limits

A(v) =# lim
u"v

f(v)� f(u)

v � u
;B(v) =" lim

w#v

f(w) � f(v)

w � v
31



exist and A(v) � B(v). For all positive real v, x and every c in [B(v); A(v)], we have

f(x) � c(x�v)+f(v): In particular, there is c such that f(X) � c(X�E(X))+f(E(x))
and the desired inequality follows on taking expectations. QED

Corollary 7.2. Suppose 0 < � < 1 and let X be any random variable with values
in (0;1]. Then

E(X�) � (E(X))�:

Theorem 7.3. Consider a decreasing convex function g on an interval (0; b) of
the real line and set g(0) = lim

x#0
g(x). For every random variable X with values in the

interval [0; b) of the real line,

E(g(X)) � g(E(X)):

Proof. First suppose E(X) = 0. Since all values of X are � 0, we must have with
probability 1 that X = 0 and therefore g(X) = g(0). Then E(g(X)) = g(0) = g(E(X)).

In the case E(X) > 0, the proof is similar to the part of the proof of Theorem ??

for the case E(X) <1; just reverse some arrows and inequalities. QED

Corollary 7.4. Suppose 0 < � < 1 and let X be any random variable with values

in [0; b). Then

E(X��) � (E(X))��:
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