
Average Case Complexity∗

Yuri Gurevich†, University of Michigan.

Abstract. We attempt to motivate, jus-
tify and survey the average case reduction
theory.

1. Introduction

An NP decision problem may be spec-
ified by a set D of strings (instances) in
some alphabet, another set W of strings
in some alphabet and a binary relation
R ⊆ W × D that is polynomial time com-
putable and polynomially bounded (which
means that the size |w| of w is bounded by
a fixed polynomial of the size |x| of x when-
ever wRx holds). If wRx holds, w is called
a witness for x. The decision problem spec-
ified by D, W and R, call it DP(D,W,R),
may be stated thus: Given an element x
of D, determine if there exists w ∈ W such
that wRx holds. The corresponding search
problem, call it SP(D,W,R) may be stated
thus: Given an element x of D, determine
if there exists a witness w for x and if so
then exhibit such a witness.
Problems of the form SP(D,W,R) may

be called NP search problems even though
NP is supposed to be a class of decision
problems. It will be convenient for us to
use the term “an NP problem” to mean an
NP decision problem (a genuine NP prob-
lem) or its search counterpart. In this talk,
we deal only with NP decision and search
problems even though methods of the av-
erage complexity theory may be applied

∗Springer LNCS 510, 1991, 615–628.
†Partially supported by NSF grant CCR 89-

04728. Address: EECS Dept., University of Michi-
gan, 1301 Beal Ave., Ann Arbor, MI 48109-2122.
Email: gurevich@eecs.umich.edu

to wider classes. NP and the class of NP
search problems are sufficiently important.
The restriction to the case when in-

stances and witnesses are strings is stan-
dard [GJ], even though it means that one
may be forced to deal with string encodings
of real objects of interest. The reason is
that we need a clear computational model.
If instances and witnesses are strings, the
usual Turing machine model can be used.
The size of a string is often taken to be its
length, though this requirement can easily
be relaxed.
A solution of an NP problem is a feasible

decision or search algorithm. The question
arises what is feasible. It is common to
adopt the thesis

(1.0) Feasible algorithms are exactly
polynomial time ones.

which can be split into two parts:

(1.1) Every polynomial time algorithm is
feasible.

(1.2) Every feasible algorithm is polyno-
mial time.

We do not believe in a unique feasibil-
ity concept; feasibility depends on appli-
cation. In real time applications or in the
case of huge databases (like that of the US
Internal Revenue Service), even linear time
may be prohibitively expensive. However,
one important feasibility concept fits (1.1)
well. It is often reasonable to assume that
if your customer had time to produce an
input object of some size n, then you can
afford to spend time n2 or n3 etc. on the

1

object. Of course, this “etc.” should be
treated with caution. Probably, you will
be unable to spend time n64. Fortunately,
in practically important cases, these poly-
nomials tend to be reasonable.

P-time (polynomial time) is a very
robust and machine-independent concept
closed under numerous operations. If you
believe that (i) linear time algorithms are
feasible and (ii) every algorithm with fea-
sible procedures running in feasible time
(counting a procedure call as one step)
is feasible, then you are forced to accept
all P-time algorithms as feasible. Find-
ing a polynomial-time algorithm for an NP
problem often requires ingenuity, whereas
an exponential-time algorithm is there for
free. Proving that a given NP problem
can be solved in polynomial time, you feel
that you made a mathematical advance. It
seems that this feeling of mathematician’s
satisfaction contributed to the popularity
of the P-time concept. (Notice however
that a superpolynomial bound may require
ingenuity and be a source of satisfaction as
well.)

We do not know very strong arguments
in favor of (1.2). Moreover, there are
strong arguments against it. The most im-
portant one for our purpose in this talk is
that sometimes there are satisfying prac-
tical ways to cope with hard NP problems
in the absence of P-time algorithms. In the
case of an optimization problem, one may
have a fast approximating algorithm. In
the case of a decision or search problem,
one may have a decision or search algo-
rithm that is usually fast or almost always
fast or fast on average. Leonid Levin pro-
posed one average case approach in [Le1].
His approach is the topic of this talk.

We hope this account is entertaining. It
certainly isn’t complete. The references in-
clude three student papers: [Gr], [Kn] and
[Sc].

2. Polynomial on average

In the average case approach, a decision
or search problem is supposed to be given
together with a probability distribution on
instances. A problem with a probability
distribution on instances is called random-
ized (or distributional [BCGL]). Determin-
ing an appropriate distribution is a part of
the formalization of the problem in ques-
tion and it isn’t necessarily easy. (The
robustness of the average case approach
with respect to probability distributions is
of some help.) In this talk, we address
only the task of solving a given random-
ized problem. The task is to devise an al-
gorithm that solves the problem quickly on
average with respect to the given distribu-
tion. No pretense is made that the algo-
rithm is also good for the worst case.
One advantage of the average case ap-

proach is that it often works. It was pos-
sible a priori that, whenever you have a
fast on the average algorithm, you also
have an algorithm that is fast even in the
worst case. This is not at all the case.
Sometimes a natural probability distribu-
tion makes the randomized problem ridicu-
lously easy. Consider for example the 3-
coloring search problem when all graphs
of the same size have the same probabil-
ity. The usual backtracking solves this ran-
domized search problem in (surprise!) at
most 197 steps on average, never mind the
size of the given instance [Wi]. The reason
is that there are very simple and probable
witnesses to non-colorability, like a clique
of 4. The distribution is greatly biased
toward the negative answer. The average
time can be further cut down if the algo-
rithm starts with a direct search for such
witnesses. There are numerous examples
of success in the cases of less biased dis-
tributions. This is, however, a topic of a
different talk.
One may argue that, in many applica-

tions, the average case may be more im-

2

portant than the worst case. Imagine a fac-
tory that produces complete graphs. Each
edge of a graph is produced separately us-
ing the same technology and there is a fixed
probability p for an edge to be faulty. Sup-
pose that, for whatever reason, it happens
to be important to know whether a given
graph has a hamiltonian circuit composed
entirely of faulty edges. There is an algo-
rithm A that solves the hamiltonian search
problem with any fixed edge-probability
distribution and that has an expected run-
ning time linear in the number of vertices
[GS]. You may want to use that algorithm
and open a hamiltonian shop. There may
even be several such factories in your area.
A customer will bring you a graph G with
some number n of vertices. If it is custom-
ary that the charge depends only on the
number of vertices, you may charge a fee
proportional to the expected running time
of A on n-vertex graphs, where the propor-
tionality coefficient is chosen to ensure you
a fair profit and competitiveness.

For the sake of fairness, we should men-
tion situations where the failure to solve
quickly one instance means the failure of
the whole enterprise. Even then the worst
case approach may be too conservative. In
any case, it seems to us that, in many ap-
plications where polynomial time is feasi-
ble, polynomial on average time is feasi-
ble as well. The question arises what does
it mean that a function is polynomial (i.e.
polynomially bounded) on average.

Following [BG], we define a domain to
be a set U (the universe) with a function
from U to natural numbers (the size func-
tion) and a probability distribution on U
satisfying the following technical restric-
tions. First, the universe is a set of strings
in some alphabet (so that the Turing ma-
chine model can be used). Second, there
are only finitely many elements of positive
probability and any given size. It is not re-
quired that the size of a string is necessar-

ily its length. Third, the probability dis-
tribution is polynomial time computable
(P-time). The notion of P-time distribu-
tions was introduced in [Le1] and analyzed
to some extent in [Gu1]. The requirement
that the distribution is P-time will be dis-
cussed and relaxed in Section 6. Meantime,
view is as some technical restriction that is
often satisfied in practice.
Consider a function T from a domain

D to the interval [0..∞] of the real line
extended with ∞. Let En(T) be the ex-
pectation of T with respect to the condi-
tional probability Pn(x) = P{x | |x| = n}.
The definition of polynomiality on average
seems obvious: T is polynomial on average
(relative to D) if

(2.1) En(T) is bounded by a polynomial
of n.

Unfortunately, this obvious answer is not
satisfying. It is easy to construct D and
T such that T is polynomial on average
but T 2 is not. It seems reasonable to ac-
cept that (i) T is polynomial on average if
En(T) = O(n), and (ii) if T is bounded by
a polynomial of a function which is poly-
nomial on average then T is polynomial
on average. These two assumptions imply
that T is polynomial on average if

(2.2) there exists ε > 0 such that En(T ε)
is bounded by a polynomial of n

which is equivalent to

(2.2′) (∃ε > 0) En(T ε/n) = O(1).

The weak point of condition (2.2) is that
it is uniform in n. It is possible, for ex-
ample, that there exists a set Q of natu-
ral numbers such that T (x) is large when
|x| ∈ Q but, for n ∈ Q, the probability
that |x| = n is very small. The “official”
definition requires a slightly weaker condi-
tion.

3

Definition 2.1. A function T from a do-
main D to [0..∞] is polynomial on average
(in short, AP) if

(2.3) (∃ε > 0) E(T ε/|x|) < ∞.

Theorem 2.1 [Gu1]. Conditions (2.2)
and (2.3) are equivalent if there exists an
integer k such that P{x : |x| = n} > n−k

for all sufficiently large n with P{x : |x| =
n} > 0.

A more extensive discussion of the issue
of AP functions can be found in [Gu1] and
[BCGL]. We will return to that issue in
Section 7.

3. A new setting

A randomized NP decision or search
problem may be specified by a triple
(D,W,R) where D, W and R are as
above (in Section 1) except that D is
a domain now. Randomized decision
problems RDP(D,W,R) and randomized
search problems RSP(D,W,R) play the
roles of decision and search problems in
the NP theory. The role of NP is played
by the class RNP of randomized NP deci-
sion problems. The term “an RNP prob-
lem” will be used to mean an RNP decision
problem or its search counterpart. An al-
gorithm for an RNP problem is considered
feasible if it runs in time that is AP rela-
tive to D; thus the role of P is played by
the class AP of AP-time decidable RNP
decision problems. (This is going to be re-
vised.)
It is difficult to exhibit an RNP decision

problem that is not AP. (Such a problem
exists if NTime(2O(n))
= DTime(2O(n))
[BCGL].) In particular, the existence of
such a problem implies P
= NP . However
the reduction theory allows one to exhibit
maximally hard RNP problems.
We try to motivate an appropriate re-

duction notion. Notice that an AP-time

function f from a domain D1 to a do-
main D2 need not constitute a reduc-
tion of Π1 = RDP(D1,W1, R1) to Π2 =
RDP(D2,W2, R2) even if (∃w)(wR1x) ↔
(∃w)(wR2(fx)) for all x inD1. Why? Sup-
pose that you have a decision algorithm
A2 for Π2 that runs very fast on average.
That decision algorithm can be pulled back
by means of f to give the following deci-
sion algorithm A1 for Π1: Given x, com-
pute y = f(x) and then apply A2 to y. It
may happen unfortunately that the range
of f has an unfair share of rare difficult in-
stances of Π2 and A1 is not at all AP-time.
It would be natural to say that a func-

tion f from D1 to D2 reduces D1 to D2
if

(3.1) f is AP-time, and

(3.2) For every AP function T : D2 →
[0..∞], the composition T ◦ f is AP.

Because of the universal quantification,
however, the requirement (3.2) is not con-
venient to use. Fortunately, (3.2) can
be simplified. Let Pi be the probabil-
ity distribution of Di and let T0(y) =
P1(f−1(y))/P2(y). Since E(T0) = 1, we
have the following special case of (3.2):

(3.3) P1(f−1(fx))/P2(fx) is AP.

Theorem 3.1 [BG]. Assume (3.1). Then
(3.2) ↔ (3.3).

Say that D2 dominates D1 with respect
to f if (3.3) holds. This is a slight varia-
tion on Levin’s original definition of domi-
nation.

Definition 3.1. A function f from a do-
main D1 to a domain D2 reduces D1 to D2
if f is AP-time computable and D2 domi-
nates D1 with respect to f .

Definition 3.2. RDP(D1,W1, R1) re-
duces to RDP(D2,W2, R2) if there exists
a reduction f of D1 to D2 such that

4

(∃w)(wR1x) ↔ (∃w)(wR2(fx)) for all in-
stances x ∈ D1 of positive probability.

Definition 3.3. RSP(D1,W1, R1) re-
duces to RSP(D2,W2, R2) if there exists a
reduction f of D1 to D2 and a polynomial
time computable function g from W2 to
W1 satistying, for every x ∈ D1 of positive
probability, the following two conditions:

• (∃w1)(w1R1x) −→ (∃w2)(w2R2(fx)),

• w2R2(fx) −→ (gw2)R1x.

Here is one example. Given an arbi-
trary RSP(D,W,R), form the direct prod-
uct W ′ of W and (the universe of) D. Let
P (w, x) = x be the projection function
from W ′ to D, F be the restriction of P
to the set {(w, x) : wRx, and R′ be the
graph {((w, x), x) : wRx} of F . The new
problem RSP(D,W ′, R′) is the problem of
inverting F . Given an element x of D, de-
termine whether F−1(x) is nonempty and
if so then exhibit an element of F−1(x).
Thus, every RNP search problem reduces
to a randomized problem of inverting a
polynomial-time computable function.

Corollary 3.1. Let Π1, Π2 and Π3 be
RNP decision (resp. search) problems.

• If Π1 reduces to Π2 and Π2 reduces to
Π3 then Π1 reduces to Π3.

• If Π1 reduces to Π2 and there exists an
AP-time decision (resp. search) algo-
rithm for Π2 then there exists an AP-
time decision (resp. search) algorithm
for Π1.

Corollary 3.2. Let D1 and D2
be two domains with the same universe
and the same size function dominating
each the other with respect to the iden-
tity function. Then any RDP(D1,W,R)
(resp. RSP(D1,W,R)) is solvable in AP-
time if and only if RDP(D2,W,R) (resp.
RSP(D2,W,R)) is so.

Corollary 3.2 witnesses a certain robust-
ness of the average case approach.
Leonid Levin proved that a randomized

version of the (bounded) tiling problem is
complete for RNP [Le1]. Some additional
problems complete for RNP with respect to
reductions as defined above were given in
[Gu1,Gu2]; in the next section, we describe
one of them.

4. One RNP complete prob-
lem

In order to generalize the notion of the
uniform probability distribution from fi-
nite sample spaces to domains, we need
to fix some default probability distribution
on natural numbers. Let us agree that the
default probability of any n > 1 is propor-
tional to n−1 · (log n)−2. Call a domain D
uniform if elements of the same size have
the same probability distribution and the
probability of {x : |x| = n} is proportional
to the default probability of n. Further,
define the direct product D1 × D2 of do-
mains D1 and D2 to be the domain of pairs
(a, b), where a ∈ D1 and b ∈ D2, such that
|(a, b)| = |a|+|b| andP(a, b) = P(a)×P(b).
Recall that themodular group is the mul-

tiplicative group of two-by-two integer ma-
trices of determinant 1. In this section, a
matrix is an element of the modular group.
Make a uniform domain out of the modu-
lar group in a natural way. The size |A| of
a matrix A may be defined as the number
of bits necessary to write the matrix down
(using the binary notation for the entries);
alternatively, it may be defined as the log
of the maximal absolute value of its entries.
(Notice that |A| is the size rather than the
determinant of a matrix A.)
A matrix pair (B,C) gives rise to an op-

erator TB,C(X) = BXC over the modu-
lar group which is linear (even though the
modular group is not closed under addi-
tion) in the following sense: If X =

∑
Yi

5

then TB,C(X) =
∑

TB,C(Yi). Andreas
Blass proved that an arbitrary operator
over the modular group is linear if and
only if there exist matrices B and C such
that either T (X) = BXC for all X or
else T (X) is the transpose of BXC for
all X. Moreover, any linear operator T
uniquely extends to a linear operator on
all two-by-two integer (or even complex)
matrices; this gives rise to the standard
representation of T by a four-by-four in-
teger matrix. The two presentations are
polynomial-time computable each from the
other. Thus, an appropriate matrix pair
(B,C) with one additional bit, indicating
whether the transpose is applied, is a natu-
ral representation of the corresponding lin-
ear operator T . It is natural to define the
domain of linear operators as the direct
product of two copies of the matrix domain
and the uniform domain of two elements.
Let σ be a sufficiently large positive inte-
ger.
We are ready to define an RNP deci-

sion problem called Matrix Decomposition.
The domain of Matrix Decomposition is
the direct product of the matrix domain,
σ copies of the domain of linear operators
and the domain of natural numbers where
|n| = n and P(n) is the default probability
of n. In other words, an instance of Matrix
Decomposition comprises a matrix A, a se-
quence S = (T1, . . . , Tσ of σ linear orien-
tation preserving operators and the unary
notation for a natural number n. The cor-
responding question is if there a product
P = T1 × . . . × Tm of m ≤ n linear opera-
tors Ti ∈ S such that A = P (1).

Theorem 4.1 [Gu3]. Matrix Decompo-
sition is RNP complete.

The prove of RNP hardness consists of
the following steps. First, a randomized
version of the (bounded) halting problem
is proved complete for RNP. This result
is implicit in [Le1] and explicit in [Gu1].
Second, the randomized halting problem

is reduced to a randomized version of the
(bounded) Post Correspondence Problem
[Gu1]. Third, the randomized PCP is re-
duced to Matrix Decomposition [Gu3].
A simpler version of Matrix Decomposi-

tion is obtained by making S a sequence
of matrices rather than linear operators.
The question becomes whether A can be
represented as a product of at most n S-
matrices. We doubt that the modified
problem is complete for RNP, but the sim-
ilar problem for larger matrices, like 20 ×
20 is complete [Ve].

5. Revision 1: Randomized
reductions

The setting of Section 3 turns out to be
too restrictive. Call a domain D flat if
P(x) is bounded by 2−|x|ε for some ε > 0.
Intuitively, a flat domain is akin to a uni-
form one. No element has a probability
that is too big for its size. Many usual
domains are flat. For example, any do-
main of graphs is flat if the size of a graph
is the number of vertices (or the number
of vertices plus the number of edges, or
the size of the adjacency matrix) and the
conditional probability distribution on n-
vertex graphs is determined by the edge-
probability p(n) with n−2+δ < p(n) <
1− n−2+δ for some constant δ > 0.

Lemma 5.1 [Gu1]. If an RNP decision
problem on a flat domain is complete for
RNP then deterministic exponential time
DTime(exp(nO(1)) equals nondeterministic
exponential time NTime(exp(nO(1)).

Proof Sketch. Turn the given nonde-
terministic exponential time decision prob-
lem D0 into a very sparse RNP prob-
lem (D1, µ1) whose positive instances x
have enormous (for their size) probabili-
ties. Given such an x, a reduction f of
(D1, µ1) to a flat RNP decision problem
(D,µ) produces an instance f(x) of a high

6

probability and therefore a small size. An
exponential time decision procedure for D
together with a polynomial time procedure
for computing f give a (deterministic) ex-
ponential time decision procedure for D0.
QED

This proof contains no evidence that
RNP problems with flat distributions are
easy; it is natural to view the lemma as
evidence that the reductions of Section 3
are not strong enough. Those reductions
are many-one reductions and one obvious
move is to generalize them to Turing re-
ductions. However, the lemma survives the
generalization. Leonid Levin had a fruitful
idea: randomize. Allow the reducing al-
gorithm to flip coins and produce a some-
what random output. Now the proof of the
lemma fails: Instead of producing one in-
stance f(x) of a high probability and small
size, a randomizing reduction produces a
multitude of instances of small probabili-
ties and large sizes.
Using randomizing reductions, Levin

and his student Ramarathnam Venkatesan
constructed a natural randomized graph-
coloring problem complete for RNP [VL].
Their paper demonstrates another reason,
a very good one, for using randomizing re-
ductions. Randomizing reductions allow us
to use the structure of a random instance
of the target problem (the one whose com-
pleteness one would like to prove). Given
an instance x of the randomized halting
problem, the reducing machine of Venkate-
san and Levin flips coins to produce a ran-
dom graph of an appropriate size. Then
it massages this graph to make sure that
x can be coded in with a sufficiently high
probability.
Next, following [BG], we generalize the

notion of domain reduction by allowing re-
ductions to flip coins. All reductions as in
Section 3 will be called deterministic from
now on.
Consider a Turing machine M which

takes inputs from a domain D and which
can flip a fair coin. M can be viewed as
a deterministic machine computing a func-
tion f(x, r) where x ∈ D and r is a se-
quence of (the outcomes of) coin flips. Call
such f a random function on D. (One may
object to the term “random function” on
the grounds that a random function on A
should be a randomly chosen function on
A. The term “a random function” is fash-
ioned in [BG] after well accepted terms like
“a real function”. A real function assigns
real numbers to elements. A random func-
tion assigns random objects to (almost all)
elements.) Formally, f is an ordinary (or
deterministic) function on a different do-
mainDf that is an extension ofD. (Df has
a somewhat unusual size function. Notice
that the auxiliary input r does not have the
status of the real input x because we are
interested in measuring the running time of
M in terms of the real input x only. The
size of a pair (x, r) in Df is the size of x in
D.)
Random functions compose and give (if

you care) a nice category. Say that a ran-
dom function f on D is AP-time com-
putable if the deterministic function f is
AP-time computable with respect to Df .
We say that a domain D′ dominates a do-
main D with respect to a random function
f from D to D′ if D′ dominates Df (in
the sense of Section 3) with respect to the
deterministic function f from Df to D′.

Definition 5.1. A reduction of a domain
D1 to a domain D2 is an AP-time random
function f from D1 to D2 such that D2
dominates D1 with respect to f .

Theorem 5.1. Let f be an AP-time ran-
dom function from a domain D1 to a do-
main D2. Then the following statements
are equivalent:

• D1 is dominated by D2 with respect
to f .

• For every AP-time random function T

7

fromD2 to [0..∞], the composition T ◦
f is AP.

Corollary. Domain reductions compose.

The question arises when a reduction f
of a domain D1 to a domain D2 reduces an
RDP(D1,W1, R1) to an RDP(D2,W2, R2)
or reduces an RSP(D1,W1, R1) to an
RSP(D2,W2, R2). Say that f is (fully) cor-
rect if (∃w)(wR1x) ↔ (∃w)(wR2f(x, r))
for all x ∈ D1 of positive probability and
all r. Should we require that f is fully cor-
rect or not? In either case, we must allow
– to be consistent – randomizing decision
and search algorithms satisfying the corre-
sponding correctness requirement.
It may seem that there is no sense in

using fully correct randomizing reductions.
Such a reduction can be made determinis-
tic by pretending that all coins come up
heads. This may ruin the domination re-
quirement however. Fully correct reduc-
tions may be employed to overcome the
phenomenon of flatness [Gu1, Gu3].
It is much more fruitful though to allow

partially correct reductions [VL, BCGL,
IL]. Say that a reduction f(x.r) of D1
to D2 reduces an RDP(D1,W1, R1) to an
RDP(D2,W2, R2) with probability guar-
antee α(n) if, for every x ∈ D1 of pos-
itive probability, the probability of the
event (∃w)(wR1x) ↔ (∃w)(wR2f(x, r)) is
at least α(|x|). Define partially correct
reductions of RNP search problems, par-
tially correct decision algorithms and par-
tially correct search algorithms in a sim-
ilar way. In the rest of this section, re-
ducing (resp. solving) an RNP problem Π
with correctness guarantee α means reduc-
ing (resp. solving) Π by an AP-time ran-
domizing algorithm with correctness guar-
antee α.
If an RNP decision problem Π is solv-

able with a constant correctness guarantee
α > 1/2 then, for any constant β < 1,
there exists k such that running the given

algorithm for Π on a given instance k times
and taking the majority answer solves Π
with correctness guarantee β. The situ-
ation is even better for search problems
where one needs only one successful at-
tempt; the inequality α > 1/2 can be re-
placed by α > 0. Of course, decreasing
correctness guarantees can be boosted as
well. In the case of search problems, it
makes sense to allow inverse polynomial
correctness guarantees. Iterating such an
AP-time randomizing search algorithm a
sufficient number of times gives an AP-
time randomizing search algorithm with
correctness guarantee close to 1. If an RNP
search problem Π2 is is solvable with an
inverse polynomial correctness guarantee
and an RNP search problem Π1 is reducible
to Π2 with an inverse polynomial correct-
ness guarantee then Π1 is solvable with an
inverse polynomial correctness guarantee.

Define the revised counterpart of P in
the new setting to be the class RAP of
RNP decision problems solvable with a
constant correctness guarantee exceeding
1/2, say, 2/3.

Notice, however, that the repetition
technique for boosting the probability of
correctness, which we applied to random-
izing decision and search algorithms above,
is not directly applicable to many-one ran-
domizing reductions. Repeating a random-
izing reduction k times results in k outputs
in the target domain, not one as in the def-
inition of reduction. In other words, such a
repetition is a version of Turing (or truth-
table) reduction, not a many-one reduc-
tion. At this point, we refer the reader to
papers [VL, BCGL, IL] where partially cor-
rect reductions were successfully employed.
It is our impression that the notion of re-
ductions of RNP problems requires a little
additional cleaning work.

The prospect of using Turing reductions
raises a hope of bridging the gap between
decision and search problems, of reducing

8

search problems to decision problems. This
works in the NP setting. For every NP
search problem Π, there exists an obvi-
ous polynomial time Turing reduction of
Π to an NP decision problem Π′. An in-
stance of Π′ comprises an instance x of Π
and a string u; the corresponding question
is whether there exists a witness w for x
(with respect to Π) with an initial seg-
ment u. This simple reduction does not
work for RNP problems; it violates the
domination condition. Using substantially
more sophisticated randomizing Turing re-
ductions, Ben-David, Chor, Goldreich and
Luby were able to prove that every RNP
search problem reduces to an appropriate
RNP decision problem [BCGL].

6. Revision 2: P-samplable
distributions

We return to the definition of domains
in Section 2 and discuss probability distri-
butions. For simplicity, restrict attention
to domains where the universe is the set
{0, 1}∗ of all binary strings and the size of
a string is its length. In this case, the do-
main is completely defined by the probabil-
ity distribution, and one may speak about
the uniform distribution and about one dis-
tribution dominating another.
A probability distribution on {0, 1}∗ is

called P-time computable if there exists
exists a polynomial time algorithm that,
given a string x, computes (a good approx-
imation to) the probability of the collec-
tion of strings y such that |y| < |x| or else
|y| = |x| and y precedes x in the lexico-
graphical order. For example, the uniform
distributions is P-time. The restriction to
P-time distributions was used by Levin to
construct the first RNP complete problem
[Le1]. This restriction turns out to be too
strict.
What distributions are likely to come up

in applications? It is natural to assume

that some randomizing algorithm is used
to generate instances of a problem in ques-
tion. Then there exists a computable func-
tion h(r) from sequences of coin flips to in-
stances of our problem such that the prob-
ability µ(x) of an instance x is proportional
to the uniform probability of h−1(x). (We
say “proportional” rather than “equal” be-
cause the generating algorithm is not re-
quired to always terminate.)

Remark. Every such distribution µ,
never mind the complexity of the gener-
ating algorithm, is dominated by so-called
universal distribution reflecting the infor-
mation complexity. Li and Vitani notice
that, in the case of the universal distri-
bution, the average-case time complexity
is “of the same order of magnitude as
the corresponding worst-case complexity”
[LV]. The idea is that, in particular, the
universal distribution dominates the dis-
tribution that concentrates exclusively on
the worst-case instances. In practice, of
course, the generating algorithms satisfy
severe resource bounds and the average-
case complexity is often much lower than
the worst-case complexity.
It is possible that function h is easily in-

vertible and preserves the order of strings.
For example, h(r) may be the concatena-
tion of r and some string h′(r). In such
a case, distribution µ is P-time. In gen-
eral, however, one cannot count on µ be-
ing P-time. One may want to distinguish
between the cases when µ in question is
produced by nature or some other disinter-
ested party and the case when the distribu-
tion is produced by an adversary. Even a
disinterested party may inadvertently mess
things up. Certainly one would expect an
adversary to mess things up. The following
definition is implicitly in [Le2] and explic-
itly in [BCGL].

Definition 6.1. A distribution is P-
samplable if it is generated by a coin-
flipping Turing machine M (with no addi-

9

tional input) such that the length of every
terminating computation of M is bounded
by a fixed polynomial of the output.

Ben-David, Chor, Goldreich and Luby
prove that (i) every P-time distribution
is P-samplable, and (ii) if there exists a
one-way function (a function which is easy
to compute but difficult – in some precise
technical sense – to invert) then there is a
P-samplable distribution which is not dom-
inated by any P-time distribution [BCGL].
Fortunately, Impagliazzo and Levin were
able to prove the following theorem.

Theorem 6.1 [IL]. Every NP search
problem with a P-samplable distribution
reduces to an NP search problem with the
uniform distribution.

Redefine the notion of domains by relax-
ing the requirement that the probability
distribution is P-time and requiring only
that it is P-samplable. In particular, this
gives a new definition of the class RNP
which is the counterpart of NP in the av-
erage case approach. By Theorem 6.1,
problems complete for old RNP (with only
P-time distributions allowed) remain com-
plete for the new RNP.

7. Bounded on average

This section is a little more technical.
The reader, not interested in details, can
safely skip proofs.
Let T be a random variable with values

in the interval [0..∞] of the extended real
line. The function P[T > t] is continuous
from the right, i.e., P[T > t] = inf{P[T >
s] : s > t}. Also P[T ≤ t] is continuous
from the right. P[T < t] and P[T ≥ t] are
continuous from the left.
Numbers t such that P[T ≤ t] ≥ 1/2

and P[T ≥ t] ≥ 1/2 are called medians of
T . They form an interval. It is easy to see
that the interval of medians is not empty.

For example, it contains

M(T) = sup{t : P[T ≥ t] ≥ 1/2}.
If M(T) = 0 then P[T ≥ M(T)] = 1 >
1/2; otherwise, by the continuity from the
left, P[T ≥ M(T)] = infs<M(T)P[T ≥
s] ≥ 1/2. If M(T) = ∞ then P[T ≤
M(T) = 1 > 1/2; otherwise, by the con-
tinuity from the right, P[T ≤ M(T)] =
sups>M(T)P[T ≤ s] ≥ 1/2. The number
M(T) may be called the upper median for
T . For brevity, we will say that M(T) is
the median for T .
Notice that M(T) ≤ 2E(T). For, T is a

function on some sample space X. Define
another function

T ′(x) = [if x < M(T) then 0, else M(T)]

on X. Clearly, M(T)/2 ≤ E(T ′) ≤ E(T).

Definition 7.1. Let 0 ≤ ε ≤ 1. The
ε-quantile of T is

Q(T, ε) = sup{t : P[T ≥ t] ≥ ε}.

Check that P[T ≥ Q(T, ε)] ≥ ε and
P[T ≤ Q(T, ε)] ≥ 1− ε.

Definition 7.2. M(T, k) =M(T1+ . . .+
Tk) where T1, . . . , Tk are independent ran-
dom variables with the same distribution
as T .

There is a close relation between
M(T, k) and Q(T, 1/k).

Lemma 7.1.

• Q(T, 1/k) ≤ M(T, k).

• If a < loge 2 then, for all sufficiently
large k, M(T, k) ≤ kQ(T, a/k).

Proof. Let s = Q(T, 1/k) and t =
Q(T, a/k). Recall that T is a function on
some sample space X. Define functions A
and B from X to [0..∞] as follows:

A(x) = [if T (x) < s then 0 else s],
B(x) = [if T (x) ≤ t then t else ∞]

10

so that A(x) ≤ T (x) ≤ B(x) for all x. Let
A1, . . . , Ak (resp. B1, . . . , Bk) be indepen-
dent random variables with the same dis-
tribution as A (resp. B).
To establish the first inequality, it suf-

fices to prove that M(A, k) ≥ s. Let
p = P[A = s] so that p = P[T ≥ s] ≥ 1/k
and (1 − p) ≤ e−p ≤ e−1/k. Clearly
A1+. . .+Ak ≥ s if and only if some Ti ≥ s.
Thus,

P[A1 + . . .+Ak] ≥ s =
1− (1− p)k ≥ 1− 1/e > 1/2

and therefore M(A, k) ≥ s.
We prove the second inequality. Since

a < loge2, e−a > 1/2. Let k be sufficiently
large so that (1−a/k)k > 1/2. It suffices to
prove that M(B, k) < kt+ ε for any ε > 0.
Let q = P[B ≤ t] so that q = P[T ≤ t] ≥
1− a/k. Clearly, B1 + . . .+Bk < kt+ ε if
and only every Bi ≤ t. Hence

P[B1 + . . .+Bk < kt+ ε] =
qk ≥ (1− a/k)k > 1/2

so that P[M(B, k) ≥ kt + ε] < 1/2 and
therefore M(B, k) < kt+ ε. QED

Definition 7.3. A random variable T is
bounded on average if there exists ε > 0
such that E(T ε < ∞.

Theorem 7.1. T is bounded on average
if and only if Q(T, 1/k) is bounded by a
polynomial of k if and only if M(T, k) is
bounded by a polynomial of k.

Proof. By Lemma 7.1, it suffices to prove
only the first equivalence. Let q(k) =
Q(T, k). Without loss of generality, T is
unbounded, P[T = ∞] = 0 and ∞ is the
only limit point for the range of T . (If the
range of T has other limit points, replace
T with �T �). Then q(k) = sup{t : P[T ≥
1/k]} = max{t : P[T ≥ 1/k]} and there-
fore P[T = q(k)] > 0.
Further, without loss of generality, we

may assume that the sequence q(k) is

strictly monotone. If q(k) = q(k + 1) =
. . . = q(k + j − 1) < q(k + j) and either
k = 1 or q(k − 1) < q(k), choose points
q′(k+1) < . . . < q′(k+ j−1) between q(k)
and min(q(k) + 1, q(k + j)) and modify T
such that Q(T, i) = q′(i) for k < i < k+ j.
Every sufficiently large value of T be-

longs to some interval (q(k − 1), q(k)] and
therefore T is bounded on average if there
exists ε > 0 such that

∑
k q(k)ε · P[q(k −

1) < T ≥ q(k)] < ∞. We have

P[q(k − 1) < T ≥ q(k)] ≤
P[T > q(k − 1)]− P[T ≥ q(k + 1)] ≤
1

k − 1
− 1

k + 1
= O(k−2).

It is clear that if q(k) is bounded by a poly-
nomial of k then T is bounded on average.
On the other hand, every value of T be-

longs to some interval [q(k), q(k + 1)). We
have

P[q(k) ≤ T < q(k + 1)] ≥
P[T ≥ q(k)]− P[T leqq(k + 2)] ≥
1
k

− 1
k + 2

= Ω(k−2).

If E(T 1/j) < ∞ for some j then
∑

k q(k)1/j ·
k−2 < c for some c, and therefore q(k) ≤
cjk2j . QED

Now fix a domain. The notion of bound-
edness on average allows us to give the fol-
lowing useful characterization of AP func-
tions.

Lemma 7.2. A function T from some
domain D to [0..∞] is AP if and only if
there exists a polynomial p and a bounded
on average function B from D to [0..∞]
such that T (x) = p(x) · B(x).
Proof. If E(T (x)1/k/|x|) < 0, the de-
sired B(x) = T (x)/|x|k. Suppose that
T (x)‖x|i · B(x), E(B(x)1/j) < ∞ and
k = max(i, j). Then E((Tx)1/k/|x|) ≤
E(B1/j < ∞. QED

It is easy to check that the class of
bounded on average functions is closed

11

under, say, pointwise maxima (h(x) =
max(f(x), g(x)) and products. Hence the
class of AP functions is closed under point-
wise maxima and products.

8. One alternative to
P=?NP

Is theoretical computer science a part
of mathematics? A good case can be
made in favor of the thesis that theo-
retical computer science is a part of ap-
plied mathematics. The word “applied”
is essential here. Even a remote connec-
tion to possible applications gives impor-
tant guidance. A case in point is the fa-
mous question P=?NP, so very popular in
theoretical computer science. The impor-
tance of the P=?NP question is related
to the thesis identifying feasible and poly-
nomial time computations, thesis (1.0) of
Section 1. (There is a beautiful article
of Trakhtenbrot on the original motiva-
tion for the P=?NP question [Tr].) In
this connection, a computer scientist, who
isn’t convinced that P captures feasibility,
may question the centrality of the P=?NP
question. A purer mathematician may be
unmoved. The question was asked. The
challenge was posed. Now is the time to
solve the question rather than to try to get
around it.
In [Gu2], the P=?NP question was criti-

cized for a bias toward the positive solution
and an alternative question RAP=?RNP,
the counterpart of the P=?NP question in
the average-case approach, was advertized.
In that connection, the following game be-
tween Challenger and Solver was consid-
ered. Challenger chooses an NP problem Π
and then repeatedly picks instances of Π,
and Solver tries to solve them. If P=NP
then Solver can win the game: By the
more convincing part (1.1) of the thesis
(1.0), polynomial time algorithms are feasi-
ble. On the other hand, it is not clear that
Challenger can make Solver work much
harder than he does if P
=NP. It may be
very hard to find hard instance of Π.
Now assume that Challenger employs

a randomizing algorithm generating in-
stances of Π in time polynomial in the

12

output. (Polynomiality in the output is
a feasibility requirement in this context.
There is a limit on Challenger’s time.)
This makes Π an RNP problem. We con-
sider (randomizing) decision or search al-
gorithms feasible if they run in time poly-
nomial on average. Thus, Solver can win if
RAP=RNP. What happens if RAP
=RNP?
Can Challenger win the game? The answer
seems to be yes. The following argument
involves medians.
Suppose that Π is any RNP problem

that is not RAP, and TS(x, r) is the run-
ning time of Solver’s algorithm on instance
x and a sequence r of coin flips. By Theo-
rem 7.1, the median M(TS , k) of the time
that Solver needs to solve k instances is not
bounded by a polynomial of k. Further-
more, Challenger’s generating process may
be altered in such a way that the expec-
tation E(TC) of Challenger’s time for gen-
erating one instance is bounded D [Gu2].
Then the expected time for generating in-
dependently k instances is Θ(k) and there-
fore (recall the remark thatM(T) ≤ 2E(T)
in Section 7) the medianM(TC , k) of Chal-
lenger’s time needed to produce k instances
is Θ(k). Thus, the median M(TS , k) of
Solver’s time is not bounded by any poly-
nomial of the expectation k · E(TC) or the
median M(TC , k) of Challenger’s time.

It is easy to see that RAP
=RNP if there
exists a one-way function. It is not known
whether the converse is true. The converse
fails under some oracle [IR], but the ques-
tion is open and very exciting. The ex-
istence of one-way functions allows cryp-
tography in a meaningful sense [ILL, Ha].
If the existence of one-way functions fol-
lows from RAP
=RNP then the question
RAP=?RNP is beautifully balanced. Ei-
ther all RNP problems are easy on average
or else there are problems that are hard on
average but then they can be used to do
cryptography.

Acknowledgement. We are happy to
thank Andreas Blass and Leonid Levin
for most useful discussions, Ramarathnam
Venkatesan and Moshe Vardi for comments
on a draft of this paper, and our student
Jordan Stojanovski who was asked to prove
Theorem 7.1 and did a good job.

References

[BCGL] Shai Ben-David, Benny Chor,
Oded Goldreich and Michael Luby,
“On the Theory of Average Case
Complexity”, Symposium on The-
ory of Computing, ACM, 1989,
204–216.

[BG] Andreas Blass and Yuri Gure-
vich, “On the Reduction Theory
for Average-Case Complexity”, in
Proc. of CSL’90, 4th Workshop on
Computer Science Logic (Eds. E.
Börger, H. Kleine Büning and M.
Richter), Springer LNCS, 1991.

[GJ] Michael R. Garey and David
S. Johnson, “Computers and In-
tractability: A Guide to the The-
ory of NP-Completeness”, Free-
man, New York, 1979.

[Go] Oded Goldreich, “Towards a The-
ory of Average Case Complexity:
A survey”, TR-531, Computer Sci-
ence Dept., Technion, Haifa, Israel,
March 1988.

[Gr] Per Grape, “Complete Problems
with L-Samplable Distributions”,
2nd Scandinavian Workshop on Al-
gorithm Theory, Springer Lecture
Notes in Computer Science 447,
1990, 360–367.

[Gu1] Yuri Gurevich, “Average Case
Complexity”, J. Computer and Sys-
tem Sciences (a special issue on
FOCS’87), to appear.

13

[Gu2] Y. Gurevich, “The Challenger-
Solver game: Variations on the
Theme of P=?NP”, Bulletin of Eu-
ropean Assoc. for Theor. Computer
Science, October 1989, 112–121.

[Gu3] Yuri Gurevich, “Matrix Decom-
position Problem is Complete for
the Average Case”, Symposium on
Foundations of Computer Science,
IEEE Computer Society Press,
1990, 802–811. A full version of
this paper, coauthored by Blass
and Gurevich, is being prepared for
publication.

[GS] Yuri Gurevich and Saharon Shelah,
“Expected computation time for
Hamiltonian Path Problem”, SIAM
J. on Computing 16:3 (1987), 486–
502.

[Ha] Johan Hastad, “Pseudo-Random
Generators under Uniform Func-
tions”, Symposium on Theory of
Computing, ACM, 1990, 395–404.

[IR] Russel Impagliazzo and Stephen
Rudich, private communication.

[IL] Russel Impagliazzo and Leonid A.
Levin, “No Better Ways to Gener-
ate Hard NP Instances than Pick-
ing Uniformly at Random”, Sympo-
sium on Foundations of Computer
Science, IEEE Computer Society
Press, 1990, 812–821.

[ILL] Russel Impagliazzo, Leonid A.
Levin and Michael Luby, “Pseudo-
Random Generation from One-Way
Functions”, 21st Symposium on
Theory of Computing, ACM, New
York, 1989, 12–24.

[Jo] David S. Johnson, ”The NP--
Completeness Column”, Journal of
Algorithms 5 (1984), 284-299.

[Kn] P.M.W. Knijnenburg, “On Ran-
domizing Decision Problems: A
Survey of the Theory of Random-
ized NP”, Tech. Report RUU-CS-
88-15, Rijksuniversitait Utrecht,
The Netherlands, March 1988.

[Le1] Leonid A. Levin, “Average Case
Complete Problems”, STOC 1984,
the final version in SIAM Journal
of Computing, 1986.

[Le2] Leonid A. Levin, “One-Way Func-
tions and Pseudo-Random Gener-
ators”, Symposium on Theory of
Computing, ACM, 1985, 363–375.

[LV] Ming Li and Paul M. B. Vi-
tani, “Average Case Complexity
under the Universal Distribution
Equals Worst Case Complexity”,
Manuscript, 1989.

[Sc] Robert E. Schapire, “The Emerging
Theory of Average Case Complex-
ity”, Tech. Report MIT/LCS/TM-
431, June 1990.

[Tr] Boris A. Trakhtenbrot, “A Survey
of Russian Approaches to Perebor
(Brute-Force Search) Algorithms”,
Annals of the History of Comput-
ing, 6:4 (1984), 384–400.

[VL] Ramarathnam Venkatesan and
Leonid Levin, “ Random Instances
of a Graph Coloring Problem are
Hard”, Symposium on Theory of
Computing, ACM, 1988, 217–222.

[Ve] Ramarathnam Venkatesan, private
correspondence.

[Wi] Herbert S. Wilf, Some Examples
of Combinatorial Averaging, Amer-
ican Math. Monthly 92 (1985), 250–
261.

14

